mirror of
				https://github.com/f4exb/sdrangel.git
				synced 2025-10-31 04:50:29 -04:00 
			
		
		
		
	
		
			
				
	
	
		
			227 lines
		
	
	
		
			6.4 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			227 lines
		
	
	
		
			6.4 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| ///////////////////////////////////////////////////////////////////////////////////
 | |
| // Copyright (C) 2018 F4EXB                                                      //
 | |
| // written by Edouard Griffiths                                                  //
 | |
| //                                                                               //
 | |
| // See: http://liquidsdr.org/blog/pll-howto/                                     //
 | |
| // Fixed filter registers saturation                                             //
 | |
| // Added order for PSK locking. This brilliant idea actually comes from this     //
 | |
| // post: https://www.dsprelated.com/showthread/comp.dsp/36356-1.php              //
 | |
| //                                                                               //
 | |
| // This program is free software; you can redistribute it and/or modify          //
 | |
| // it under the terms of the GNU General Public License as published by          //
 | |
| // the Free Software Foundation as version 3 of the License, or                  //
 | |
| // (at your option) any later version.                                           //
 | |
| //                                                                               //
 | |
| // This program is distributed in the hope that it will be useful,               //
 | |
| // but WITHOUT ANY WARRANTY; without even the implied warranty of                //
 | |
| // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the                  //
 | |
| // GNU General Public License V3 for more details.                               //
 | |
| //                                                                               //
 | |
| // You should have received a copy of the GNU General Public License             //
 | |
| // along with this program. If not, see <http://www.gnu.org/licenses/>.          //
 | |
| ///////////////////////////////////////////////////////////////////////////////////
 | |
| 
 | |
| #include <complex.h>
 | |
| #include <cmath>
 | |
| #include "phaselockcomplex.h"
 | |
| 
 | |
| PhaseLockComplex::PhaseLockComplex() :
 | |
|     m_a1(1.0),
 | |
|     m_a2(1.0),
 | |
|     m_b0(1.0),
 | |
|     m_b1(1.0),
 | |
|     m_b2(1.0),
 | |
|     m_v0(0.0),
 | |
|     m_v1(0.0),
 | |
|     m_v2(0.0),
 | |
|     m_deltaPhi(0.0),
 | |
|     m_phiHat(0.0),
 | |
|     m_phiHatPrev(0.0),
 | |
|     m_y(1.0, 0.0),
 | |
|     m_p(1.0, 0.0),
 | |
|     m_yRe(1.0),
 | |
|     m_yIm(0.0),
 | |
|     m_freq(0.0),
 | |
|     m_freqPrev(0.0),
 | |
|     m_freqTest(0.0),
 | |
|     m_lockCount(0),
 | |
|     m_lockFreq(0.026f),
 | |
|     m_pskOrder(1),
 | |
|     m_lockTime(480),
 | |
|     m_lockTimeCount(0)
 | |
| {
 | |
| }
 | |
| 
 | |
| void PhaseLockComplex::computeCoefficients(Real wn, Real zeta, Real K)
 | |
| {
 | |
|     double t1 = K/(wn*wn);          //
 | |
|     double t2 = 2*zeta/wn - 1/K;   //
 | |
| 
 | |
|     double b0 = 2*K*(1.+t2/2.0f);
 | |
|     double b1 = 2*K*2.;
 | |
|     double b2 = 2*K*(1.-t2/2.0f);
 | |
| 
 | |
|     double a0 =  1 + t1/2.0f;
 | |
|     double a1 = -t1;
 | |
|     double a2 = -1 + t1/2.0f;
 | |
| 
 | |
|     qDebug("PhaseLockComplex::computeCoefficients: b_raw: %f %f %f", b0, b1, b2);
 | |
|     qDebug("PhaseLockComplex::computeCoefficients: a_raw: %f %f %f", a0, a1, a2);
 | |
| 
 | |
|     m_b0 = b0 / a0;
 | |
|     m_b1 = b1 / a0;
 | |
|     m_b2 = b2 / a0;
 | |
| 
 | |
|     //    a0 =  1.0  is implied
 | |
|     m_a1 = a1 / a0;
 | |
|     m_a2 = a2 / a0;
 | |
| 
 | |
|     qDebug("PhaseLockComplex::computeCoefficients: b: %f %f %f", m_b0, m_b1, m_b2);
 | |
|     qDebug("PhaseLockComplex::computeCoefficients: a: 1.0 %f %f", m_a1, m_a2);
 | |
| 
 | |
|     reset();
 | |
| }
 | |
| 
 | |
| void PhaseLockComplex::setPskOrder(unsigned int order)
 | |
| {
 | |
|     m_pskOrder = order > 0 ? order : 1;
 | |
|     reset();
 | |
| }
 | |
| 
 | |
| void PhaseLockComplex::setSampleRate(unsigned int sampleRate)
 | |
| {
 | |
|     m_lockTime = sampleRate / 100; // 10ms for order 1
 | |
|     m_lockFreq = (2.0*M_PI*(m_pskOrder > 1 ? 6.0 : 1.0)) / sampleRate; // +/- 6 Hz frequency swing
 | |
|     reset();
 | |
| }
 | |
| 
 | |
| void PhaseLockComplex::reset()
 | |
| {
 | |
|     // reset filter accumulators and phase
 | |
|     m_v0 = 0.0f;
 | |
|     m_v1 = 0.0f;
 | |
|     m_v2 = 0.0f;
 | |
|     m_deltaPhi = 0.0f;
 | |
|     m_phiHat = 0.0f;
 | |
|     m_phiHatPrev = 0.0f;
 | |
|     m_y.real(1.0);
 | |
|     m_y.imag(0.0);
 | |
|     m_p.real(1.0);
 | |
|     m_p.imag(0.0);
 | |
|     m_yRe = 1.0f;
 | |
|     m_yIm = 0.0f;
 | |
|     m_freq = 0.0f;
 | |
|     m_freqPrev = 0.0f;
 | |
|     m_freqTest = 0.0f;
 | |
|     m_lockCount = 0;
 | |
|     m_lockTimeCount = 0;
 | |
| }
 | |
| 
 | |
| void PhaseLockComplex::feed(float re, float im)
 | |
| {
 | |
|     m_yRe = cos(m_phiHat);
 | |
|     m_yIm = sin(m_phiHat);
 | |
|     m_y.real(m_yRe);
 | |
|     m_y.imag(m_yIm);
 | |
|     std::complex<float> x(re, im);
 | |
|     m_deltaPhi = std::arg(x * std::conj(m_y));
 | |
| 
 | |
|     // bring phase 0 on any of the PSK symbols
 | |
|     if (m_pskOrder > 1) {
 | |
|         m_deltaPhi = normalizeAngle(m_pskOrder*m_deltaPhi);
 | |
|     }
 | |
| 
 | |
|     // advance buffer
 | |
|     m_v2 = m_v1;  // shift center register to upper register
 | |
|     m_v1 = m_v0;  // shift lower register to center register
 | |
| 
 | |
|     // compute new lower register
 | |
|     m_v0 = m_deltaPhi - m_v1*m_a1 - m_v2*m_a2;
 | |
| 
 | |
|     // compute new output
 | |
|     m_phiHat = m_v0*m_b0 + m_v1*m_b1 + m_v2*m_b2;
 | |
| 
 | |
|     // prevent saturation
 | |
|     if (m_phiHat > 2.0*M_PI)
 | |
|     {
 | |
|         m_v0 *= (m_phiHat - 2.0*M_PI) / m_phiHat;
 | |
|         m_v1 *= (m_phiHat - 2.0*M_PI) / m_phiHat;
 | |
|         m_v2 *= (m_phiHat - 2.0*M_PI) / m_phiHat;
 | |
|         m_phiHat -= 2.0*M_PI;
 | |
|     }
 | |
| 
 | |
|     if (m_phiHat < -2.0*M_PI)
 | |
|     {
 | |
|         m_v0 *= (m_phiHat + 2.0*M_PI) / m_phiHat;
 | |
|         m_v1 *= (m_phiHat + 2.0*M_PI) / m_phiHat;
 | |
|         m_v2 *= (m_phiHat + 2.0*M_PI) / m_phiHat;
 | |
|         m_phiHat += 2.0*M_PI;
 | |
|     }
 | |
| 
 | |
|     // lock and frequency estimation
 | |
|     if (m_pskOrder > 1)
 | |
|     {
 | |
|         float dPhi = normalizeAngle(m_phiHat - m_phiHatPrev);
 | |
|         m_freq = m_expAvg.feed(dPhi);
 | |
| 
 | |
|         if (m_lockTimeCount < m_lockTime-1)
 | |
|         {
 | |
|             m_lockTimeCount++;
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|             float dF = m_freq - m_freqTest;
 | |
| 
 | |
|             if ((dF > -m_lockFreq) && (dF < m_lockFreq))
 | |
|             {
 | |
|                 if (m_lockCount < 20) {
 | |
|                     m_lockCount++;
 | |
|                 }
 | |
|             }
 | |
|             else
 | |
|             {
 | |
|                 if (m_lockCount > 0) {
 | |
|                     m_lockCount--;
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             m_freqTest = m_freq;
 | |
|             m_lockTimeCount = 0;
 | |
|         }
 | |
| 
 | |
|         m_phiHatPrev = m_phiHat;
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         m_freqTest = normalizeAngle(m_phiHat - m_phiHatPrev);
 | |
|         m_freq = m_expAvg.feed(m_freqTest);
 | |
| 
 | |
|         float dFreq = m_freqTest - m_freqPrev;
 | |
| 
 | |
|         if ((dFreq > -0.01) && (dFreq < 0.01))
 | |
|         {
 | |
|             if (m_lockCount < (m_lockTime-1)) { // [0..479]
 | |
|                 m_lockCount++;
 | |
|             }
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|             m_lockCount = 0;
 | |
|         }
 | |
| 
 | |
|         m_phiHatPrev = m_phiHat;
 | |
|         m_freqPrev = m_freqTest;
 | |
|     }
 | |
| }
 | |
| 
 | |
| float PhaseLockComplex::normalizeAngle(float angle)
 | |
| {
 | |
|     while (angle <= -M_PI) {
 | |
|         angle += 2.0*M_PI;
 | |
|     }
 | |
|     while (angle > M_PI) {
 | |
|         angle -= 2.0*M_PI;
 | |
|     }
 | |
|     return angle;
 | |
| }
 |