mirror of
				https://github.com/f4exb/sdrangel.git
				synced 2025-11-04 05:30:32 -05:00 
			
		
		
		
	
		
			
				
	
	
		
			298 lines
		
	
	
		
			6.9 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			298 lines
		
	
	
		
			6.9 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
/*  anb.h
 | 
						|
 | 
						|
This file is part of a program that implements a Software-Defined Radio.
 | 
						|
 | 
						|
Copyright (C) 2013, 2014 Warren Pratt, NR0V
 | 
						|
Copyright (C) 2024 Edouard Griffiths, F4EXB Adapted to SDRangel
 | 
						|
 | 
						|
This program is free software; you can redistribute it and/or
 | 
						|
modify it under the terms of the GNU General Public License
 | 
						|
as published by the Free Software Foundation; either version 2
 | 
						|
of the License, or (at your option) any later version.
 | 
						|
 | 
						|
This program is distributed in the hope that it will be useful,
 | 
						|
but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
						|
GNU General Public License for more details.
 | 
						|
 | 
						|
You should have received a copy of the GNU General Public License
 | 
						|
along with this program; if not, write to the Free Software
 | 
						|
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
 | 
						|
 | 
						|
The author can be reached by email at
 | 
						|
 | 
						|
warren@wpratt.com
 | 
						|
 | 
						|
*/
 | 
						|
 | 
						|
#include "comm.hpp"
 | 
						|
#include "anb.hpp"
 | 
						|
 | 
						|
#define MAX_TAU         (0.01)     // maximum transition time, signal<->zero (slew time)
 | 
						|
#define MAX_ADVTIME     (0.01)     // maximum deadtime (zero output) in advance of detected noise
 | 
						|
#define MAX_SAMPLERATE  (1536000)
 | 
						|
 | 
						|
namespace WDSP {
 | 
						|
 | 
						|
void ANB::initBlanker()
 | 
						|
{
 | 
						|
    trans_count = (int)(tau * samplerate);
 | 
						|
 | 
						|
    if (trans_count < 2)
 | 
						|
        trans_count = 2;
 | 
						|
 | 
						|
    hang_count = (int)(hangtime * samplerate);
 | 
						|
    adv_count = (int)(advtime * samplerate);
 | 
						|
    count = 0;
 | 
						|
    in_idx = trans_count + adv_count;
 | 
						|
    out_idx = 0;
 | 
						|
    coef = PI / trans_count;
 | 
						|
    state = 0;
 | 
						|
    avg = 1.0;
 | 
						|
    power = 1.0;
 | 
						|
    backmult = exp(-1.0 / (samplerate * backtau));
 | 
						|
    ombackmult = 1.0 - backmult;
 | 
						|
 | 
						|
    for (int i = 0; i <= trans_count; i++)
 | 
						|
        wave[i] = 0.5 * cos(i * coef);
 | 
						|
 | 
						|
    std::fill(dline.begin(), dline.end(), 0);
 | 
						|
}
 | 
						|
 | 
						|
ANB::ANB  (
 | 
						|
    int _run,
 | 
						|
    int _buffsize,
 | 
						|
    float* _in,
 | 
						|
    float* _out,
 | 
						|
    double _samplerate,
 | 
						|
    double _tau,
 | 
						|
    double _hangtime,
 | 
						|
    double _advtime,
 | 
						|
    double _backtau,
 | 
						|
    double _threshold
 | 
						|
) :
 | 
						|
    run(_run),
 | 
						|
    buffsize(_buffsize),
 | 
						|
    in(_in),
 | 
						|
    out(_out),
 | 
						|
    dline_size((int)((MAX_TAU + MAX_ADVTIME) * MAX_SAMPLERATE) + 1),
 | 
						|
    samplerate(_samplerate),
 | 
						|
    tau(_tau),
 | 
						|
    hangtime(_hangtime),
 | 
						|
    advtime(_advtime),
 | 
						|
    backtau(_backtau),
 | 
						|
    threshold(_threshold),
 | 
						|
    dtime(0),
 | 
						|
    htime(0),
 | 
						|
    itime(0),
 | 
						|
    atime(0)
 | 
						|
{
 | 
						|
    if (tau < 0.0) {
 | 
						|
        tau = 0.0;
 | 
						|
    } else if (tau > MAX_TAU) {
 | 
						|
        tau = MAX_TAU;
 | 
						|
    }
 | 
						|
 | 
						|
    if (hangtime < 0.0) {
 | 
						|
        hangtime = 0.0;
 | 
						|
    } else if (hangtime > MAX_ADVTIME) {
 | 
						|
        hangtime = MAX_ADVTIME;
 | 
						|
    }
 | 
						|
 | 
						|
    if (advtime < 0.0) {
 | 
						|
        advtime = 0.0;
 | 
						|
    } else if (advtime > MAX_ADVTIME) {
 | 
						|
        advtime = MAX_ADVTIME;
 | 
						|
    }
 | 
						|
 | 
						|
    if (samplerate < 0.0) {
 | 
						|
        samplerate = 0.0;
 | 
						|
    } else if (samplerate > MAX_SAMPLERATE) {
 | 
						|
        samplerate = MAX_SAMPLERATE;
 | 
						|
    }
 | 
						|
 | 
						|
    wave.resize((int)(MAX_SAMPLERATE * MAX_TAU) + 1);
 | 
						|
    dline.resize(dline_size * 2);
 | 
						|
    initBlanker();
 | 
						|
}
 | 
						|
 | 
						|
void ANB::flush()
 | 
						|
{
 | 
						|
    initBlanker();
 | 
						|
}
 | 
						|
 | 
						|
void ANB::execute()
 | 
						|
{
 | 
						|
    double scale;
 | 
						|
    double mag;
 | 
						|
 | 
						|
    if (run)
 | 
						|
    {
 | 
						|
        for (int i = 0; i < buffsize; i++)
 | 
						|
        {
 | 
						|
            double xr = in[2 * i + 0];
 | 
						|
            double xi = in[2 * i + 1];
 | 
						|
            mag = sqrt(xr*xr + xi*xi);
 | 
						|
            avg = backmult * avg + ombackmult * mag;
 | 
						|
            dline[2 * in_idx + 0] = in[2 * i + 0];
 | 
						|
            dline[2 * in_idx + 1] = in[2 * i + 1];
 | 
						|
 | 
						|
            if (mag > (avg * threshold))
 | 
						|
                count = trans_count + adv_count;
 | 
						|
 | 
						|
            switch (state)
 | 
						|
            {
 | 
						|
                case 0:
 | 
						|
                    out[2 * i + 0] = dline[2 * out_idx + 0];
 | 
						|
                    out[2 * i + 1] = dline[2 * out_idx + 1];
 | 
						|
 | 
						|
                    if (count > 0)
 | 
						|
                    {
 | 
						|
                        state = 1;
 | 
						|
                        dtime = 0;
 | 
						|
                        power = 1.0;
 | 
						|
                    }
 | 
						|
 | 
						|
                    break;
 | 
						|
 | 
						|
                case 1:
 | 
						|
                    scale = power * (0.5 + wave[dtime]);
 | 
						|
                    out[2 * i + 0] = (float) (dline[2 * out_idx + 0] * scale);
 | 
						|
                    out[2 * i + 1] = (float) (dline[2 * out_idx + 1] * scale);
 | 
						|
 | 
						|
                    if (++dtime > trans_count)
 | 
						|
                    {
 | 
						|
                        state = 2;
 | 
						|
                        atime = 0;
 | 
						|
                    }
 | 
						|
 | 
						|
                    break;
 | 
						|
 | 
						|
                case 2:
 | 
						|
                    out[2 * i + 0] = 0.0;
 | 
						|
                    out[2 * i + 1] = 0.0;
 | 
						|
 | 
						|
                    if (++atime > adv_count)
 | 
						|
                        state = 3;
 | 
						|
 | 
						|
                    break;
 | 
						|
 | 
						|
                case 3:
 | 
						|
                    if (count > 0)
 | 
						|
                        htime = -count;
 | 
						|
 | 
						|
                    out[2 * i + 0] = 0.0;
 | 
						|
                    out[2 * i + 1] = 0.0;
 | 
						|
 | 
						|
                    if (++htime > hang_count)
 | 
						|
                    {
 | 
						|
                        state = 4;
 | 
						|
                        itime = 0;
 | 
						|
 | 
						|
                    }
 | 
						|
 | 
						|
                    break;
 | 
						|
 | 
						|
                case 4:
 | 
						|
                    scale = 0.5 - wave[itime];
 | 
						|
                    out[2 * i + 0] = (float) (dline[2 * out_idx + 0] * scale);
 | 
						|
                    out[2 * i + 1] = (float) (dline[2 * out_idx + 1] * scale);
 | 
						|
 | 
						|
                    if (count > 0)
 | 
						|
                    {
 | 
						|
                        state = 1;
 | 
						|
                        dtime = 0;
 | 
						|
                        power = scale;
 | 
						|
                    }
 | 
						|
                    else if (++itime > trans_count)
 | 
						|
                    {
 | 
						|
                        state = 0;
 | 
						|
                    }
 | 
						|
 | 
						|
                    break;
 | 
						|
                default:
 | 
						|
                    break;
 | 
						|
            }
 | 
						|
 | 
						|
            if (count > 0)
 | 
						|
                count--;
 | 
						|
 | 
						|
            if (++in_idx == dline_size)
 | 
						|
                in_idx = 0;
 | 
						|
 | 
						|
            if (++out_idx == dline_size)
 | 
						|
                out_idx = 0;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    else if (in != out)
 | 
						|
    {
 | 
						|
        std::copy(in, in + buffsize * 2, out);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void ANB::setBuffers(float* _in, float* _out)
 | 
						|
{
 | 
						|
    in = _in;
 | 
						|
    out = _out;
 | 
						|
}
 | 
						|
 | 
						|
void ANB::setSize(int size)
 | 
						|
{
 | 
						|
    buffsize = size;
 | 
						|
    initBlanker();
 | 
						|
}
 | 
						|
 | 
						|
/********************************************************************************************************
 | 
						|
*                                                                                                       *
 | 
						|
*                                         Common interface                                              *
 | 
						|
*                                                                                                       *
 | 
						|
********************************************************************************************************/
 | 
						|
 | 
						|
void ANB::setRun (int _run)
 | 
						|
{
 | 
						|
    run = _run;
 | 
						|
}
 | 
						|
 | 
						|
void ANB::setBuffsize (int size)
 | 
						|
{
 | 
						|
    buffsize = size;
 | 
						|
}
 | 
						|
 | 
						|
void ANB::setSamplerate (int rate)
 | 
						|
{
 | 
						|
    samplerate = (double) rate;
 | 
						|
    initBlanker();
 | 
						|
}
 | 
						|
 | 
						|
void ANB::setTau (double _tau)
 | 
						|
{
 | 
						|
    tau = _tau;
 | 
						|
    initBlanker();
 | 
						|
}
 | 
						|
 | 
						|
void ANB::setHangtime (double time)
 | 
						|
{
 | 
						|
    hangtime = time;
 | 
						|
    initBlanker();
 | 
						|
}
 | 
						|
 | 
						|
void ANB::setAdvtime (double time)
 | 
						|
{
 | 
						|
    advtime = time;
 | 
						|
    initBlanker();
 | 
						|
}
 | 
						|
 | 
						|
void ANB::setBacktau (double _tau)
 | 
						|
{
 | 
						|
    backtau = _tau;
 | 
						|
    initBlanker();
 | 
						|
}
 | 
						|
 | 
						|
void ANB::setThreshold (double thresh)
 | 
						|
{
 | 
						|
    threshold = thresh;
 | 
						|
}
 | 
						|
 | 
						|
}
 | 
						|
 |