mirror of
				https://github.com/f4exb/sdrangel.git
				synced 2025-10-31 04:50:29 -04:00 
			
		
		
		
	
		
			
				
	
	
		
			934 lines
		
	
	
		
			27 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			934 lines
		
	
	
		
			27 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*  snb.c
 | |
| 
 | |
| This file is part of a program that implements a Software-Defined Radio.
 | |
| 
 | |
| Copyright (C) 2015, 2016 Warren Pratt, NR0V
 | |
| Copyright (C) 2024 Edouard Griffiths, F4EXB Adapted to SDRangel
 | |
| 
 | |
| This program is free software; you can redistribute it and/or
 | |
| modify it under the terms of the GNU General Public License
 | |
| as published by the Free Software Foundation; either version 2
 | |
| of the License, or (at your option) any later version.
 | |
| 
 | |
| This program is distributed in the hope that it will be useful,
 | |
| but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
| GNU General Public License for more details.
 | |
| 
 | |
| You should have received a copy of the GNU General Public License
 | |
| along with this program; if not, write to the Free Software
 | |
| Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
 | |
| 
 | |
| The author can be reached by email at
 | |
| 
 | |
| warren@wpratt.com
 | |
| 
 | |
| */
 | |
| 
 | |
| #include "comm.hpp"
 | |
| #include "resample.hpp"
 | |
| #include "lmath.hpp"
 | |
| #include "firmin.hpp"
 | |
| #include "nbp.hpp"
 | |
| #include "amd.hpp"
 | |
| #include "anf.hpp"
 | |
| #include "anr.hpp"
 | |
| #include "emnr.hpp"
 | |
| #include "snb.hpp"
 | |
| #include "RXA.hpp"
 | |
| 
 | |
| 
 | |
| #define MAXIMP          256
 | |
| 
 | |
| namespace WDSP {
 | |
| 
 | |
| void SNBA::calc_snba (SNBA *d)
 | |
| {
 | |
|     if (d->inrate >= d->internalrate)
 | |
|         d->isize = d->bsize / (d->inrate / d->internalrate);
 | |
|     else
 | |
|         d->isize = d->bsize * (d->internalrate / d->inrate);
 | |
|     d->inbuff  = new double[d->isize * 2]; // (double *) malloc0 (d->isize * sizeof (complex));
 | |
|     d->outbuff = new double[d->isize * 2]; // (double *) malloc0 (d->isize * sizeof (complex));
 | |
|     if (d->inrate != d->internalrate)
 | |
|         d->resamprun = 1;
 | |
|     else
 | |
|         d->resamprun = 0;
 | |
|     d->inresamp  = RESAMPLE::create_resample (d->resamprun, d->bsize, d->in,      d->inbuff, d->inrate,       d->internalrate, 0.0, 0, 2.0);
 | |
|     RESAMPLE::setFCLow_resample (d->inresamp, 250.0);
 | |
|     d->outresamp = RESAMPLE::create_resample (d->resamprun, d->isize, d->outbuff, d->out,    d->internalrate, d->inrate,       0.0, 0, 2.0);
 | |
|     RESAMPLE::setFCLow_resample (d->outresamp, 200.0);
 | |
|     d->incr = d->xsize / d->ovrlp;
 | |
|     if (d->incr > d->isize)
 | |
|         d->iasize = d->incr;
 | |
|     else
 | |
|         d->iasize = d->isize;
 | |
|     d->iainidx = 0;
 | |
|     d->iaoutidx = 0;
 | |
|     d->inaccum = new double[d->isize]; // (double *) malloc0 (d->iasize * sizeof (double));
 | |
|     d->nsamps = 0;
 | |
|     if (d->incr > d->isize)
 | |
|     {
 | |
|         d->oasize = d->incr;
 | |
|         d->oainidx = 0;
 | |
|         d->oaoutidx = d->isize;
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         d->oasize = d->isize;
 | |
|         d->oainidx = 0;
 | |
|         d->oaoutidx = 0;
 | |
|     }
 | |
|     d->init_oaoutidx = d->oaoutidx;
 | |
|     d->outaccum = new double[d->oasize]; // (double *) malloc0 (d->oasize * sizeof (double));
 | |
| }
 | |
| 
 | |
| SNBA* SNBA::create_snba (
 | |
|     int run,
 | |
|     double* in,
 | |
|     double* out,
 | |
|     int inrate,
 | |
|     int internalrate,
 | |
|     int bsize,
 | |
|     int ovrlp,
 | |
|     int xsize,
 | |
|     int asize,
 | |
|     int npasses,
 | |
|     double k1,
 | |
|     double k2,
 | |
|     int b,
 | |
|     int pre,
 | |
|     int post,
 | |
|     double pmultmin,
 | |
|     double out_low_cut,
 | |
|     double out_high_cut
 | |
| )
 | |
| {
 | |
|     SNBA *d = new SNBA;
 | |
|     d->run = run;
 | |
|     d->in = in;
 | |
|     d->out = out;
 | |
|     d->inrate = inrate;
 | |
|     d->internalrate = internalrate;
 | |
|     d->bsize = bsize;
 | |
|     d->ovrlp = ovrlp;
 | |
|     d->xsize = xsize;
 | |
|     d->exec.asize = asize;
 | |
|     d->exec.npasses = npasses;
 | |
|     d->sdet.k1 = k1;
 | |
|     d->sdet.k2 = k2;
 | |
|     d->sdet.b = b;
 | |
|     d->sdet.pre = pre;
 | |
|     d->sdet.post = post;
 | |
|     d->scan.pmultmin = pmultmin;
 | |
|     d->out_low_cut = out_low_cut;
 | |
|     d->out_high_cut = out_high_cut;
 | |
| 
 | |
|     calc_snba (d);
 | |
| 
 | |
|     d->xbase    = new double[2 * d->xsize]; // (double *) malloc0 (2 * d->xsize * sizeof (double));
 | |
|     d->xaux     = d->xbase + d->xsize;
 | |
|     d->exec.a       = new double[d->xsize]; // (double *) malloc0 (d->xsize * sizeof (double));
 | |
|     d->exec.v       = new double[d->xsize]; // (double *) malloc0 (d->xsize * sizeof (double));
 | |
|     d->exec.detout  = new int[d->xsize]; // (int    *) malloc0 (d->xsize * sizeof (int));
 | |
|     d->exec.savex   = new double[d->xsize]; // (double *) malloc0 (d->xsize * sizeof (double));
 | |
|     d->exec.xHout   = new double[d->xsize]; // (double *) malloc0 (d->xsize * sizeof (double));
 | |
|     d->exec.unfixed = new int32_t[d->xsize]; // (int    *) malloc0 (d->xsize * sizeof (int));
 | |
|     d->sdet.vp      = new double[d->xsize]; // (double *) malloc0 (d->xsize * sizeof (double));
 | |
|     d->sdet.vpwr    = new double[d->xsize]; // (double *) malloc0 (d->xsize * sizeof (double));
 | |
| 
 | |
|     d->wrk.xHat_a1rows_max = d->xsize + d->exec.asize;
 | |
|     d->wrk.xHat_a2cols_max = d->xsize + 2 * d->exec.asize;
 | |
|     d->wrk.xHat_r          = new double[d->xsize]; // (double *) malloc0 (d->xsize * sizeof(double));
 | |
|     d->wrk.xHat_ATAI       = new double[d->xsize * d->xsize]; // (double *) malloc0 (d->xsize * d->xsize * sizeof(double));
 | |
|     d->wrk.xHat_A1         = new double[d->wrk.xHat_a1rows_max * d->xsize]; // (double *) malloc0 (d->wrk.xHat_a1rows_max * d->xsize * sizeof(double));
 | |
|     d->wrk.xHat_A2         = new double[d->wrk.xHat_a1rows_max * d->wrk.xHat_a2cols_max]; // (double *) malloc0 (d->wrk.xHat_a1rows_max * d->wrk.xHat_a2cols_max * sizeof(double));
 | |
|     d->wrk.xHat_P1         = new double[d->xsize * d->wrk.xHat_a2cols_max]; // (double *) malloc0 (d->xsize * d->wrk.xHat_a2cols_max * sizeof(double));
 | |
|     d->wrk.xHat_P2         = new double[d->xsize]; // (double *) malloc0 (d->xsize * sizeof(double));
 | |
|     d->wrk.trI_y           = new double[d->xsize - 1]; // (double *) malloc0 ((d->xsize - 1) * sizeof(double));
 | |
|     d->wrk.trI_v           = new double[d->xsize - 1]; // (double *) malloc0 ((d->xsize - 1) * sizeof(double));
 | |
|     d->wrk.dR_z            = new double[d->xsize - 2]; // (double *) malloc0 ((d->xsize - 2) * sizeof(double));
 | |
|     d->wrk.asolve_r        = new double[d->exec.asize + 1]; // (double *) malloc0 ((d->exec.asize + 1) * sizeof(double));
 | |
|     d->wrk.asolve_z        = new double[d->exec.asize + 1]; // (double *) malloc0 ((d->exec.asize + 1) * sizeof(double));
 | |
| 
 | |
|     return d;
 | |
| }
 | |
| 
 | |
| void SNBA::decalc_snba (SNBA *d)
 | |
| {
 | |
|     RESAMPLE::destroy_resample (d->outresamp);
 | |
|     RESAMPLE::destroy_resample (d->inresamp);
 | |
|     delete[] (d->outbuff);
 | |
|     delete[] (d->inbuff);
 | |
|     delete[] (d->outaccum);
 | |
|     delete[] (d->inaccum);
 | |
| }
 | |
| 
 | |
| void SNBA::destroy_snba (SNBA *d)
 | |
| {
 | |
|     delete[] (d->wrk.xHat_r);
 | |
|     delete[] (d->wrk.xHat_ATAI);
 | |
|     delete[] (d->wrk.xHat_A1);
 | |
|     delete[] (d->wrk.xHat_A2);
 | |
|     delete[] (d->wrk.xHat_P1);
 | |
|     delete[] (d->wrk.xHat_P2);
 | |
|     delete[] (d->wrk.trI_y);
 | |
|     delete[] (d->wrk.trI_v);
 | |
|     delete[] (d->wrk.dR_z);
 | |
|     delete[] (d->wrk.asolve_r);
 | |
|     delete[] (d->wrk.asolve_z);
 | |
| 
 | |
|     delete[] (d->sdet.vpwr);
 | |
|     delete[] (d->sdet.vp);
 | |
|     delete[] (d->exec.unfixed);
 | |
|     delete[] (d->exec.xHout);
 | |
|     delete[] (d->exec.savex);
 | |
|     delete[] (d->exec.detout);
 | |
|     delete[] (d->exec.v);
 | |
|     delete[] (d->exec.a);
 | |
| 
 | |
|     delete[] (d->xbase);
 | |
| 
 | |
|     decalc_snba (d);
 | |
| 
 | |
|     delete (d);
 | |
| }
 | |
| 
 | |
| void SNBA::flush_snba (SNBA *d)
 | |
| {
 | |
|     d->iainidx = 0;
 | |
|     d->iaoutidx = 0;
 | |
|     d->nsamps = 0;
 | |
|     d->oainidx = 0;
 | |
|     d->oaoutidx = d->init_oaoutidx;
 | |
| 
 | |
|     memset (d->inaccum,      0, d->iasize * sizeof (double));
 | |
|     memset (d->outaccum,     0, d->oasize * sizeof (double));
 | |
|     memset (d->xaux,         0, d->xsize  * sizeof (double));
 | |
|     memset (d->exec.a,       0, d->xsize  * sizeof (double));
 | |
|     memset (d->exec.v,       0, d->xsize  * sizeof (double));
 | |
|     memset (d->exec.detout,  0, d->xsize  * sizeof (int));
 | |
|     memset (d->exec.savex,   0, d->xsize  * sizeof (double));
 | |
|     memset (d->exec.xHout,   0, d->xsize  * sizeof (double));
 | |
|     memset (d->exec.unfixed, 0, d->xsize  * sizeof (int));
 | |
|     memset (d->sdet.vp,      0, d->xsize  * sizeof (double));
 | |
|     memset (d->sdet.vpwr,    0, d->xsize  * sizeof (double));
 | |
| 
 | |
|     memset (d->inbuff,       0, d->isize  * sizeof (dcomplex));
 | |
|     memset (d->outbuff,      0, d->isize  * sizeof (dcomplex));
 | |
|     RESAMPLE::flush_resample (d->inresamp);
 | |
|     RESAMPLE::flush_resample (d->outresamp);
 | |
| }
 | |
| 
 | |
| void SNBA::setBuffers_snba (SNBA *a, double* in, double* out)
 | |
| {
 | |
|     decalc_snba (a);
 | |
|     a->in = in;
 | |
|     a->out = out;
 | |
|     calc_snba (a);
 | |
| }
 | |
| 
 | |
| void SNBA::setSamplerate_snba (SNBA *a, int rate)
 | |
| {
 | |
|     decalc_snba (a);
 | |
|     a->inrate = rate;
 | |
|     calc_snba (a);
 | |
| }
 | |
| 
 | |
| void SNBA::setSize_snba (SNBA *a, int size)
 | |
| {
 | |
|     decalc_snba (a);
 | |
|     a->bsize = size;
 | |
|     calc_snba (a);
 | |
| }
 | |
| 
 | |
| void SNBA::ATAc0 (int n, int nr, double* A, double* r)
 | |
| {
 | |
|     int i, j;
 | |
|     memset(r, 0, n * sizeof (double));
 | |
|     for (i = 0; i < n; i++)
 | |
|         for (j = 0; j < nr; j++)
 | |
|             r[i] += A[j * n + i] * A[j * n + 0];
 | |
| }
 | |
| 
 | |
| void SNBA::multA1TA2(double* a1, double* a2, int m, int n, int q, double* c)
 | |
| {
 | |
|     int i, j, k;
 | |
|     int p = q - m;
 | |
|     memset (c, 0, m * n * sizeof (double));
 | |
|     for (i = 0; i < m; i++)
 | |
|     {
 | |
|         for (j = 0; j < n; j++)
 | |
|         {
 | |
|             if (j < p)
 | |
|             {
 | |
|                 for (k = i; k <= std::min(i + p, j); k++)
 | |
|                     c[i * n + j] += a1[k * m + i] * a2[k * n + j];
 | |
|             }
 | |
|             if (j >= n - p)
 | |
|             {
 | |
|                 for (k = std::max(i, q - (n - j)); k <= i + p; k++)
 | |
|                     c[i * n + j] += a1[k * m + i] * a2[k * n + j];
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| void SNBA::multXKE(double* a, double* xk, int m, int q, int p, double* vout)
 | |
| {
 | |
|     int i, k;
 | |
|     memset (vout, 0, m * sizeof (double));
 | |
|     for (i = 0; i < m; i++)
 | |
|     {
 | |
|         for (k = i; k < p; k++)
 | |
|             vout[i] += a[i * q + k] * xk[k];
 | |
|         for (k = q - p; k <= q - m + i; k++)
 | |
|             vout[i] += a[i * q + k] * xk[k];
 | |
|     }
 | |
| }
 | |
| 
 | |
| void SNBA::multAv(double* a, double* v, int m, int q, double* vout)
 | |
| {
 | |
|     int i, k;
 | |
|     memset (vout, 0, m * sizeof (double));
 | |
|     for (i = 0; i < m; i++)
 | |
|     {
 | |
|         for (k = 0; k < q; k++)
 | |
|             vout[i] += a[i * q + k] * v[k];
 | |
|     }
 | |
| }
 | |
| 
 | |
| void SNBA::xHat(
 | |
|     int xusize,
 | |
|     int asize,
 | |
|     double* xk,
 | |
|     double* a,
 | |
|     double* xout,
 | |
|     double* r,
 | |
|     double* ATAI,
 | |
|     double* A1,
 | |
|     double* A2,
 | |
|     double* P1,
 | |
|     double* P2,
 | |
|     double* trI_y,
 | |
|     double* trI_v,
 | |
|     double* dR_z
 | |
| )
 | |
| {
 | |
|     int i, j, k;
 | |
|     int a1rows = xusize + asize;
 | |
|     int a2cols = xusize + 2 * asize;
 | |
|     memset (r,    0, xusize          * sizeof(double));     // work space
 | |
|     memset (ATAI, 0, xusize * xusize * sizeof(double));     // work space
 | |
|     memset (A1,   0, a1rows * xusize * sizeof(double));     // work space
 | |
|     memset (A2,   0, a1rows * a2cols * sizeof(double));     // work space
 | |
|     memset (P1,   0, xusize * a2cols * sizeof(double));     // work space
 | |
|     memset (P2,   0, xusize          * sizeof(double));     // work space
 | |
| 
 | |
|     for (i = 0; i < xusize; i++)
 | |
|     {
 | |
|         A1[i * xusize + i] = 1.0;
 | |
|         k = i + 1;
 | |
|         for (j = k; j < k + asize; j++)
 | |
|             A1[j * xusize + i] = - a[j - k];
 | |
|     }
 | |
| 
 | |
|     for (i = 0; i < asize; i++)
 | |
|         {
 | |
|             for (k = asize - i - 1, j = 0; k < asize; k++, j++)
 | |
|                 A2[j * a2cols + i] = a[k];
 | |
|         }
 | |
|     for (i = asize + xusize; i < 2 * asize + xusize; i++)
 | |
|         {
 | |
|             A2[(i - asize) * a2cols + i] = - 1.0;
 | |
|             for (j = i - asize + 1, k = 0; j < xusize + asize; j++, k++)
 | |
|                 A2[j * a2cols + i] = a[k];
 | |
|         }
 | |
| 
 | |
|     ATAc0(xusize, xusize + asize, A1, r);
 | |
|     LMath::trI(xusize, r, ATAI, trI_y, trI_v, dR_z);
 | |
|     multA1TA2(A1, A2, xusize, 2 * asize + xusize, xusize + asize, P1);
 | |
|     multXKE(P1, xk, xusize, xusize + 2 * asize, asize, P2);
 | |
|     multAv(ATAI, P2, xusize, xusize, xout);
 | |
| }
 | |
| 
 | |
| void SNBA::invf(int xsize, int asize, double* a, double* x, double* v)
 | |
| {
 | |
|     int i, j;
 | |
|     memset (v, 0, xsize * sizeof (double));
 | |
|     for (i = asize; i < xsize - asize; i++)
 | |
|     {
 | |
|         for (j = 0; j < asize; j++)
 | |
|             v[i] += a[j] * (x[i - 1 - j] + x[i + 1 + j]);
 | |
|         v[i] = x[i] - 0.5 * v[i];
 | |
|     }
 | |
|     for (i = xsize - asize; i < xsize; i++)
 | |
|     {
 | |
|         for (j = 0; j < asize; j++)
 | |
|             v[i] += a[j] * x[i - 1 - j];
 | |
|         v[i] = x[i] - v[i];
 | |
|     }
 | |
| }
 | |
| 
 | |
| void SNBA::det(SNBA *d, int asize, double* v, int* detout)
 | |
| {
 | |
|     int i, j;
 | |
|     double medpwr, t1, t2;
 | |
|     int bstate, bcount, bsamp;
 | |
|     for (i = asize, j = 0; i < d->xsize; i++, j++)
 | |
|     {
 | |
|         d->sdet.vpwr[i] = v[i] * v[i];
 | |
|         d->sdet.vp[j] = d->sdet.vpwr[i];
 | |
|     }
 | |
|     LMath::median(d->xsize - asize, d->sdet.vp, &medpwr);
 | |
|     t1 = d->sdet.k1 * medpwr;
 | |
|     t2 = 0.0;
 | |
|     for (i = asize; i < d->xsize; i++)
 | |
|     {
 | |
|         if (d->sdet.vpwr[i] <= t1)
 | |
|             t2 += d->sdet.vpwr[i];
 | |
|         else if (d->sdet.vpwr[i] <= 2.0 * t1)
 | |
|             t2 += 2.0 * t1 - d->sdet.vpwr[i];
 | |
|     }
 | |
|     t2 *= d->sdet.k2 / (double)(d->xsize - asize);
 | |
|     for (i = asize; i < d->xsize; i++)
 | |
|     {
 | |
|         if (d->sdet.vpwr[i] > t2)
 | |
|             detout[i] = 1;
 | |
|         else
 | |
|             detout[i] = 0;
 | |
|     }
 | |
|     bstate = 0;
 | |
|     bcount = 0;
 | |
|     bsamp = 0;
 | |
|     for (i = asize; i < d->xsize; i++)
 | |
|     {
 | |
|         switch (bstate)
 | |
|         {
 | |
|             case 0:
 | |
|                 if (detout[i] == 1) bstate = 1;
 | |
|                 break;
 | |
|             case 1:
 | |
|                 if (detout[i] == 0)
 | |
|                 {
 | |
|                     bstate = 2;
 | |
|                     bsamp = i;
 | |
|                     bcount = 1;
 | |
|                 }
 | |
|                 break;
 | |
|             case 2:
 | |
|                 ++bcount;
 | |
|                 if (bcount > d->sdet.b)
 | |
|                     if (detout[i] == 1)
 | |
|                         bstate = 1;
 | |
|                     else
 | |
|                         bstate = 0;
 | |
|                 else if (detout[i] == 1)
 | |
|                 {
 | |
|                     for (j = bsamp; j < bsamp + bcount - 1; j++)
 | |
|                         detout[j] = 1;
 | |
|                     bstate = 1;
 | |
|                 }
 | |
|                 break;
 | |
|         }
 | |
|     }
 | |
|     for (i = asize; i < d->xsize; i++)
 | |
|     {
 | |
|         if (detout[i] == 1)
 | |
|         {
 | |
|             for (j = i - 1; j > i - 1 - d->sdet.pre; j--)
 | |
|                 if (j >= asize) detout[j] = 1;
 | |
|         }
 | |
|     }
 | |
|     for (i = d->xsize - 1; i >= asize; i--)
 | |
|     {
 | |
|         if (detout[i] == 1)
 | |
|         {
 | |
|             for (j = i + 1; j < i + 1 + d->sdet.post; j++)
 | |
|                 if (j < d->xsize) detout[j] = 1;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| int SNBA::scanFrame(
 | |
|     int xsize,
 | |
|     int pval,
 | |
|     double pmultmin,
 | |
|     int* det,
 | |
|     int* bimp,
 | |
|     int* limp,
 | |
|     int* befimp,
 | |
|     int* aftimp,
 | |
|     int* p_opt,
 | |
|     int* next
 | |
| )
 | |
| {
 | |
|     int inflag = 0;
 | |
|     int i = 0, j = 0, k = 0;
 | |
|     int nimp = 0;
 | |
|     double td;
 | |
|     int ti;
 | |
|     double merit[MAXIMP] = { 0 };
 | |
|     int nextlist[MAXIMP];
 | |
|     memset (befimp, 0, MAXIMP * sizeof (int));
 | |
|     memset (aftimp, 0, MAXIMP * sizeof (int));
 | |
|     while (i < xsize && nimp < MAXIMP)
 | |
|     {
 | |
|         if (det[i] == 1 && inflag == 0)
 | |
|         {
 | |
|             inflag = 1;
 | |
|             bimp[nimp] = i;
 | |
|             limp[nimp] = 1;
 | |
|             nimp++;
 | |
|         }
 | |
|         else if (det[i] == 1)
 | |
|         {
 | |
|             limp[nimp - 1]++;
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|             inflag = 0;
 | |
|             befimp[nimp]++;
 | |
|             if (nimp > 0)
 | |
|                 aftimp[nimp - 1]++;
 | |
|         }
 | |
|         i++;
 | |
|     }
 | |
|     for (i = 0; i < nimp; i++)
 | |
|     {
 | |
|         if (befimp[i] < aftimp[i])
 | |
|             p_opt[i] = befimp[i];
 | |
|         else
 | |
|             p_opt[i] = aftimp[i];
 | |
|         if (p_opt[i] > pval)
 | |
|             p_opt[i] = pval;
 | |
|         if (p_opt[i] < (int)(pmultmin * limp[i]))
 | |
|             p_opt[i] = -1;
 | |
|     }
 | |
| 
 | |
|     for (i = 0; i < nimp; i++)
 | |
|     {
 | |
|         merit[i] = (double)p_opt[i] / (double)limp[i];
 | |
|         nextlist[i] = i;
 | |
|     }
 | |
|     for (j = 0; j < nimp - 1; j++)
 | |
|     {
 | |
|         for (k = 0; k < nimp - j - 1; k++)
 | |
|         {
 | |
|             if (merit[k] < merit[k + 1])
 | |
|             {
 | |
|                 td = merit[k];
 | |
|                 ti = nextlist[k];
 | |
|                 merit[k] = merit[k + 1];
 | |
|                 nextlist[k] = nextlist[k + 1];
 | |
|                 merit[k + 1] = td;
 | |
|                 nextlist[k + 1] = ti;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     i = 1;
 | |
|     if (nimp > 0)
 | |
|         while (merit[i] == merit[0] && i < nimp) i++;
 | |
|     for (j = 0; j < i - 1; j++)
 | |
|     {
 | |
|         for (k = 0; k < i - j - 1; k++)
 | |
|         {
 | |
|             if (limp[nextlist[k]] < limp[nextlist[k + 1]])
 | |
|             {
 | |
|                 td = merit[k];
 | |
|                 ti = nextlist[k];
 | |
|                 merit[k] = merit[k + 1];
 | |
|                 nextlist[k] = nextlist[k + 1];
 | |
|                 merit[k + 1] = td;
 | |
|                 nextlist[k + 1] = ti;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     *next = nextlist[0];
 | |
|     return nimp;
 | |
| }
 | |
| 
 | |
| void SNBA::execFrame(SNBA *d, double* x)
 | |
| {
 | |
|     int i, k;
 | |
|     int pass;
 | |
|     int nimp;
 | |
|     int bimp[MAXIMP];
 | |
|     int limp[MAXIMP];
 | |
|     int befimp[MAXIMP];
 | |
|     int aftimp[MAXIMP];
 | |
|     int p_opt[MAXIMP];
 | |
|     int next = 0;
 | |
|     int p;
 | |
|     memcpy (d->exec.savex, x, d->xsize * sizeof (double));
 | |
|     LMath::asolve(d->xsize, d->exec.asize, x, d->exec.a, d->wrk.asolve_r, d->wrk.asolve_z);
 | |
|     invf(d->xsize, d->exec.asize, d->exec.a, x, d->exec.v);
 | |
|     det(d, d->exec.asize, d->exec.v, d->exec.detout);
 | |
|     for (i = 0; i < d->xsize; i++)
 | |
|     {
 | |
|         if (d->exec.detout[i] != 0)
 | |
|             x[i] = 0.0;
 | |
|     }
 | |
|     nimp = scanFrame(d->xsize, d->exec.asize, d->scan.pmultmin, d->exec.detout, bimp, limp, befimp, aftimp, p_opt, &next);
 | |
|     for (pass = 0; pass < d->exec.npasses; pass++)
 | |
|     {
 | |
|         memcpy (d->exec.unfixed, d->exec.detout, d->xsize * sizeof (int));
 | |
|         for (k = 0; k < nimp; k++)
 | |
|         {
 | |
|             if (k > 0)
 | |
|                 scanFrame(d->xsize, d->exec.asize, d->scan.pmultmin, d->exec.unfixed, bimp, limp, befimp, aftimp, p_opt, &next);
 | |
| 
 | |
|             if ((p = p_opt[next]) > 0)
 | |
|             {
 | |
|                 LMath::asolve(d->xsize, p, x, d->exec.a, d->wrk.asolve_r, d->wrk.asolve_z);
 | |
|                 xHat(limp[next], p, &x[bimp[next] - p], d->exec.a, d->exec.xHout,
 | |
|                     d->wrk.xHat_r, d->wrk.xHat_ATAI, d->wrk.xHat_A1, d->wrk.xHat_A2,
 | |
|                     d->wrk.xHat_P1, d->wrk.xHat_P2, d->wrk.trI_y, d->wrk.trI_v, d->wrk.dR_z);
 | |
|                 memcpy (&x[bimp[next]], d->exec.xHout, limp[next] * sizeof (double));
 | |
|                 memset (&d->exec.unfixed[bimp[next]], 0, limp[next] * sizeof (int));
 | |
|             }
 | |
|             else
 | |
|             {
 | |
|                 memcpy (&x[bimp[next]], &d->exec.savex[bimp[next]], limp[next] * sizeof (double));
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| void SNBA::xsnba (SNBA *d)
 | |
| {
 | |
|     if (d->run)
 | |
|     {
 | |
|         int i;
 | |
|         RESAMPLE::xresample (d->inresamp);
 | |
|         for (i = 0; i < 2 * d->isize; i += 2)
 | |
|         {
 | |
|             d->inaccum[d->iainidx] = d->inbuff[i];
 | |
|             d->iainidx = (d->iainidx + 1) % d->iasize;
 | |
|         }
 | |
|         d->nsamps += d->isize;
 | |
|         while (d->nsamps >= d->incr)
 | |
|         {
 | |
|             memcpy (&d->xaux[d->xsize - d->incr], &d->inaccum[d->iaoutidx], d->incr * sizeof (double));
 | |
|             execFrame (d, d->xaux);
 | |
|             d->iaoutidx = (d->iaoutidx + d->incr) % d->iasize;
 | |
|             d->nsamps -= d->incr;
 | |
|             memcpy (&d->outaccum[d->oainidx], d->xaux, d->incr * sizeof (double));
 | |
|             d->oainidx = (d->oainidx + d->incr) % d->oasize;
 | |
|             memmove (d->xbase, &d->xbase[d->incr], (2 * d->xsize - d->incr) * sizeof (double));
 | |
|         }
 | |
|         for (i = 0; i < d->isize; i++)
 | |
|         {
 | |
|             d->outbuff[2 * i + 0] = d->outaccum[d->oaoutidx];
 | |
|             d->outbuff[2 * i + 1] = 0.0;
 | |
|             d->oaoutidx = (d->oaoutidx + 1) % d->oasize;
 | |
|         }
 | |
|         RESAMPLE::xresample (d->outresamp);
 | |
|     }
 | |
|     else if (d->out != d->in)
 | |
|         memcpy (d->out, d->in, d->bsize * sizeof (dcomplex));
 | |
| }
 | |
| 
 | |
| /********************************************************************************************************
 | |
| *                                                                                                       *
 | |
| *                                           RXA Properties                                              *
 | |
| *                                                                                                       *
 | |
| ********************************************************************************************************/
 | |
| 
 | |
| void SNBA::SetSNBARun (RXA& rxa, int run)
 | |
| {
 | |
|     SNBA *a = rxa.snba.p;
 | |
|     if (a->run != run)
 | |
|     {
 | |
|         BPSNBA::bpsnbaCheck (rxa, rxa.mode, rxa.ndb.p->master_run);
 | |
|         RXA::bp1Check (rxa, rxa.amd.p->run, run, rxa.emnr.p->run,
 | |
|             rxa.anf.p->run, rxa.anr.p->run);
 | |
|         rxa.csDSP.lock();
 | |
|         a->run = run;
 | |
|         RXA::bp1Set (rxa);
 | |
|         BPSNBA::bpsnbaSet (rxa);
 | |
|         rxa.csDSP.unlock();
 | |
|     }
 | |
| }
 | |
| 
 | |
| void SNBA::SetSNBAovrlp (RXA& rxa, int ovrlp)
 | |
| {
 | |
|     rxa.csDSP.lock();
 | |
|     decalc_snba (rxa.snba.p);
 | |
|     rxa.snba.p->ovrlp = ovrlp;
 | |
|     calc_snba (rxa.snba.p);
 | |
|     rxa.csDSP.unlock();
 | |
| }
 | |
| 
 | |
| void SetSNBAasize (RXA& rxa, int size)
 | |
| {
 | |
|     rxa.csDSP.lock();
 | |
|     rxa.snba.p->exec.asize = size;
 | |
|     rxa.csDSP.unlock();
 | |
| }
 | |
| 
 | |
| void SNBA::SetSNBAnpasses (RXA& rxa, int npasses)
 | |
| {
 | |
|     rxa.csDSP.lock();
 | |
|     rxa.snba.p->exec.npasses = npasses;
 | |
|     rxa.csDSP.unlock();
 | |
| }
 | |
| 
 | |
| void SNBA::SetSNBAk1 (RXA& rxa, double k1)
 | |
| {
 | |
|     rxa.csDSP.lock();
 | |
|     rxa.snba.p->sdet.k1 = k1;
 | |
|     rxa.csDSP.unlock();
 | |
| }
 | |
| 
 | |
| void SNBA::SetSNBAk2 (RXA& rxa, double k2)
 | |
| {
 | |
|     rxa.csDSP.lock();
 | |
|     rxa.snba.p->sdet.k2 = k2;
 | |
|     rxa.csDSP.unlock();
 | |
| }
 | |
| 
 | |
| void SNBA::SetSNBAbridge (RXA& rxa, int bridge)
 | |
| {
 | |
|     rxa.csDSP.lock();
 | |
|     rxa.snba.p->sdet.b = bridge;
 | |
|     rxa.csDSP.unlock();
 | |
| }
 | |
| 
 | |
| void SNBA::SetSNBApresamps (RXA& rxa, int presamps)
 | |
| {
 | |
|     rxa.csDSP.lock();
 | |
|     rxa.snba.p->sdet.pre = presamps;
 | |
|     rxa.csDSP.unlock();
 | |
| }
 | |
| 
 | |
| void SNBA::SetSNBApostsamps (RXA& rxa, int postsamps)
 | |
| {
 | |
|     rxa.csDSP.lock();
 | |
|     rxa.snba.p->sdet.post = postsamps;
 | |
|     rxa.csDSP.unlock();
 | |
| }
 | |
| 
 | |
| void SNBA::SetSNBApmultmin (RXA& rxa, double pmultmin)
 | |
| {
 | |
|     rxa.csDSP.lock();
 | |
|     rxa.snba.p->scan.pmultmin = pmultmin;
 | |
|     rxa.csDSP.unlock();
 | |
| }
 | |
| 
 | |
| void SNBA::SetSNBAOutputBandwidth (RXA& rxa, double flow, double fhigh)
 | |
| {
 | |
|     SNBA *a;
 | |
|     RESAMPLE *d;
 | |
|     double f_low, f_high;
 | |
|     rxa.csDSP.lock();
 | |
|     a = rxa.snba.p;
 | |
|     d = a->outresamp;
 | |
| 
 | |
|     if (flow >= 0 && fhigh >= 0)
 | |
|     {
 | |
|         if (fhigh <  a->out_low_cut) fhigh =  a->out_low_cut;
 | |
|         if (flow  > a->out_high_cut) flow  = a->out_high_cut;
 | |
|         f_low  = std::max ( a->out_low_cut, flow);
 | |
|         f_high = std::min (a->out_high_cut, fhigh);
 | |
|     }
 | |
|     else if (flow <= 0 && fhigh <= 0)
 | |
|     {
 | |
|         if (flow  >  -a->out_low_cut) flow  =  -a->out_low_cut;
 | |
|         if (fhigh < -a->out_high_cut) fhigh = -a->out_high_cut;
 | |
|         f_low  = std::max ( a->out_low_cut, -fhigh);
 | |
|         f_high = std::min (a->out_high_cut, -flow);
 | |
|     }
 | |
|     else if (flow < 0 && fhigh > 0)
 | |
|     {
 | |
|         double absmax = std::max (-flow, fhigh);
 | |
|         if (absmax <  a->out_low_cut) absmax =  a->out_low_cut;
 | |
|         f_low = a->out_low_cut;
 | |
|         f_high = std::min (a->out_high_cut, absmax);
 | |
|     }
 | |
| 
 | |
|     RESAMPLE::setBandwidth_resample (d, f_low, f_high);
 | |
|     rxa.csDSP.unlock();
 | |
| }
 | |
| 
 | |
| 
 | |
| /********************************************************************************************************
 | |
| *                                                                                                       *
 | |
| *                                       BPSNBA Bandpass Filter                                          *
 | |
| *                                                                                                       *
 | |
| ********************************************************************************************************/
 | |
| 
 | |
| // This is a thin wrapper for a notched-bandpass filter (nbp).  The basic difference is that it provides
 | |
| // for its input and output to happen at different points in the processing pipeline.  This means it must
 | |
| // include a buffer, 'buff'.  Its input and output are done via functions xbpshbain() and xbpshbaout().
 | |
| 
 | |
| void BPSNBA::calc_bpsnba (BPSNBA *a)
 | |
| {
 | |
|     a->buff = new double[a->size * 2]; // (double *) malloc0 (a->size * sizeof (complex));
 | |
|     a->bpsnba = NBP::create_nbp (
 | |
|         1,                          // run, always runs (use bpsnba 'run')
 | |
|         a->run_notches,             // run the notches
 | |
|         0,                          // position variable for nbp (not for bpsnba), always 0
 | |
|         a->size,                    // buffer size
 | |
|         a->nc,                      // number of filter coefficients
 | |
|         a->mp,                      // minimum phase flag
 | |
|         a->buff,                    // pointer to input buffer
 | |
|         a->out,                     // pointer to output buffer
 | |
|         a->f_low,                   // lower filter frequency
 | |
|         a->f_high,                  // upper filter frequency
 | |
|         a->rate,                    // sample rate
 | |
|         a->wintype,                 // wintype
 | |
|         a->gain,                    // gain
 | |
|         a->autoincr,                // auto-increase notch width if below min
 | |
|         a->maxpb,                   // max number of passbands
 | |
|         a->ptraddr);                // addr of database pointer
 | |
| }
 | |
| 
 | |
| BPSNBA* BPSNBA::create_bpsnba (
 | |
|     int run,
 | |
|     int run_notches,
 | |
|     int position,
 | |
|     int size,
 | |
|     int nc,
 | |
|     int mp,
 | |
|     double* in,
 | |
|     double* out,
 | |
|     int rate,
 | |
|     double abs_low_freq,
 | |
|     double abs_high_freq,
 | |
|     double f_low,
 | |
|     double f_high,
 | |
|     int wintype,
 | |
|     double gain,
 | |
|     int autoincr,
 | |
|     int maxpb,
 | |
|     NOTCHDB* ptraddr
 | |
| )
 | |
| {
 | |
|     BPSNBA *a = new BPSNBA;
 | |
|     a->run = run;
 | |
|     a->run_notches = run_notches;
 | |
|     a->position = position;
 | |
|     a->size = size;
 | |
|     a->nc = nc;
 | |
|     a->mp = mp;
 | |
|     a->in = in;
 | |
|     a->out = out;
 | |
|     a->rate = rate;
 | |
|     a->abs_low_freq = abs_low_freq;
 | |
|     a->abs_high_freq = abs_high_freq;
 | |
|     a->f_low = f_low;
 | |
|     a->f_high = f_high;
 | |
|     a->wintype = wintype;
 | |
|     a->gain = gain;
 | |
|     a->autoincr = autoincr;
 | |
|     a->maxpb = maxpb;
 | |
|     a->ptraddr = ptraddr;
 | |
|     calc_bpsnba (a);
 | |
|     return a;
 | |
| }
 | |
| 
 | |
| void BPSNBA::decalc_bpsnba (BPSNBA *a)
 | |
| {
 | |
|     NBP::destroy_nbp (a->bpsnba);
 | |
|     delete[] (a->buff);
 | |
| }
 | |
| 
 | |
| void BPSNBA::destroy_bpsnba (BPSNBA *a)
 | |
| {
 | |
|     decalc_bpsnba (a);
 | |
|     delete[] (a);
 | |
| }
 | |
| 
 | |
| void BPSNBA::flush_bpsnba (BPSNBA *a)
 | |
| {
 | |
|     memset (a->buff, 0, a->size * sizeof (dcomplex));
 | |
|     NBP::flush_nbp (a->bpsnba);
 | |
| }
 | |
| 
 | |
| void BPSNBA::setBuffers_bpsnba (BPSNBA *a, double* in, double* out)
 | |
| {
 | |
|     decalc_bpsnba (a);
 | |
|     a->in = in;
 | |
|     a->out = out;
 | |
|     calc_bpsnba (a);
 | |
| }
 | |
| 
 | |
| void BPSNBA::setSamplerate_bpsnba (BPSNBA *a, int rate)
 | |
| {
 | |
|     decalc_bpsnba (a);
 | |
|     a->rate = rate;
 | |
|     calc_bpsnba (a);
 | |
| }
 | |
| 
 | |
| void BPSNBA::setSize_bpsnba (BPSNBA *a, int size)
 | |
| {
 | |
|     decalc_bpsnba (a);
 | |
|     a->size = size;
 | |
|     calc_bpsnba (a);
 | |
| }
 | |
| 
 | |
| void BPSNBA::xbpsnbain (BPSNBA *a, int position)
 | |
| {
 | |
|     if (a->run && a->position == position)
 | |
|         memcpy (a->buff, a->in, a->size * sizeof (dcomplex));
 | |
| }
 | |
| 
 | |
| void BPSNBA::xbpsnbaout (BPSNBA *a, int position)
 | |
| {
 | |
|     if (a->run && a->position == position)
 | |
|         NBP::xnbp (a->bpsnba, 0);
 | |
| }
 | |
| 
 | |
| void BPSNBA::recalc_bpsnba_filter (BPSNBA *a, int update)
 | |
| {
 | |
|     // Call anytime one of the parameters listed below has been changed in
 | |
|     // the BPSNBA struct.
 | |
|     NBP *b = a->bpsnba;
 | |
|     b->fnfrun = a->run_notches;
 | |
|     b->flow = a->f_low;
 | |
|     b->fhigh = a->f_high;
 | |
|     b->wintype = a->wintype;
 | |
|     b->gain = a->gain;
 | |
|     b->autoincr = a->autoincr;
 | |
|     NBP::calc_nbp_impulse (b);
 | |
|     FIRCORE::setImpulse_fircore (b->p, b->impulse, update);
 | |
|     delete[] (b->impulse);
 | |
| }
 | |
| 
 | |
| /********************************************************************************************************
 | |
| *                                                                                                       *
 | |
| *                                           RXA Properties                                              *
 | |
| *                                                                                                       *
 | |
| ********************************************************************************************************/
 | |
| 
 | |
| 
 | |
| void BPSNBA::BPSNBASetNC (RXA& rxa, int nc)
 | |
| {
 | |
|     BPSNBA *a;
 | |
|     rxa.csDSP.lock();
 | |
|     a = rxa.bpsnba.p;
 | |
|     if (a->nc != nc)
 | |
|     {
 | |
|         a->nc = nc;
 | |
|         a->bpsnba->nc = a->nc;
 | |
|         NBP::setNc_nbp (a->bpsnba);
 | |
|     }
 | |
|     rxa.csDSP.unlock();
 | |
| }
 | |
| 
 | |
| 
 | |
| void BPSNBA::BPSNBASetMP (RXA& rxa, int mp)
 | |
| {
 | |
|     BPSNBA *a;
 | |
|     a = rxa.bpsnba.p;
 | |
|     if (a->mp != mp)
 | |
|     {
 | |
|         a->mp = mp;
 | |
|         a->bpsnba->mp = a->mp;
 | |
|         NBP::setMp_nbp (a->bpsnba);
 | |
|     }
 | |
| }
 | |
| 
 | |
| } // namespace WDSP
 |