mirror of
				https://github.com/f4exb/sdrangel.git
				synced 2025-10-31 13:00:26 -04:00 
			
		
		
		
	
		
			
				
	
	
		
			5120 lines
		
	
	
		
			174 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			5120 lines
		
	
	
		
			174 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| ///////////////////////////////////////////////////////////////////////////////////
 | |
| // Copyright (C) 2012 maintech GmbH, Otto-Hahn-Str. 15, 97204 Hoechberg, Germany //
 | |
| // written by Christian Daniel                                                   //
 | |
| // Copyright (C) 2014 John Greb <hexameron@spam.no>                              //
 | |
| // Copyright (C) 2015-2023 Edouard Griffiths, F4EXB <f4exb06@gmail.com>          //
 | |
| // Copyright (C) 2015 Hoernchen <la@tfc-server.de>                               //
 | |
| // Copyright (C) 2018 beta-tester <alpha-beta-release@gmx.net>                   //
 | |
| // Copyright (C) 2022-2023 Jon Beniston, M7RCE <jon@beniston.com>                //
 | |
| // Copyright (C) 2022 Jiří Pinkava <jiri.pinkava@rossum.ai>                      //
 | |
| // Copyright (C) 2023 Arne Jünemann <das-iro@das-iro.de>                         //
 | |
| //                                                                               //
 | |
| // This program is free software; you can redistribute it and/or modify          //
 | |
| // it under the terms of the GNU General Public License as published by          //
 | |
| // the Free Software Foundation as version 3 of the License, or                  //
 | |
| // (at your option) any later version.                                           //
 | |
| //                                                                               //
 | |
| // This program is distributed in the hope that it will be useful,               //
 | |
| // but WITHOUT ANY WARRANTY; without even the implied warranty of                //
 | |
| // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the                  //
 | |
| // GNU General Public License V3 for more details.                               //
 | |
| //                                                                               //
 | |
| // You should have received a copy of the GNU General Public License             //
 | |
| // along with this program. If not, see <http://www.gnu.org/licenses/>.          //
 | |
| ///////////////////////////////////////////////////////////////////////////////////
 | |
| 
 | |
| #include <algorithm>
 | |
| 
 | |
| #include <QMouseEvent>
 | |
| #include <QOpenGLShaderProgram>
 | |
| #include <QOpenGLFunctions>
 | |
| #include <QPainter>
 | |
| #include <QFontDatabase>
 | |
| #include <QWindow>
 | |
| #include <QGestureEvent>
 | |
| #include <QPanGesture>
 | |
| #include <QPinchGesture>
 | |
| #include "maincore.h"
 | |
| #include "dsp/spectrumvis.h"
 | |
| #include "gui/glspectrumview.h"
 | |
| #include "gui/spectrummeasurements.h"
 | |
| #include "settings/mainsettings.h"
 | |
| #include "util/messagequeue.h"
 | |
| #include "util/db.h"
 | |
| #include "util/profiler.h"
 | |
| 
 | |
| #include <QDebug>
 | |
| 
 | |
| MESSAGE_CLASS_DEFINITION(GLSpectrumView::MsgReportSampleRate, Message)
 | |
| MESSAGE_CLASS_DEFINITION(GLSpectrumView::MsgReportWaterfallShare, Message)
 | |
| MESSAGE_CLASS_DEFINITION(GLSpectrumView::MsgReportFFTOverlap, Message)
 | |
| MESSAGE_CLASS_DEFINITION(GLSpectrumView::MsgReportPowerScale, Message)
 | |
| MESSAGE_CLASS_DEFINITION(GLSpectrumView::MsgReportCalibrationShift, Message)
 | |
| MESSAGE_CLASS_DEFINITION(GLSpectrumView::MsgReportHistogramMarkersChange, Message)
 | |
| MESSAGE_CLASS_DEFINITION(GLSpectrumView::MsgReportWaterfallMarkersChange, Message)
 | |
| 
 | |
| const float GLSpectrumView::m_maxFrequencyZoom = 10.0f;
 | |
| const float GLSpectrumView::m_annotationMarkerHeight = 20.0f;
 | |
| 
 | |
| GLSpectrumView::GLSpectrumView(QWidget* parent) :
 | |
|     QOpenGLWidget(parent),
 | |
|     m_markersDisplay(SpectrumSettings::MarkersDisplaySpectrum),
 | |
|     m_histogramFindPeaks(false),
 | |
|     m_cursorState(CSNormal),
 | |
|     m_cursorChannel(0),
 | |
|     m_spectrumVis(nullptr),
 | |
|     m_fpsPeriodMs(50),
 | |
|     m_mouseInside(false),
 | |
|     m_changesPending(true),
 | |
|     m_centerFrequency(100000000),
 | |
|     m_referenceLevel(0),
 | |
|     m_powerRange(100),
 | |
|     m_linear(false),
 | |
|     m_decay(1),
 | |
|     m_sampleRate(500000),
 | |
|     m_timingRate(1),
 | |
|     m_fftOverlap(0),
 | |
|     m_fftSize(512),
 | |
|     m_nbBins(512),
 | |
|     m_displayGrid(true),
 | |
|     m_displayGridIntensity(5),
 | |
|     m_displayTraceIntensity(50),
 | |
|     m_invertedWaterfall(true),
 | |
|     m_displayMaxHold(false),
 | |
|     m_currentSpectrum(nullptr),
 | |
|     m_displayCurrent(false),
 | |
|     m_leftMargin(0),
 | |
|     m_rightMargin(0),
 | |
|     m_topMargin(0),
 | |
|     m_frequencyScaleHeight(0),
 | |
|     m_histogramHeight(80),
 | |
|     m_waterfallHeight(0),
 | |
|     m_bottomMargin(0),
 | |
|     m_waterfallBuffer(nullptr),
 | |
|     m_waterfallBufferPos(0),
 | |
|     m_waterfallTextureHeight(-1),
 | |
|     m_waterfallTexturePos(0),
 | |
|     m_displayWaterfall(true),
 | |
|     m_ssbSpectrum(false),
 | |
|     m_lsbDisplay(false),
 | |
|     m_3DSpectrogramBuffer(nullptr),
 | |
|     m_3DSpectrogramBufferPos(0),
 | |
|     m_3DSpectrogramTextureHeight(-1),
 | |
|     m_3DSpectrogramTexturePos(0),
 | |
|     m_display3DSpectrogram(false),
 | |
|     m_rotate3DSpectrogram(false),
 | |
|     m_pan3DSpectrogram(false),
 | |
|     m_scaleZ3DSpectrogram(false),
 | |
|     m_3DSpectrogramStyle(SpectrumSettings::Outline),
 | |
|     m_colorMapName("Angel"),
 | |
|     m_scrollFrequency(false),
 | |
|     m_scrollStartCenterFreq(0),
 | |
|     m_pinching(false),
 | |
|     m_pinching3D(false),
 | |
|     m_frequencyRequested(false),
 | |
|     m_nextFrequencyValid(false),
 | |
|     m_histogramBuffer(nullptr),
 | |
|     m_histogram(nullptr),
 | |
|     m_displayHistogram(true),
 | |
|     m_displayChanged(false),
 | |
|     m_displaySourceOrSink(true),
 | |
|     m_displayStreamIndex(0),
 | |
|     m_matrixLoc(0),
 | |
|     m_colorLoc(0),
 | |
|     m_useCalibration(false),
 | |
|     m_calibrationGain(1.0),
 | |
|     m_calibrationShiftdB(0.0),
 | |
|     m_calibrationInterpMode(SpectrumSettings::CalibInterpLinear),
 | |
|     m_messageQueueToGUI(nullptr),
 | |
|     m_openGLLogger(nullptr),
 | |
|     m_isDeviceSpectrum(false),
 | |
|     m_measurements(nullptr),
 | |
|     m_measurement(SpectrumSettings::MeasurementNone),
 | |
|     m_measurementCenterFrequencyOffset(0),
 | |
|     m_measurementBandwidth(10000),
 | |
|     m_measurementChSpacing(10000),
 | |
|     m_measurementAdjChBandwidth(10000),
 | |
|     m_measurementHarmonics(5),
 | |
|     m_measurementPeaks(5),
 | |
|     m_measurementHighlight(true),
 | |
|     m_measurementPrecision(1)
 | |
| {
 | |
|     // Enable multisampling anti-aliasing (MSAA)
 | |
|     int multisamples = MainCore::instance()->getSettings().getMultisampling();
 | |
|     if (multisamples > 0)
 | |
|     {
 | |
|         QSurfaceFormat format;
 | |
|         format.setSamples(multisamples);
 | |
|         setFormat(format);
 | |
|     }
 | |
| 
 | |
|     setObjectName("GLSpectrum");
 | |
|     setAutoFillBackground(false);
 | |
|     setAttribute(Qt::WA_OpaquePaintEvent, true);
 | |
|     setAttribute(Qt::WA_NoSystemBackground, true);
 | |
|     setMouseTracking(true);
 | |
| 
 | |
|     setMinimumSize(360, 200);
 | |
| 
 | |
|     m_waterfallShare = 0.5;
 | |
| 
 | |
|     for (int i = 0; i <= 239; i++)
 | |
|     {
 | |
|         QColor c;
 | |
|         c.setHsv(239 - i, 255, 15 + i);
 | |
|         ((quint8*)&m_waterfallPalette[i])[0] = c.red();
 | |
|         ((quint8*)&m_waterfallPalette[i])[1] = c.green();
 | |
|         ((quint8*)&m_waterfallPalette[i])[2] = c.blue();
 | |
|         ((quint8*)&m_waterfallPalette[i])[3] = c.alpha();
 | |
|     }
 | |
| 
 | |
|     m_waterfallPalette[239] = 0xffffffff;
 | |
|     m_histogramPalette[0] = 0;
 | |
| 
 | |
|     for (int i = 1; i < 240; i++)
 | |
|     {
 | |
|         QColor c;
 | |
|         int light = i < 60 ? 128 + (60-i) : 128;
 | |
|         int sat   = i < 60 ? 140 + i : i < 180 ? 200 : 200 - (i-180);
 | |
|         c.setHsl(239 - i, sat, light);
 | |
|         ((quint8*)&m_histogramPalette[i])[0] = c.red();
 | |
|         ((quint8*)&m_histogramPalette[i])[1] = c.green();
 | |
|         ((quint8*)&m_histogramPalette[i])[2] = c.blue();
 | |
|         ((quint8*)&m_histogramPalette[i])[3] = c.alpha();
 | |
|     }
 | |
| 
 | |
|     // 4.2.3 palette
 | |
| //    for (int i = 1; i < 240; i++)
 | |
| //    {
 | |
| //        QColor c;
 | |
| //        int val = i < 60 ? 255 : 200;
 | |
| //        int sat = i < 60 ? 128 : i < 180 ? 255 : 180;
 | |
| //        c.setHsv(239 - i, sat, val);
 | |
| //        ((quint8*)&m_histogramPalette[i])[0] = c.red();
 | |
| //        ((quint8*)&m_histogramPalette[i])[1] = c.green();
 | |
| //        ((quint8*)&m_histogramPalette[i])[2] = c.blue();
 | |
| //        ((quint8*)&m_histogramPalette[i])[3] = c.alpha();
 | |
| //    }
 | |
| 
 | |
|     // Original palette:
 | |
| //	for(int i = 16; i < 240; i++) {
 | |
| //		 QColor c;
 | |
| //		 c.setHsv(239 - i, 255 - ((i < 200) ? 0 : (i - 200) * 3), 150 + ((i < 100) ? i : 100));
 | |
| //		 ((quint8*)&m_histogramPalette[i])[0] = c.red();
 | |
| //		 ((quint8*)&m_histogramPalette[i])[1] = c.green();
 | |
| //		 ((quint8*)&m_histogramPalette[i])[2] = c.blue();
 | |
| //		 ((quint8*)&m_histogramPalette[i])[3] = c.alpha();
 | |
| //	}
 | |
| //	for(int i = 1; i < 16; i++) {
 | |
| //		QColor c;
 | |
| //		c.setHsv(255, 128, 48 + i * 4);
 | |
| //		((quint8*)&m_histogramPalette[i])[0] = c.red();
 | |
| //		((quint8*)&m_histogramPalette[i])[1] = c.green();
 | |
| //		((quint8*)&m_histogramPalette[i])[2] = c.blue();
 | |
| //		((quint8*)&m_histogramPalette[i])[3] = c.alpha();
 | |
| //	}
 | |
| 
 | |
|     m_decayDivisor = 1;
 | |
|     m_decayDivisorCount = m_decayDivisor;
 | |
|     m_histogramStroke = 30;
 | |
| 
 | |
|     m_timeScale.setFont(font());
 | |
|     m_timeScale.setOrientation(Qt::Vertical);
 | |
|     m_timeScale.setRange(Unit::Time, 0, 1);
 | |
|     m_powerScale.setFont(font());
 | |
|     m_powerScale.setOrientation(Qt::Vertical);
 | |
|     m_frequencyScale.setFont(font());
 | |
|     m_frequencyScale.setOrientation(Qt::Horizontal);
 | |
| 
 | |
|     m_textOverlayFont = font(); // QFontDatabase::systemFont(QFontDatabase::FixedFont);
 | |
|     m_textOverlayFont.setBold(true);
 | |
|     // m_textOverlayFont.setPointSize(font().pointSize() - 1);
 | |
|     resetFrequencyZoom();
 | |
| 
 | |
|     m_timer.setTimerType(Qt::PreciseTimer);
 | |
|     connect(&m_timer, SIGNAL(timeout()), this, SLOT(tick()));
 | |
|     m_timer.start(m_fpsPeriodMs);
 | |
| 
 | |
|     // Handle KeyEvents
 | |
|     setFocusPolicy(Qt::StrongFocus);
 | |
|     installEventFilter(this);
 | |
| 
 | |
|     grabGesture(Qt::PinchGesture);
 | |
| }
 | |
| 
 | |
| GLSpectrumView::~GLSpectrumView()
 | |
| {
 | |
|     QMutexLocker mutexLocker(&m_mutex);
 | |
| 
 | |
|     if (m_waterfallBuffer)
 | |
|     {
 | |
|         delete m_waterfallBuffer;
 | |
|         m_waterfallBuffer = nullptr;
 | |
|     }
 | |
| 
 | |
|     if (m_3DSpectrogramBuffer)
 | |
|     {
 | |
|         delete m_3DSpectrogramBuffer;
 | |
|         m_3DSpectrogramBuffer = nullptr;
 | |
|     }
 | |
| 
 | |
|     if (m_histogramBuffer)
 | |
|     {
 | |
|         delete m_histogramBuffer;
 | |
|         m_histogramBuffer = nullptr;
 | |
|     }
 | |
| 
 | |
|     if (m_histogram)
 | |
|     {
 | |
|         delete[] m_histogram;
 | |
|         m_histogram = nullptr;
 | |
|     }
 | |
| 
 | |
|     if (m_openGLLogger)
 | |
|     {
 | |
|         delete m_openGLLogger;
 | |
|         m_openGLLogger = nullptr;
 | |
|     }
 | |
| }
 | |
| 
 | |
| void GLSpectrumView::queueRequestCenterFrequency(qint64 frequency)
 | |
| {
 | |
|     if (!m_frequencyRequested)
 | |
|     {
 | |
|         m_frequencyRequested = true;
 | |
|         m_requestedFrequency = frequency;
 | |
|         emit requestCenterFrequency(frequency);
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         m_nextFrequencyValid = true;
 | |
|         m_nextFrequency = frequency;
 | |
|     }
 | |
| }
 | |
| 
 | |
| void GLSpectrumView::setCenterFrequency(qint64 frequency)
 | |
| {
 | |
|     m_mutex.lock();
 | |
|     m_centerFrequency = frequency;
 | |
| 
 | |
|     // Handle queued frequency requests
 | |
|     if (m_frequencyRequested && (frequency == m_requestedFrequency))
 | |
|     {
 | |
|         m_frequencyRequested = false;
 | |
|         if (m_nextFrequencyValid)
 | |
|         {
 | |
|             m_nextFrequencyValid = false;
 | |
|             queueRequestCenterFrequency(m_nextFrequency);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (m_useCalibration) {
 | |
|         updateCalibrationPoints();
 | |
|     }
 | |
| 
 | |
|     m_changesPending = true;
 | |
|     m_mutex.unlock();
 | |
|     update();
 | |
| }
 | |
| 
 | |
| void GLSpectrumView::setReferenceLevel(Real referenceLevel)
 | |
| {
 | |
|     m_mutex.lock();
 | |
|     m_referenceLevel = referenceLevel;
 | |
|     m_changesPending = true;
 | |
|     m_mutex.unlock();
 | |
|     update();
 | |
| }
 | |
| 
 | |
| void GLSpectrumView::setPowerRange(Real powerRange)
 | |
| {
 | |
|     m_mutex.lock();
 | |
|     m_powerRange = powerRange;
 | |
|     m_changesPending = true;
 | |
|     m_mutex.unlock();
 | |
|     update();
 | |
| }
 | |
| 
 | |
| void GLSpectrumView::setDecay(int decay)
 | |
| {
 | |
|     m_decay = decay < 0 ? 0 : decay > 20 ? 20 : decay;
 | |
| }
 | |
| 
 | |
| void GLSpectrumView::setDecayDivisor(int decayDivisor)
 | |
| {
 | |
|     m_decayDivisor = decayDivisor < 1 ? 1 : decayDivisor > 20 ? 20 : decayDivisor;
 | |
| }
 | |
| 
 | |
| void GLSpectrumView::setHistoStroke(int stroke)
 | |
| {
 | |
|     m_histogramStroke = stroke < 1 ? 1 : stroke > 60 ? 60 : stroke;
 | |
| }
 | |
| 
 | |
| void GLSpectrumView::setSampleRate(qint32 sampleRate)
 | |
| {
 | |
|     m_mutex.lock();
 | |
|     m_sampleRate = sampleRate;
 | |
| 
 | |
|     if (m_messageQueueToGUI) {
 | |
|         m_messageQueueToGUI->push(new MsgReportSampleRate(m_sampleRate));
 | |
|     }
 | |
| 
 | |
|     m_changesPending = true;
 | |
|     m_mutex.unlock();
 | |
|     update();
 | |
| }
 | |
| 
 | |
| void GLSpectrumView::setTimingRate(qint32 timingRate)
 | |
| {
 | |
|     m_mutex.lock();
 | |
|     m_timingRate = timingRate;
 | |
|     m_changesPending = true;
 | |
|     m_mutex.unlock();
 | |
|     update();
 | |
| }
 | |
| 
 | |
| void GLSpectrumView::setFFTOverlap(int overlap)
 | |
| {
 | |
|     m_mutex.lock();
 | |
|     m_fftOverlap = overlap;
 | |
|     m_changesPending = true;
 | |
|     m_mutex.unlock();
 | |
|     update();
 | |
| }
 | |
| 
 | |
| void GLSpectrumView::setDisplayWaterfall(bool display)
 | |
| {
 | |
|     m_mutex.lock();
 | |
|     m_displayWaterfall = display;
 | |
|     if (!display)
 | |
|     {
 | |
|         m_waterfallMarkers.clear();
 | |
|         if (m_messageQueueToGUI) {
 | |
|             m_messageQueueToGUI->push(new MsgReportWaterfallMarkersChange());
 | |
|         }
 | |
|     }
 | |
|     m_changesPending = true;
 | |
|     stopDrag();
 | |
|     m_mutex.unlock();
 | |
|     update();
 | |
| }
 | |
| 
 | |
| void GLSpectrumView::setDisplay3DSpectrogram(bool display)
 | |
| {
 | |
|     m_mutex.lock();
 | |
|     m_display3DSpectrogram = display;
 | |
|     m_changesPending = true;
 | |
|     stopDrag();
 | |
|     m_mutex.unlock();
 | |
|     update();
 | |
| }
 | |
| 
 | |
| void GLSpectrumView::setSpectrumStyle(SpectrumSettings::SpectrumStyle style)
 | |
| {
 | |
|     m_spectrumStyle = style;
 | |
|     update();
 | |
| }
 | |
| 
 | |
| void GLSpectrumView::set3DSpectrogramStyle(SpectrumSettings::SpectrogramStyle style)
 | |
| {
 | |
|     m_3DSpectrogramStyle = style;
 | |
|     update();
 | |
| }
 | |
| 
 | |
| void GLSpectrumView::setColorMapName(const QString &colorMapName)
 | |
| {
 | |
|     m_mutex.lock();
 | |
|     m_colorMapName = colorMapName;
 | |
|     m_changesPending = true;
 | |
|     m_mutex.unlock();
 | |
|     update();
 | |
| }
 | |
| 
 | |
| void GLSpectrumView::setSsbSpectrum(bool ssbSpectrum)
 | |
| {
 | |
|     m_ssbSpectrum = ssbSpectrum;
 | |
|     update();
 | |
| }
 | |
| 
 | |
| void GLSpectrumView::setLsbDisplay(bool lsbDisplay)
 | |
| {
 | |
|     m_lsbDisplay = lsbDisplay;
 | |
|     update();
 | |
| }
 | |
| 
 | |
| void GLSpectrumView::setInvertedWaterfall(bool inv)
 | |
| {
 | |
|     m_mutex.lock();
 | |
|     m_invertedWaterfall = inv;
 | |
|     m_changesPending = true;
 | |
|     stopDrag();
 | |
|     m_mutex.unlock();
 | |
|     update();
 | |
| }
 | |
| 
 | |
| void GLSpectrumView::setDisplayMaxHold(bool display)
 | |
| {
 | |
|     m_mutex.lock();
 | |
|     m_displayMaxHold = display;
 | |
|     if (!m_displayMaxHold && !m_displayCurrent && !m_displayHistogram)
 | |
|     {
 | |
|         m_histogramMarkers.clear();
 | |
|         if (m_messageQueueToGUI) {
 | |
|             m_messageQueueToGUI->push(new MsgReportHistogramMarkersChange());
 | |
|         }
 | |
|     }
 | |
|     m_changesPending = true;
 | |
|     stopDrag();
 | |
|     m_mutex.unlock();
 | |
|     update();
 | |
| }
 | |
| 
 | |
| void GLSpectrumView::setDisplayCurrent(bool display)
 | |
| {
 | |
|     m_mutex.lock();
 | |
|     m_displayCurrent = display;
 | |
|     if (!m_displayMaxHold && !m_displayCurrent && !m_displayHistogram)
 | |
|     {
 | |
|         m_histogramMarkers.clear();
 | |
|         if (m_messageQueueToGUI) {
 | |
|             m_messageQueueToGUI->push(new MsgReportHistogramMarkersChange());
 | |
|         }
 | |
|     }
 | |
|     m_changesPending = true;
 | |
|     stopDrag();
 | |
|     m_mutex.unlock();
 | |
|     update();
 | |
| }
 | |
| 
 | |
| void GLSpectrumView::setDisplayHistogram(bool display)
 | |
| {
 | |
|     m_mutex.lock();
 | |
|     m_displayHistogram = display;
 | |
|     if (!m_displayMaxHold && !m_displayCurrent && !m_displayHistogram)
 | |
|     {
 | |
|         m_histogramMarkers.clear();
 | |
|         if (m_messageQueueToGUI) {
 | |
|             m_messageQueueToGUI->push(new MsgReportHistogramMarkersChange());
 | |
|         }
 | |
|     }
 | |
|     m_changesPending = true;
 | |
|     stopDrag();
 | |
|     m_mutex.unlock();
 | |
|     update();
 | |
| }
 | |
| 
 | |
| void GLSpectrumView::setDisplayGrid(bool display)
 | |
| {
 | |
|     m_displayGrid = display;
 | |
|     update();
 | |
| }
 | |
| 
 | |
| void GLSpectrumView::setDisplayGridIntensity(int intensity)
 | |
| {
 | |
|     m_displayGridIntensity = intensity;
 | |
| 
 | |
|     if (m_displayGridIntensity > 100) {
 | |
|         m_displayGridIntensity = 100;
 | |
|     } else if (m_displayGridIntensity < 0) {
 | |
|         m_displayGridIntensity = 0;
 | |
|     }
 | |
| 
 | |
|     update();
 | |
| }
 | |
| 
 | |
| void GLSpectrumView::setDisplayTraceIntensity(int intensity)
 | |
| {
 | |
|     m_displayTraceIntensity = intensity;
 | |
| 
 | |
|     if (m_displayTraceIntensity > 100) {
 | |
|         m_displayTraceIntensity = 100;
 | |
|     } else if (m_displayTraceIntensity < 0) {
 | |
|         m_displayTraceIntensity = 0;
 | |
|     }
 | |
| 
 | |
|     update();
 | |
| }
 | |
| 
 | |
| void GLSpectrumView::setFreqScaleTruncationMode(bool mode)
 | |
| {
 | |
|     m_frequencyScale.setTruncateMode(mode);
 | |
|     update();
 | |
| }
 | |
| 
 | |
| void GLSpectrumView::setLinear(bool linear)
 | |
| {
 | |
|     m_mutex.lock();
 | |
|     m_linear = linear;
 | |
|     m_changesPending = true;
 | |
|     m_mutex.unlock();
 | |
|     update();
 | |
| }
 | |
| 
 | |
| void GLSpectrumView::setUseCalibration(bool useCalibration)
 | |
| {
 | |
|     m_mutex.lock();
 | |
|     m_useCalibration = useCalibration;
 | |
| 
 | |
|     if (m_messageQueueToGUI) {
 | |
|         m_messageQueueToGUI->push(new MsgReportCalibrationShift(m_useCalibration ? m_calibrationShiftdB : 0.0));
 | |
|     }
 | |
| 
 | |
|     m_changesPending = true;
 | |
|     m_mutex.unlock();
 | |
|     update();
 | |
| }
 | |
| 
 | |
| void GLSpectrumView::setMeasurementParams(SpectrumSettings::Measurement measurement,
 | |
|                                       int centerFrequencyOffset, int bandwidth, int chSpacing, int adjChBandwidth,
 | |
|                                       int harmonics, int peaks, bool highlight, int precision)
 | |
| {
 | |
|     m_mutex.lock();
 | |
|     m_measurement = measurement;
 | |
|     m_measurementCenterFrequencyOffset = centerFrequencyOffset;
 | |
|     m_measurementBandwidth = bandwidth;
 | |
|     m_measurementChSpacing = chSpacing;
 | |
|     m_measurementAdjChBandwidth = adjChBandwidth;
 | |
|     m_measurementHarmonics = harmonics;
 | |
|     m_measurementPeaks = peaks;
 | |
|     m_measurementHighlight = highlight;
 | |
|     m_measurementPrecision = precision;
 | |
|     m_changesPending = true;
 | |
|     if (m_measurements) {
 | |
|         m_measurements->setMeasurementParams(measurement, peaks, precision);
 | |
|     }
 | |
|     m_mutex.unlock();
 | |
|     update();
 | |
| }
 | |
| 
 | |
| void GLSpectrumView::addChannelMarker(ChannelMarker* channelMarker)
 | |
| {
 | |
|     m_mutex.lock();
 | |
|     connect(channelMarker, SIGNAL(changedByAPI()), this, SLOT(channelMarkerChanged()));
 | |
|     connect(channelMarker, SIGNAL(destroyed(QObject*)), this, SLOT(channelMarkerDestroyed(QObject*)));
 | |
|     m_channelMarkerStates.append(new ChannelMarkerState(channelMarker));
 | |
|     m_changesPending = true;
 | |
|     stopDrag();
 | |
|     m_mutex.unlock();
 | |
|     update();
 | |
| }
 | |
| 
 | |
| void GLSpectrumView::removeChannelMarker(ChannelMarker* channelMarker)
 | |
| {
 | |
|     m_mutex.lock();
 | |
| 
 | |
|     for (int i = 0; i < m_channelMarkerStates.size(); ++i)
 | |
|     {
 | |
|         if (m_channelMarkerStates[i]->m_channelMarker == channelMarker)
 | |
|         {
 | |
|             channelMarker->disconnect(this);
 | |
|             delete m_channelMarkerStates.takeAt(i);
 | |
|             m_changesPending = true;
 | |
|             stopDrag();
 | |
|             m_mutex.unlock();
 | |
|             update();
 | |
|             return;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     m_mutex.unlock();
 | |
| }
 | |
| 
 | |
| void GLSpectrumView::setHistogramMarkers(const QList<SpectrumHistogramMarker>& histogramMarkers)
 | |
| {
 | |
|     m_mutex.lock();
 | |
|     m_histogramMarkers = histogramMarkers;
 | |
|     updateHistogramMarkers();
 | |
|     m_changesPending = true;
 | |
|     m_mutex.unlock();
 | |
|     update();
 | |
| }
 | |
| 
 | |
| void GLSpectrumView::setWaterfallMarkers(const QList<SpectrumWaterfallMarker>& waterfallMarkers)
 | |
| {
 | |
|     m_mutex.lock();
 | |
|     m_waterfallMarkers = waterfallMarkers;
 | |
|     updateWaterfallMarkers();
 | |
|     m_changesPending = true;
 | |
|     m_mutex.unlock();
 | |
|     update();
 | |
| }
 | |
| 
 | |
| void GLSpectrumView::setAnnotationMarkers(const QList<SpectrumAnnotationMarker>& annotationMarkers)
 | |
| {
 | |
|     m_mutex.lock();
 | |
|     m_annotationMarkers = annotationMarkers;
 | |
|     updateAnnotationMarkers();
 | |
|     m_changesPending = true;
 | |
|     m_mutex.unlock();
 | |
|     update();
 | |
| }
 | |
| 
 | |
| void GLSpectrumView::setMarkersDisplay(SpectrumSettings::MarkersDisplay markersDisplay)
 | |
| {
 | |
| 	m_mutex.lock();
 | |
| 	m_markersDisplay = markersDisplay;
 | |
| 	updateMarkersDisplay();
 | |
|     m_changesPending = true;
 | |
|     m_mutex.unlock();
 | |
|     update();
 | |
| }
 | |
| 
 | |
| void GLSpectrumView::setCalibrationPoints(const QList<SpectrumCalibrationPoint>& calibrationPoints)
 | |
| {
 | |
|     m_mutex.lock();
 | |
|     m_calibrationPoints = calibrationPoints;
 | |
|     updateCalibrationPoints();
 | |
|     m_changesPending = true;
 | |
|     m_mutex.unlock();
 | |
|     update();
 | |
| }
 | |
| 
 | |
| void GLSpectrumView::setCalibrationInterpMode(SpectrumSettings::CalibrationInterpolationMode mode)
 | |
| {
 | |
| 	m_mutex.lock();
 | |
|     m_calibrationInterpMode = mode;
 | |
|     updateCalibrationPoints();
 | |
|     m_changesPending = true;
 | |
|     m_mutex.unlock();
 | |
|     update();
 | |
| }
 | |
| 
 | |
| float GLSpectrumView::getPowerMax() const
 | |
| {
 | |
|     return m_linear ? m_powerScale.getRangeMax() : CalcDb::powerFromdB(m_powerScale.getRangeMax());
 | |
| }
 | |
| 
 | |
| float GLSpectrumView::getTimeMax() const
 | |
| {
 | |
|     return m_timeScale.getRangeMax();
 | |
| }
 | |
| 
 | |
| void GLSpectrumView::newSpectrum(const Real *spectrum, int nbBins, int fftSize)
 | |
| {
 | |
|     QMutexLocker mutexLocker(&m_mutex);
 | |
| 
 | |
|     m_displayChanged = true;
 | |
|     if (m_changesPending)
 | |
|     {
 | |
|         m_fftSize = fftSize;
 | |
|         m_nbBins = nbBins;
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     if ((fftSize != m_fftSize) || (m_nbBins != nbBins))
 | |
|     {
 | |
|         m_fftSize = fftSize;
 | |
|         m_nbBins = nbBins;
 | |
|         m_changesPending = true;
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     updateWaterfall(spectrum);
 | |
|     update3DSpectrogram(spectrum);
 | |
|     updateHistogram(spectrum);
 | |
| }
 | |
| 
 | |
| void GLSpectrumView::updateWaterfall(const Real *spectrum)
 | |
| {
 | |
|     if (m_waterfallBufferPos < m_waterfallBuffer->height())
 | |
|     {
 | |
|         quint32* pix = (quint32*)m_waterfallBuffer->scanLine(m_waterfallBufferPos);
 | |
| 
 | |
|         for (int i = 0; i < m_nbBins; i++)
 | |
|         {
 | |
|             int v = (int)((spectrum[i] - m_referenceLevel) * 2.4 * 100.0 / m_powerRange + 240.0);
 | |
| 
 | |
|             if (v > 239) {
 | |
|                 v = 239;
 | |
|             } else if (v < 0) {
 | |
|                 v = 0;
 | |
|             }
 | |
| 
 | |
|             *pix++ = m_waterfallPalette[(int)v];
 | |
|         }
 | |
| 
 | |
|         m_waterfallBufferPos++;
 | |
|     }
 | |
| }
 | |
| 
 | |
| void GLSpectrumView::update3DSpectrogram(const Real *spectrum)
 | |
| {
 | |
|     if (m_3DSpectrogramBufferPos < m_3DSpectrogramBuffer->height())
 | |
|     {
 | |
|         quint8* pix = (quint8*)m_3DSpectrogramBuffer->scanLine(m_3DSpectrogramBufferPos);
 | |
| 
 | |
|         for (int i = 0; i < m_nbBins; i++)
 | |
|         {
 | |
|             int v = (int)((spectrum[i] - m_referenceLevel) * 2.4 * 100.0 / m_powerRange + 240.0);
 | |
| 
 | |
|             if (v > 255) {
 | |
|                 v = 255;
 | |
|             } else if (v < 0) {
 | |
|                 v = 0;
 | |
|             }
 | |
| 
 | |
|             *pix++ = v;
 | |
|         }
 | |
| 
 | |
|         m_3DSpectrogramBufferPos++;
 | |
|     }
 | |
| }
 | |
| 
 | |
| void GLSpectrumView::updateHistogram(const Real *spectrum)
 | |
| {
 | |
|     quint8* b = m_histogram;
 | |
|     int fftMulSize = 100 * m_nbBins;
 | |
| 
 | |
|     if ((m_displayHistogram || m_displayMaxHold) && (m_decay != 0))
 | |
|     {
 | |
|         m_decayDivisorCount--;
 | |
| 
 | |
|         if ((m_decay > 1) || (m_decayDivisorCount <= 0))
 | |
|         {
 | |
|             for (int i = 0; i < fftMulSize; i++)
 | |
|             {
 | |
|                 if (*b > m_decay) {
 | |
|                     *b = *b - m_decay;
 | |
|                 } else {
 | |
|                     *b = 0;
 | |
|                 }
 | |
| 
 | |
|                 b++;
 | |
|             }
 | |
| 
 | |
|             m_decayDivisorCount = m_decayDivisor;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     m_currentSpectrum = spectrum; // Store spectrum for current spectrum line display
 | |
| 
 | |
| #if 0 //def USE_SSE2
 | |
|     if(m_decay >= 0) { // normal
 | |
|         const __m128 refl = {m_referenceLevel, m_referenceLevel, m_referenceLevel, m_referenceLevel};
 | |
|         const __m128 power = {m_powerRange, m_powerRange, m_powerRange, m_powerRange};
 | |
|         const __m128 mul = {100.0f, 100.0f, 100.0f, 100.0f};
 | |
| 
 | |
|         for(int i = 0; i < m_fftSize; i += 4) {
 | |
|             __m128 abc = _mm_loadu_ps (&spectrum[i]);
 | |
|             abc = _mm_sub_ps(abc, refl);
 | |
|             abc = _mm_mul_ps(abc, mul);
 | |
|             abc = _mm_div_ps(abc, power);
 | |
|             abc =  _mm_add_ps(abc, mul);
 | |
|             __m128i result = _mm_cvtps_epi32(abc);
 | |
| 
 | |
|             for(int j = 0; j < 4; j++) {
 | |
|                 int v = ((int*)&result)[j];
 | |
|                 if((v >= 0) && (v <= 99)) {
 | |
|                     b = m_histogram + (i + j) * 100 + v;
 | |
|                     if(*b < 220)
 | |
|                         *b += m_histogramStroke; // was 4
 | |
|                     else if(*b < 239)
 | |
|                         *b += 1;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     } else { // draw double pixels
 | |
|         int add = -m_decay * 4;
 | |
|         const __m128 refl = {m_referenceLevel, m_referenceLevel, m_referenceLevel, m_referenceLevel};
 | |
|         const __m128 power = {m_powerRange, m_powerRange, m_powerRange, m_powerRange};
 | |
|         const __m128 mul = {100.0f, 100.0f, 100.0f, 100.0f};
 | |
| 
 | |
|         for(int i = 0; i < m_fftSize; i += 4) {
 | |
|             __m128 abc = _mm_loadu_ps (&spectrum[i]);
 | |
|             abc = _mm_sub_ps(abc, refl);
 | |
|             abc = _mm_mul_ps(abc, mul);
 | |
|             abc = _mm_div_ps(abc, power);
 | |
|             abc =  _mm_add_ps(abc, mul);
 | |
|             __m128i result = _mm_cvtps_epi32(abc);
 | |
| 
 | |
|             for(int j = 0; j < 4; j++) {
 | |
|                 int v = ((int*)&result)[j];
 | |
|                 if((v >= 1) && (v <= 98)) {
 | |
|                     b = m_histogram + (i + j) * 100 + v;
 | |
|                     if(b[-1] < 220)
 | |
|                         b[-1] += add;
 | |
|                     else if(b[-1] < 239)
 | |
|                         b[-1] += 1;
 | |
|                     if(b[0] < 220)
 | |
|                         b[0] += add;
 | |
|                     else if(b[0] < 239)
 | |
|                         b[0] += 1;
 | |
|                     if(b[1] < 220)
 | |
|                         b[1] += add;
 | |
|                     else if(b[1] < 239)
 | |
|                         b[1] += 1;
 | |
|                 } else if((v >= 0) && (v <= 99)) {
 | |
|                     b = m_histogram + (i + j) * 100 + v;
 | |
|                     if(*b < 220)
 | |
|                         *b += add;
 | |
|                     else if(*b < 239)
 | |
|                         *b += 1;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| #else
 | |
|     for (int i = 0; i < m_nbBins; i++)
 | |
|     {
 | |
|         int v = (int)((spectrum[i] - m_referenceLevel) * 100.0 / m_powerRange + 100.0);
 | |
| 
 | |
|         if ((v >= 0) && (v <= 99))
 | |
|         {
 | |
|             b = m_histogram + i * 100 + v;
 | |
| 
 | |
|             // capping to 239 as palette values are [0..239]
 | |
|             if (*b + m_histogramStroke <= 239) {
 | |
|                 *b += m_histogramStroke; // was 4
 | |
|             } else {
 | |
|                 *b = 239;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| #endif
 | |
| }
 | |
| 
 | |
| void GLSpectrumView::initializeGL()
 | |
| {
 | |
|     QOpenGLContext *glCurrentContext =  QOpenGLContext::currentContext();
 | |
|     int majorVersion = 0;
 | |
|     int minorVersion = 0;
 | |
| 
 | |
|     if (glCurrentContext)
 | |
|     {
 | |
|         if (QOpenGLContext::currentContext()->isValid())
 | |
|         {
 | |
|             qDebug() << "GLSpectrumView::initializeGL: context:"
 | |
|                 << " major: " << (QOpenGLContext::currentContext()->format()).majorVersion()
 | |
|                 << " minor: " << (QOpenGLContext::currentContext()->format()).minorVersion()
 | |
|                 << " ES: " << (QOpenGLContext::currentContext()->isOpenGLES() ? "yes" : "no");
 | |
|             majorVersion = (QOpenGLContext::currentContext()->format()).majorVersion();
 | |
|             minorVersion = (QOpenGLContext::currentContext()->format()).minorVersion();
 | |
|         }
 | |
|         else {
 | |
|             qDebug() << "GLSpectrumView::initializeGL: current context is invalid";
 | |
|         }
 | |
| 
 | |
|         // Enable OpenGL debugging
 | |
|         // Disable for release, as some OpenGL drivers are quite verbose and output
 | |
|         // info on every frame
 | |
|         if (false)
 | |
|         {
 | |
|             QSurfaceFormat format = glCurrentContext->format();
 | |
|             format.setOption(QSurfaceFormat::DebugContext);
 | |
|             glCurrentContext->setFormat(format);
 | |
| 
 | |
|             if (glCurrentContext->hasExtension(QByteArrayLiteral("GL_KHR_debug")))
 | |
|             {
 | |
|                 m_openGLLogger = new QOpenGLDebugLogger(this);
 | |
|                 m_openGLLogger->initialize();
 | |
|                 connect(m_openGLLogger, &QOpenGLDebugLogger::messageLogged, this, &GLSpectrumView::openGLDebug);
 | |
|                 m_openGLLogger->startLogging(QOpenGLDebugLogger::SynchronousLogging);
 | |
|             }
 | |
|             else
 | |
|             {
 | |
|                 qDebug() << "GLSpectrumView::initializeGL: GL_KHR_debug not available";
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         qCritical() << "GLSpectrumView::initializeGL: no current context";
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     QOpenGLFunctions *glFunctions = QOpenGLContext::currentContext()->functions();
 | |
|     glFunctions->initializeOpenGLFunctions();
 | |
| 
 | |
|     //glDisable(GL_DEPTH_TEST);
 | |
|     m_glShaderSimple.initializeGL(majorVersion, minorVersion);
 | |
|     m_glShaderLeftScale.initializeGL(majorVersion, minorVersion);
 | |
|     m_glShaderFrequencyScale.initializeGL(majorVersion, minorVersion);
 | |
|     m_glShaderWaterfall.initializeGL(majorVersion, minorVersion);
 | |
|     m_glShaderHistogram.initializeGL(majorVersion, minorVersion);
 | |
|     m_glShaderColorMap.initializeGL(majorVersion, minorVersion);
 | |
|     m_glShaderTextOverlay.initializeGL(majorVersion, minorVersion);
 | |
|     m_glShaderInfo.initializeGL(majorVersion, minorVersion);
 | |
|     m_glShaderSpectrogram.initializeGL(majorVersion, minorVersion);
 | |
|     m_glShaderSpectrogramTimeScale.initializeGL(majorVersion, minorVersion);
 | |
|     m_glShaderSpectrogramPowerScale.initializeGL(majorVersion, minorVersion);
 | |
| }
 | |
| 
 | |
| void GLSpectrumView::openGLDebug(const QOpenGLDebugMessage &debugMessage)
 | |
| {
 | |
|     qDebug() << "GLSpectrumView::openGLDebug: " << debugMessage;
 | |
| }
 | |
| 
 | |
| void GLSpectrumView::resizeGL(int width, int height)
 | |
| {
 | |
|     QMutexLocker mutexLocker(&m_mutex);
 | |
|     QOpenGLFunctions *glFunctions = QOpenGLContext::currentContext()->functions();
 | |
|     glFunctions->glViewport(0, 0, width, height);
 | |
|     m_changesPending = true;
 | |
| }
 | |
| 
 | |
| void GLSpectrumView::clearSpectrumHistogram()
 | |
| {
 | |
|     if (!m_mutex.tryLock(2)) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     memset(m_histogram, 0x00, 100 * m_nbBins);
 | |
| 
 | |
|     m_mutex.unlock();
 | |
|     update();
 | |
| }
 | |
| 
 | |
| void GLSpectrumView::paintGL()
 | |
| {
 | |
|     PROFILER_START()
 | |
| 
 | |
|     if (!m_mutex.tryLock(2)) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     if (m_changesPending)
 | |
|     {
 | |
|         applyChanges();
 | |
|         m_changesPending = false;
 | |
|     }
 | |
| 
 | |
|     if (m_nbBins <= 0)
 | |
|     {
 | |
|         m_mutex.unlock();
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     QOpenGLFunctions *glFunctions = QOpenGLContext::currentContext()->functions();
 | |
|     glFunctions->glClearColor(0.0f, 0.0f, 0.0f, 1.0f);
 | |
|     glFunctions->glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
 | |
| 
 | |
|     QMatrix4x4 spectrogramGridMatrix;
 | |
|     float devicePixelRatio;
 | |
| 
 | |
|     if (m_display3DSpectrogram)
 | |
|     {
 | |
|         m_glShaderSpectrogram.applyTransform(spectrogramGridMatrix);
 | |
|         // paint 3D spectrogram
 | |
|         if (m_3DSpectrogramTexturePos + m_3DSpectrogramBufferPos < m_3DSpectrogramTextureHeight)
 | |
|         {
 | |
|             m_glShaderSpectrogram.subTexture(0, m_3DSpectrogramTexturePos, m_nbBins, m_3DSpectrogramBufferPos,  m_3DSpectrogramBuffer->scanLine(0));
 | |
|             m_3DSpectrogramTexturePos += m_3DSpectrogramBufferPos;
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|             int breakLine = m_3DSpectrogramTextureHeight - m_3DSpectrogramTexturePos;
 | |
|             int linesLeft = m_3DSpectrogramTexturePos + m_3DSpectrogramBufferPos - m_3DSpectrogramTextureHeight;
 | |
|             m_glShaderSpectrogram.subTexture(0, m_3DSpectrogramTexturePos, m_nbBins, breakLine,  m_3DSpectrogramBuffer->scanLine(0));
 | |
|             m_glShaderSpectrogram.subTexture(0, 0, m_nbBins, linesLeft,  m_3DSpectrogramBuffer->scanLine(breakLine));
 | |
|             m_3DSpectrogramTexturePos = linesLeft;
 | |
|         }
 | |
| 
 | |
|         m_3DSpectrogramBufferPos = 0;
 | |
| 
 | |
|         float prop_y = m_3DSpectrogramTexturePos / (m_3DSpectrogramTextureHeight - 1.0);
 | |
| 
 | |
|         // Temporarily reduce viewport to waterfall area so anything outside is clipped
 | |
|         if (window()->windowHandle()) {
 | |
|             devicePixelRatio = window()->windowHandle()->devicePixelRatio();
 | |
|         } else {
 | |
|             devicePixelRatio = 1.0f;
 | |
|         }
 | |
|         glFunctions->glViewport(0, m_3DSpectrogramBottom*devicePixelRatio, width()*devicePixelRatio, m_waterfallHeight*devicePixelRatio);
 | |
|         m_glShaderSpectrogram.drawSurface(m_3DSpectrogramStyle, spectrogramGridMatrix, prop_y, m_invertedWaterfall);
 | |
|         glFunctions->glViewport(0, 0, width()*devicePixelRatio, height()*devicePixelRatio);
 | |
|     }
 | |
|     else if (m_displayWaterfall)
 | |
|     {
 | |
|         // paint 2D waterfall
 | |
|         {
 | |
|             GLfloat vtx1[] = {
 | |
|                     0, m_invertedWaterfall ? 0.0f : 1.0f,
 | |
|                     1, m_invertedWaterfall ? 0.0f : 1.0f,
 | |
|                     1, m_invertedWaterfall ? 1.0f : 0.0f,
 | |
|                     0, m_invertedWaterfall ? 1.0f : 0.0f
 | |
|             };
 | |
| 
 | |
| 
 | |
|             if (m_waterfallTexturePos + m_waterfallBufferPos < m_waterfallTextureHeight)
 | |
|             {
 | |
|                 m_glShaderWaterfall.subTexture(0, m_waterfallTexturePos, m_nbBins, m_waterfallBufferPos,  m_waterfallBuffer->scanLine(0));
 | |
|                 m_waterfallTexturePos += m_waterfallBufferPos;
 | |
|             }
 | |
|             else
 | |
|             {
 | |
|                 int breakLine = m_waterfallTextureHeight - m_waterfallTexturePos;
 | |
|                 int linesLeft = m_waterfallTexturePos + m_waterfallBufferPos - m_waterfallTextureHeight;
 | |
|                 m_glShaderWaterfall.subTexture(0, m_waterfallTexturePos, m_nbBins, breakLine,  m_waterfallBuffer->scanLine(0));
 | |
|                 m_glShaderWaterfall.subTexture(0, 0, m_nbBins, linesLeft,  m_waterfallBuffer->scanLine(breakLine));
 | |
|                 m_waterfallTexturePos = linesLeft;
 | |
|             }
 | |
| 
 | |
|             m_waterfallBufferPos = 0;
 | |
| 
 | |
|             float prop_y = m_waterfallTexturePos / (m_waterfallTextureHeight - 1.0);
 | |
|             float off = 1.0 / (m_waterfallTextureHeight - 1.0);
 | |
| 
 | |
|             GLfloat tex1[] = {
 | |
|                     0, prop_y + 1 - off,
 | |
|                     1, prop_y + 1 - off,
 | |
|                     1, prop_y,
 | |
|                     0, prop_y
 | |
|             };
 | |
| 
 | |
|             m_glShaderWaterfall.drawSurface(m_glWaterfallBoxMatrix, tex1, vtx1, 4);
 | |
|         }
 | |
| 
 | |
|         // paint channels
 | |
|         if (m_mouseInside)
 | |
|         {
 | |
|             for (int i = 0; i < m_channelMarkerStates.size(); ++i)
 | |
|             {
 | |
|                 ChannelMarkerState* dv = m_channelMarkerStates[i];
 | |
| 
 | |
|                 if (dv->m_channelMarker->getVisible()
 | |
|                     && (dv->m_channelMarker->getSourceOrSinkStream() == m_displaySourceOrSink)
 | |
|                     && dv->m_channelMarker->streamIndexApplies(m_displayStreamIndex))
 | |
|                 {
 | |
|                     {
 | |
|                         GLfloat q3[] {
 | |
|                             0, 0,
 | |
|                             1, 0,
 | |
|                             1, 1,
 | |
|                             0, 1,
 | |
|                             0.5, 0,
 | |
|                             0.5, 1,
 | |
|                         };
 | |
| 
 | |
|                         QVector4D color(dv->m_channelMarker->getColor().redF(), dv->m_channelMarker->getColor().greenF(), dv->m_channelMarker->getColor().blueF(), 0.3f);
 | |
|                         m_glShaderSimple.drawSurface(dv->m_glMatrixWaterfall, color, q3, 4);
 | |
| 
 | |
|                         QVector4D colorLine(0.8f, 0.8f, 0.6f, 1.0f);
 | |
|                         m_glShaderSimple.drawSegments(dv->m_glMatrixDsbWaterfall, colorLine, &q3[8], 2);
 | |
| 
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // draw rect around
 | |
|         {
 | |
|             GLfloat q3[] {
 | |
|                 1, 1,
 | |
|                 0, 1,
 | |
|                 0, 0,
 | |
|                 1, 0
 | |
|             };
 | |
| 
 | |
|             QVector4D color(1.0f, 1.0f, 1.0f, 0.5f);
 | |
|             m_glShaderSimple.drawContour(m_glWaterfallBoxMatrix, color, q3, 4);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // paint histogram
 | |
|     if (m_displayHistogram || m_displayMaxHold || m_displayCurrent)
 | |
|     {
 | |
|         if (m_displayHistogram)
 | |
|         {
 | |
|             {
 | |
|                 // import new lines into the texture
 | |
|                 quint32* pix;
 | |
|                 quint8* bs = m_histogram;
 | |
| 
 | |
|                 for (int y = 0; y < 100; y++)
 | |
|                 {
 | |
|                     quint8* b = bs;
 | |
|                     pix = (quint32*)m_histogramBuffer->scanLine(99 - y);
 | |
| 
 | |
|                     for (int x = 0; x < m_nbBins; x++)
 | |
|                     {
 | |
|                         *pix = m_histogramPalette[*b];
 | |
|                         pix++;
 | |
|                         b += 100;
 | |
|                     }
 | |
| 
 | |
|                     bs++;
 | |
|                 }
 | |
| 
 | |
|                 GLfloat vtx1[] = {
 | |
|                         0, 0,
 | |
|                         1, 0,
 | |
|                         1, 1,
 | |
|                         0, 1
 | |
|                 };
 | |
|                 GLfloat tex1[] = {
 | |
|                         0, 0,
 | |
|                         1, 0,
 | |
|                         1, 1,
 | |
|                         0, 1
 | |
|                 };
 | |
| 
 | |
|                 m_glShaderHistogram.subTexture(0, 0, m_nbBins, 100,  m_histogramBuffer->scanLine(0));
 | |
|                 m_glShaderHistogram.drawSurface(m_glHistogramBoxMatrix, tex1, vtx1, 4);
 | |
|             }
 | |
|         }
 | |
| 
 | |
| 
 | |
|         // paint channels
 | |
|         if (m_mouseInside)
 | |
|         {
 | |
|             // Effective BW overlays
 | |
|             for (int i = 0; i < m_channelMarkerStates.size(); ++i)
 | |
|             {
 | |
|                 ChannelMarkerState* dv = m_channelMarkerStates[i];
 | |
| 
 | |
|                 if (dv->m_channelMarker->getVisible()
 | |
|                     && (dv->m_channelMarker->getSourceOrSinkStream() == m_displaySourceOrSink)
 | |
|                     && dv->m_channelMarker->streamIndexApplies(m_displayStreamIndex))
 | |
|                 {
 | |
|                     {
 | |
|                         GLfloat q3[] {
 | |
|                             0, 0,
 | |
|                             1, 0,
 | |
|                             1, 1,
 | |
|                             0, 1,
 | |
|                             0.5, 0,
 | |
|                             0.5, 1
 | |
|                         };
 | |
| 
 | |
|                         QVector4D color(dv->m_channelMarker->getColor().redF(), dv->m_channelMarker->getColor().greenF(), dv->m_channelMarker->getColor().blueF(), 0.3f);
 | |
|                         m_glShaderSimple.drawSurface(dv->m_glMatrixHistogram, color, q3, 4);
 | |
| 
 | |
|                         QVector4D colorLine(0.8f, 0.8f, 0.6f, 1.0f);
 | |
| 
 | |
|                         if (dv->m_channelMarker->getSidebands() != ChannelMarker::dsb) {
 | |
|                             q3[6] = 0.5;
 | |
|                         }
 | |
| 
 | |
|                         m_glShaderSimple.drawSegments(dv->m_glMatrixDsbHistogram, colorLine, &q3[8], 2);
 | |
|                         m_glShaderSimple.drawSegments(dv->m_glMatrixFreqScale, colorLine, q3, 2);
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // paint left scales (time and power)
 | |
|     if (m_displayWaterfall || m_displayMaxHold || m_displayCurrent || m_displayHistogram )
 | |
|     {
 | |
|         {
 | |
|             GLfloat vtx1[] = {
 | |
|                     0, 1,
 | |
|                     1, 1,
 | |
|                     1, 0,
 | |
|                     0, 0
 | |
|             };
 | |
|             GLfloat tex1[] = {
 | |
|                     0, 1,
 | |
|                     1, 1,
 | |
|                     1, 0,
 | |
|                     0, 0
 | |
|             };
 | |
| 
 | |
|             m_glShaderLeftScale.drawSurface(m_glLeftScaleBoxMatrix, tex1, vtx1, 4);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // paint frequency scale
 | |
|     if (m_displayWaterfall || m_displayMaxHold || m_displayCurrent || m_displayHistogram)
 | |
|     {
 | |
|         {
 | |
|             GLfloat vtx1[] = {
 | |
|                     0, 1,
 | |
|                     1, 1,
 | |
|                     1, 0,
 | |
|                     0, 0
 | |
|             };
 | |
|             GLfloat tex1[] = {
 | |
|                     0, 1,
 | |
|                     1, 1,
 | |
|                     1, 0,
 | |
|                     0, 0
 | |
|             };
 | |
| 
 | |
|             m_glShaderFrequencyScale.drawSurface(m_glFrequencyScaleBoxMatrix, tex1, vtx1, 4);
 | |
|         }
 | |
| 
 | |
|         // paint channels
 | |
| 
 | |
|         // Effective bandwidth overlays
 | |
|         for (int i = 0; i < m_channelMarkerStates.size(); ++i)
 | |
|         {
 | |
|             ChannelMarkerState* dv = m_channelMarkerStates[i];
 | |
| 
 | |
|             // frequency scale channel overlay
 | |
|             if (dv->m_channelMarker->getVisible()
 | |
|                 && (dv->m_channelMarker->getSourceOrSinkStream() == m_displaySourceOrSink)
 | |
|                 && dv->m_channelMarker->streamIndexApplies(m_displayStreamIndex))
 | |
|             {
 | |
|                 {
 | |
|                     GLfloat q3[] {
 | |
|                         1, 0.2,
 | |
|                         0, 0.2,
 | |
|                         0, 0,
 | |
|                         1, 0,
 | |
|                         0.5, 0,
 | |
|                         0.5, 1
 | |
|                     };
 | |
| 
 | |
|                     QVector4D color(dv->m_channelMarker->getColor().redF(), dv->m_channelMarker->getColor().greenF(), dv->m_channelMarker->getColor().blueF(), 0.5f);
 | |
|                     m_glShaderSimple.drawSurface(dv->m_glMatrixFreqScale, color, q3, 4);
 | |
| 
 | |
|                     if (dv->m_channelMarker->getHighlighted())
 | |
|                     {
 | |
|                         QVector4D colorLine(0.8f, 0.8f, 0.6f, 1.0f);
 | |
|                         m_glShaderSimple.drawSegments(dv->m_glMatrixDsbFreqScale, colorLine, &q3[8], 2);
 | |
|                         m_glShaderSimple.drawSegments(dv->m_glMatrixFreqScale, colorLine, &q3[4], 2);
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // paint 3D spectrogram scales
 | |
|     if (m_display3DSpectrogram && m_displayGrid)
 | |
|     {
 | |
|         glFunctions->glViewport(0, m_3DSpectrogramBottom*devicePixelRatio, width()*devicePixelRatio, m_waterfallHeight*devicePixelRatio);
 | |
|         {
 | |
|             GLfloat l = m_spectrogramTimePixmap.width() / (GLfloat) width();
 | |
|             GLfloat r = m_rightMargin / (GLfloat) width();
 | |
|             GLfloat h = m_frequencyPixmap.height() / (GLfloat) m_waterfallHeight;
 | |
| 
 | |
|             GLfloat vtx1[] = {
 | |
|                        -l, -h,
 | |
|                    1.0f+r, -h,
 | |
|                    1.0f+r,  0.0f,
 | |
|                        -l,  0.0f
 | |
|             };
 | |
|             GLfloat tex1[] = {
 | |
|                     0, 1,
 | |
|                     1, 1,
 | |
|                     1, 0,
 | |
|                     0, 0
 | |
|             };
 | |
| 
 | |
|             m_glShaderFrequencyScale.drawSurface(spectrogramGridMatrix, tex1, vtx1, 4);
 | |
|         }
 | |
| 
 | |
|         {
 | |
|             GLfloat w = m_spectrogramTimePixmap.width() / (GLfloat) width();
 | |
|             GLfloat h = (m_bottomMargin/2) / (GLfloat) m_waterfallHeight;      // m_bottomMargin is fm.ascent
 | |
| 
 | |
|             GLfloat vtx1[] = {
 | |
|                     -w, 0.0f-h,
 | |
|                   0.0f, 0.0f-h,
 | |
|                   0.0f, 1.0f+h,
 | |
|                     -w, 1.0f+h
 | |
|             };
 | |
|             GLfloat tex1[] = {
 | |
|                     0, 1,
 | |
|                     1, 1,
 | |
|                     1, 0,
 | |
|                     0, 0
 | |
|             };
 | |
| 
 | |
|             m_glShaderSpectrogramTimeScale.drawSurface(spectrogramGridMatrix, tex1, vtx1, 4);
 | |
|         }
 | |
| 
 | |
|         {
 | |
|             GLfloat w = m_spectrogramPowerPixmap.width() / (GLfloat) width();
 | |
|             GLfloat h = m_topMargin / (GLfloat) m_spectrogramPowerPixmap.height();
 | |
| 
 | |
|             GLfloat vtx1[] = {
 | |
|                     -w, 1.0f, 0.0f,
 | |
|                   0.0f, 1.0f, 0.0f,
 | |
|                   0.0f, 1.0f, 1.0f+h,
 | |
|                     -w, 1.0f, 1.0f+h,
 | |
|             };
 | |
|             GLfloat tex1[] = {
 | |
|                     0, 1,
 | |
|                     1, 1,
 | |
|                     1, 0,
 | |
|                     0, 0
 | |
|             };
 | |
| 
 | |
|             m_glShaderSpectrogramPowerScale.drawSurface(spectrogramGridMatrix, tex1, vtx1, 4, 3);
 | |
|         }
 | |
| 
 | |
|         glFunctions->glViewport(0, 0, width()*devicePixelRatio, height()*devicePixelRatio);
 | |
|     }
 | |
| 
 | |
|     // paint max hold lines on top of histogram
 | |
|     if (m_displayMaxHold)
 | |
|     {
 | |
|         if (m_maxHold.size() < (uint) m_nbBins) {
 | |
|             m_maxHold.resize(m_nbBins);
 | |
|         }
 | |
| 
 | |
|         for (int i = 0; i < m_nbBins; i++)
 | |
|         {
 | |
|             int j;
 | |
|             quint8* bs = m_histogram + i * 100;
 | |
| 
 | |
|             for (j = 99; j >= 0; j--)
 | |
|             {
 | |
|                 if (bs[j] > 0) {
 | |
|                     break;
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             // m_referenceLevel : top
 | |
|             // m_referenceLevel - m_powerRange : bottom
 | |
|             m_maxHold[i] = ((j - 99) * m_powerRange) / 99.0 + m_referenceLevel;
 | |
|         }
 | |
|         // Fill under max hold line
 | |
|         if (m_spectrumStyle != SpectrumSettings::Line)
 | |
|         {
 | |
|             GLfloat *q3 = m_q3ColorMap.m_array;
 | |
|             for (int i = 0; i < m_nbBins; i++)
 | |
|             {
 | |
|                 Real v = m_maxHold[i] - m_referenceLevel;
 | |
| 
 | |
|                 if (v > 0) {
 | |
|                     v = 0;
 | |
|                 } else if (v < -m_powerRange) {
 | |
|                     v = -m_powerRange;
 | |
|                 }
 | |
| 
 | |
|                 q3[4*i] = (GLfloat)i;
 | |
|                 q3[4*i+1] = -m_powerRange;
 | |
|                 q3[4*i+2] = (GLfloat)i;
 | |
|                 q3[4*i+3] = v;
 | |
|             }
 | |
|             // Replicate Nyquist sample to end of positive side
 | |
|             q3[4*m_nbBins] = (GLfloat) m_nbBins;
 | |
|             q3[4*m_nbBins+1] = q3[1];
 | |
|             q3[4*m_nbBins+2] = (GLfloat) m_nbBins;
 | |
|             q3[4*m_nbBins+3] = q3[3];
 | |
| 
 | |
|             QVector4D color(0.5f, 0.0f, 0.0f, (float) m_displayTraceIntensity / 100.0f);
 | |
|             m_glShaderSimple.drawSurfaceStrip(m_glHistogramSpectrumMatrix, color, q3, 2*(m_nbBins+1));
 | |
|         }
 | |
|         // Max hold line
 | |
|         {
 | |
|             GLfloat *q3 = m_q3FFT.m_array;
 | |
| 
 | |
|             for (int i = 0; i < m_nbBins; i++)
 | |
|             {
 | |
|                 Real v = m_maxHold[i] - m_referenceLevel;
 | |
| 
 | |
|                 if (v >= 0) {
 | |
|                     v = 0;
 | |
|                 } else if (v < -m_powerRange) {
 | |
|                     v = -m_powerRange;
 | |
|                 }
 | |
| 
 | |
|                 q3[2*i] = (Real) i;
 | |
|                 q3[2*i+1] = v;
 | |
|             }
 | |
|             // Replicate Nyquist sample to end of positive side
 | |
|             q3[2*m_nbBins] = (GLfloat) m_nbBins;
 | |
|             q3[2*m_nbBins+1] = q3[1];
 | |
| 
 | |
|             QVector4D color(1.0f, 0.0f, 0.0f, (float) m_displayTraceIntensity / 100.0f);
 | |
|             m_glShaderSimple.drawPolyline(m_glHistogramSpectrumMatrix, color, q3, m_nbBins+1);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // paint current spectrum line on top of histogram
 | |
|     if (m_displayCurrent && m_currentSpectrum)
 | |
|     {
 | |
|         Real bottom = -m_powerRange;
 | |
|         GLfloat *q3;
 | |
| 
 | |
|         if (m_spectrumStyle != SpectrumSettings::Line)
 | |
|         {
 | |
|             q3 = m_q3ColorMap.m_array;
 | |
|             // Fill under line
 | |
|             for (int i = 0; i < m_nbBins; i++)
 | |
|             {
 | |
|                 Real v = m_currentSpectrum[i] - m_referenceLevel;
 | |
| 
 | |
|                 if (v > 0) {
 | |
|                     v = 0;
 | |
|                 } else if (v < bottom) {
 | |
|                     v = bottom;
 | |
|                 }
 | |
| 
 | |
|                 q3[4*i] = (GLfloat)i;
 | |
|                 q3[4*i+1] = bottom;
 | |
|                 q3[4*i+2] = (GLfloat)i;
 | |
|                 q3[4*i+3] = v;
 | |
|             }
 | |
|             // Replicate Nyquist sample to end of positive side
 | |
|             q3[4*m_nbBins] = (GLfloat) m_nbBins;
 | |
|             q3[4*m_nbBins+1] = q3[1];
 | |
|             q3[4*m_nbBins+2] = (GLfloat) m_nbBins;
 | |
|             q3[4*m_nbBins+3] = q3[3];
 | |
| 
 | |
|             QVector4D color(1.0f, 1.0f, 0.25f, (float) m_displayTraceIntensity / 100.0f);
 | |
|             if (m_spectrumStyle == SpectrumSettings::Gradient) {
 | |
|                 m_glShaderColorMap.drawSurfaceStrip(m_glHistogramSpectrumMatrix, q3, 2*(m_nbBins+1), bottom, 0.75f);
 | |
|             } else {
 | |
|                 m_glShaderSimple.drawSurfaceStrip(m_glHistogramSpectrumMatrix, color, q3, 2*(m_nbBins+1));
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         {
 | |
|             if (m_histogramFindPeaks) {
 | |
|                 m_peakFinder.init(m_currentSpectrum[0]);
 | |
|             }
 | |
| 
 | |
|             // Draw line
 | |
|             q3 = m_q3FFT.m_array;
 | |
|             for (int i = 0; i < m_nbBins; i++)
 | |
|             {
 | |
|                 Real v = m_currentSpectrum[i] - m_referenceLevel;
 | |
| 
 | |
|                 if (v > 0) {
 | |
|                     v = 0;
 | |
|                 } else if (v < bottom) {
 | |
|                     v = bottom;
 | |
|                 }
 | |
| 
 | |
|                 q3[2*i] = (Real) i;
 | |
|                 q3[2*i+1] = v;
 | |
| 
 | |
|                 if (m_histogramFindPeaks && (i > 0)) {
 | |
|                     m_peakFinder.push(m_currentSpectrum[i], i == m_nbBins - 1);
 | |
|                 }
 | |
|             }
 | |
|             // Replicate Nyquist sample to end of positive side
 | |
|             q3[2*m_nbBins] = (GLfloat) m_nbBins;
 | |
|             q3[2*m_nbBins+1] = q3[1];
 | |
| 
 | |
|             QVector4D color;
 | |
|             if (m_spectrumStyle == SpectrumSettings::Gradient) {
 | |
|                 color = QVector4D(m_colorMap[255*3], m_colorMap[255*3+1], m_colorMap[255*3+2], (float) m_displayTraceIntensity / 100.0f);
 | |
|             } else {
 | |
|                 color = QVector4D(1.0f, 1.0f, 0.25f, (float) m_displayTraceIntensity / 100.0f);
 | |
|             }
 | |
|             m_glShaderSimple.drawPolyline(m_glHistogramSpectrumMatrix, color, q3, m_nbBins+1);
 | |
| 
 | |
|             if (m_histogramFindPeaks) {
 | |
|                 m_peakFinder.sortPeaks();
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (m_displayCurrent && m_currentSpectrum && (m_markersDisplay & SpectrumSettings::MarkersDisplaySpectrum))
 | |
|     {
 | |
|         if (m_histogramFindPeaks) {
 | |
|             updateHistogramPeaks();
 | |
|         }
 | |
| 
 | |
|         drawSpectrumMarkers();
 | |
|     }
 | |
| 
 | |
|     if (m_markersDisplay & SpectrumSettings::MarkersDisplayAnnotations) {
 | |
|         drawAnnotationMarkers();
 | |
|     }
 | |
| 
 | |
|     // paint waterfall grid
 | |
|     if (m_displayWaterfall && m_displayGrid)
 | |
|     {
 | |
|         const ScaleEngine::TickList* tickList;
 | |
|         const ScaleEngine::Tick* tick;
 | |
|         tickList = &m_timeScale.getTickList();
 | |
| 
 | |
|         {
 | |
|             GLfloat *q3 = m_q3TickTime.m_array;
 | |
|             int effectiveTicks = 0;
 | |
| 
 | |
|             for (int i= 0; i < tickList->count(); i++)
 | |
|             {
 | |
|                 tick = &(*tickList)[i];
 | |
| 
 | |
|                 if (tick->major)
 | |
|                 {
 | |
|                     if (tick->textSize > 0)
 | |
|                     {
 | |
|                         float y = tick->pos / m_timeScale.getSize();
 | |
|                         q3[4*effectiveTicks] = 0;
 | |
|                         q3[4*effectiveTicks+1] = y;
 | |
|                         q3[4*effectiveTicks+2] = 1;
 | |
|                         q3[4*effectiveTicks+3] = y;
 | |
|                         effectiveTicks++;
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             QVector4D color(1.0f, 1.0f, 1.0f, (float) m_displayGridIntensity / 100.0f);
 | |
|             m_glShaderSimple.drawSegments(m_glWaterfallBoxMatrix, color, q3, 2*effectiveTicks);
 | |
|         }
 | |
| 
 | |
|         tickList = &m_frequencyScale.getTickList();
 | |
| 
 | |
|         {
 | |
|             GLfloat *q3 = m_q3TickFrequency.m_array;
 | |
|             int effectiveTicks = 0;
 | |
| 
 | |
|             for (int i= 0; i < tickList->count(); i++)
 | |
|             {
 | |
|                 tick = &(*tickList)[i];
 | |
| 
 | |
|                 if (tick->major)
 | |
|                 {
 | |
|                     if (tick->textSize > 0)
 | |
|                     {
 | |
|                         float x = tick->pos / m_frequencyScale.getSize();
 | |
|                         q3[4*effectiveTicks] = x;
 | |
|                         q3[4*effectiveTicks+1] = 0;
 | |
|                         q3[4*effectiveTicks+2] = x;
 | |
|                         q3[4*effectiveTicks+3] = 1;
 | |
|                         effectiveTicks++;
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             QVector4D color(1.0f, 1.0f, 1.0f, (float) m_displayGridIntensity / 100.0f);
 | |
|             m_glShaderSimple.drawSegments(m_glWaterfallBoxMatrix, color, q3, 2*effectiveTicks);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // paint 3D spectrogram grid - this is drawn on top of signal, so that appears slightly transparent
 | |
|     // x-axis is freq, y time and z power
 | |
|     if (m_displayGrid && m_display3DSpectrogram)
 | |
|     {
 | |
|         const ScaleEngine::TickList* tickList;
 | |
|         const ScaleEngine::Tick* tick;
 | |
| 
 | |
|         glFunctions->glViewport(0, m_3DSpectrogramBottom*devicePixelRatio, width()*devicePixelRatio, m_waterfallHeight*devicePixelRatio);
 | |
| 
 | |
|         tickList = &m_powerScale.getTickList();
 | |
|         {
 | |
|             GLfloat *q3 = m_q3TickPower.m_array;
 | |
|             int effectiveTicks = 0;
 | |
| 
 | |
|             for (int i= 0; i < tickList->count(); i++)
 | |
|             {
 | |
|                 tick = &(*tickList)[i];
 | |
| 
 | |
|                 if (tick->major)
 | |
|                 {
 | |
|                     if (tick->textSize > 0)
 | |
|                     {
 | |
|                         float y = tick->pos / m_powerScale.getSize();
 | |
|                         q3[6*effectiveTicks] = 0.0;
 | |
|                         q3[6*effectiveTicks+1] = 1.0;
 | |
|                         q3[6*effectiveTicks+2] = y;
 | |
|                         q3[6*effectiveTicks+3] = 1.0;
 | |
|                         q3[6*effectiveTicks+4] = 1.0;
 | |
|                         q3[6*effectiveTicks+5] = y;
 | |
|                         effectiveTicks++;
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             QVector4D color(1.0f, 1.0f, 1.0f, (float) m_displayGridIntensity / 100.0f);
 | |
|             m_glShaderSimple.drawSegments(spectrogramGridMatrix, color, q3, 2*effectiveTicks, 3);
 | |
|         }
 | |
| 
 | |
|         tickList = &m_timeScale.getTickList();
 | |
|         {
 | |
|             GLfloat *q3 = m_q3TickTime.m_array;
 | |
|             int effectiveTicks = 0;
 | |
| 
 | |
|             for (int i= 0; i < tickList->count(); i++)
 | |
|             {
 | |
|                 tick = &(*tickList)[i];
 | |
| 
 | |
|                 if (tick->major)
 | |
|                 {
 | |
|                     if (tick->textSize > 0)
 | |
|                     {
 | |
|                         float y = tick->pos / m_timeScale.getSize();
 | |
|                         q3[4*effectiveTicks] = 0.0;
 | |
|                         q3[4*effectiveTicks+1] = 1.0 - y;
 | |
|                         q3[4*effectiveTicks+2] = 1.0;
 | |
|                         q3[4*effectiveTicks+3] = 1.0 - y;
 | |
|                         effectiveTicks++;
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             QVector4D color(1.0f, 1.0f, 1.0f, (float) m_displayGridIntensity / 100.0f);
 | |
|             m_glShaderSimple.drawSegments(spectrogramGridMatrix, color, q3, 2*effectiveTicks);
 | |
|         }
 | |
| 
 | |
|         tickList = &m_frequencyScale.getTickList();
 | |
|         {
 | |
|             GLfloat *q3 = m_q3TickFrequency.m_array;
 | |
|             int effectiveTicks = 0;
 | |
| 
 | |
|             for (int i= 0; i < tickList->count(); i++)
 | |
|             {
 | |
|                 tick = &(*tickList)[i];
 | |
| 
 | |
|                 if (tick->major)
 | |
|                 {
 | |
|                     if (tick->textSize > 0)
 | |
|                     {
 | |
|                         float x = tick->pos / m_frequencyScale.getSize();
 | |
|                         q3[4*effectiveTicks] = x;
 | |
|                         q3[4*effectiveTicks+1] = -0.0;
 | |
|                         q3[4*effectiveTicks+2] = x;
 | |
|                         q3[4*effectiveTicks+3] = 1.0;
 | |
|                         effectiveTicks++;
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             QVector4D color(1.0f, 1.0f, 1.0f, (float) m_displayGridIntensity / 100.0f);
 | |
|             m_glShaderSimple.drawSegments(spectrogramGridMatrix, color, q3, 2*effectiveTicks);
 | |
|         }
 | |
|         {
 | |
|             GLfloat *q3 = m_q3TickFrequency.m_array;
 | |
|             int effectiveTicks = 0;
 | |
| 
 | |
|             for (int i= 0; i < tickList->count(); i++)
 | |
|             {
 | |
|                 tick = &(*tickList)[i];
 | |
| 
 | |
|                 if (tick->major)
 | |
|                 {
 | |
|                     if (tick->textSize > 0)
 | |
|                     {
 | |
|                         float x = tick->pos / m_frequencyScale.getSize();
 | |
|                         q3[6*effectiveTicks] = x;
 | |
|                         q3[6*effectiveTicks+1] = 1.0;
 | |
|                         q3[6*effectiveTicks+2] = 0.0;
 | |
|                         q3[6*effectiveTicks+3] = x;
 | |
|                         q3[6*effectiveTicks+4] = 1.0;
 | |
|                         q3[6*effectiveTicks+5] = 1.0;
 | |
|                         effectiveTicks++;
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             QVector4D color(1.0f, 1.0f, 1.0f, (float) m_displayGridIntensity / 100.0f);
 | |
|             m_glShaderSimple.drawSegments(spectrogramGridMatrix, color, q3, 2*effectiveTicks, 3);
 | |
|         }
 | |
| 
 | |
|         glFunctions->glViewport(0, 0, width()*devicePixelRatio, height()*devicePixelRatio);
 | |
|     }
 | |
| 
 | |
|     // paint histogram grid
 | |
|     if ((m_displayHistogram || m_displayMaxHold || m_displayCurrent) && (m_displayGrid))
 | |
|     {
 | |
|         const ScaleEngine::TickList* tickList;
 | |
|         const ScaleEngine::Tick* tick;
 | |
|         tickList = &m_powerScale.getTickList();
 | |
| 
 | |
|         {
 | |
|             GLfloat *q3 = m_q3TickPower.m_array;
 | |
|             int effectiveTicks = 0;
 | |
| 
 | |
|             for (int i= 0; i < tickList->count(); i++)
 | |
|             {
 | |
|                 tick = &(*tickList)[i];
 | |
| 
 | |
|                 if (tick->major)
 | |
|                 {
 | |
|                     if (tick->textSize > 0)
 | |
|                     {
 | |
|                         float y = tick->pos / m_powerScale.getSize();
 | |
|                         q3[4*effectiveTicks] = 0;
 | |
|                         q3[4*effectiveTicks+1] = 1-y;
 | |
|                         q3[4*effectiveTicks+2] = 1;
 | |
|                         q3[4*effectiveTicks+3] = 1-y;
 | |
|                         effectiveTicks++;
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             QVector4D color(1.0f, 1.0f, 1.0f, (float) m_displayGridIntensity / 100.0f);
 | |
|             m_glShaderSimple.drawSegments(m_glHistogramBoxMatrix, color, q3, 2*effectiveTicks);
 | |
|         }
 | |
| 
 | |
|         tickList = &m_frequencyScale.getTickList();
 | |
| 
 | |
|         {
 | |
|             GLfloat *q3 = m_q3TickFrequency.m_array;
 | |
|             int effectiveTicks = 0;
 | |
| 
 | |
|             for (int i= 0; i < tickList->count(); i++)
 | |
|             {
 | |
|                 tick = &(*tickList)[i];
 | |
| 
 | |
|                 if (tick->major)
 | |
|                 {
 | |
|                     if (tick->textSize > 0)
 | |
|                     {
 | |
|                         float x = tick->pos / m_frequencyScale.getSize();
 | |
|                         q3[4*effectiveTicks] = x;
 | |
|                         q3[4*effectiveTicks+1] = 0;
 | |
|                         q3[4*effectiveTicks+2] = x;
 | |
|                         q3[4*effectiveTicks+3] = 1;
 | |
|                         effectiveTicks++;
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             QVector4D color(1.0f, 1.0f, 1.0f, (float) m_displayGridIntensity / 100.0f);
 | |
|             m_glShaderSimple.drawSegments(m_glHistogramBoxMatrix, color, q3, 2*effectiveTicks);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // paint rect around histogram (do last, so on top of filled spectrum)
 | |
|     if (m_displayHistogram || m_displayMaxHold || m_displayCurrent)
 | |
|     {
 | |
|         {
 | |
|             GLfloat q3[] {
 | |
|                 1, 1,
 | |
|                 0, 1,
 | |
|                 0, 0,
 | |
|                 1, 0
 | |
|             };
 | |
| 
 | |
|             QVector4D color(1.0f, 1.0f, 1.0f, 0.5f);
 | |
|             m_glShaderSimple.drawContour(m_glHistogramBoxMatrix, color, q3, 4);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // Paint info line
 | |
|     {
 | |
|         GLfloat vtx1[] = {
 | |
|                 0, 1,
 | |
|                 1, 1,
 | |
|                 1, 0,
 | |
|                 0, 0
 | |
|         };
 | |
|         GLfloat tex1[] = {
 | |
|                 0, 1,
 | |
|                 1, 1,
 | |
|                 1, 0,
 | |
|                 0, 0
 | |
|         };
 | |
| 
 | |
|         m_glShaderInfo.drawSurface(m_glInfoBoxMatrix, tex1, vtx1, 4);
 | |
|     }
 | |
| 
 | |
|     if (m_currentSpectrum)
 | |
|     {
 | |
|         switch (m_measurement)
 | |
|         {
 | |
|         case SpectrumSettings::MeasurementPeaks:
 | |
|             measurePeaks();
 | |
|             break;
 | |
|         case SpectrumSettings::MeasurementChannelPower:
 | |
|             measureChannelPower();
 | |
|             break;
 | |
|         case SpectrumSettings::MeasurementAdjacentChannelPower:
 | |
|             measureAdjacentChannelPower();
 | |
|             break;
 | |
|         case SpectrumSettings::MeasurementOccupiedBandwidth:
 | |
|             measureOccupiedBandwidth();
 | |
|             break;
 | |
|         case SpectrumSettings::Measurement3dBBandwidth:
 | |
|             measure3dBBandwidth();
 | |
|             break;
 | |
|         case SpectrumSettings::MeasurementSNR:
 | |
|             measureSNR();
 | |
|             measureSFDR();
 | |
|             break;
 | |
|         default:
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     m_mutex.unlock();
 | |
| 
 | |
| #ifdef ENABLE_PROFILER
 | |
|     if (m_profileName.isEmpty())
 | |
|     {
 | |
|         // Try to use the window name for the profile name
 | |
|         QString windowTitle;
 | |
|         for (QWidget *widget = parentWidget(); widget != nullptr; widget = widget->parentWidget())
 | |
|         {
 | |
|             windowTitle = widget->windowTitle();
 | |
|             if (!windowTitle.isEmpty()) {
 | |
|                 break;
 | |
|             }
 | |
|         }
 | |
|         // Add this address so we get per-spectrum profile data
 | |
|         if (windowTitle.isEmpty()) {
 | |
|             m_profileName = QString("Spectrum @%1").arg((quint64)this, 0, 16);
 | |
|         } else {
 | |
|             m_profileName = QString("%1 @%2").arg(windowTitle).arg((quint64)this, 0, 16);
 | |
|         }
 | |
|     }
 | |
| #endif
 | |
| 
 | |
|     PROFILER_STOP(m_profileName)
 | |
| } // paintGL
 | |
| 
 | |
| // Hightlight power band for SFDR
 | |
| void GLSpectrumView::drawPowerBandMarkers(float max, float min, const QVector4D &color)
 | |
| {
 | |
|     float p1 = (m_powerScale.getRangeMax() - min) / m_powerScale.getRange();
 | |
|     float p2 = (m_powerScale.getRangeMax() - max) / m_powerScale.getRange();
 | |
| 
 | |
|     GLfloat q3[] {
 | |
|         1, p2,
 | |
|         0, p2,
 | |
|         0, p1,
 | |
|         1, p1,
 | |
|         0, p1,
 | |
|         0, p2
 | |
|     };
 | |
| 
 | |
|     m_glShaderSimple.drawSurface(m_glHistogramBoxMatrix, color, q3, 4);
 | |
| }
 | |
| 
 | |
| // Hightlight bandwidth being measured
 | |
| void GLSpectrumView::drawBandwidthMarkers(int64_t centerFrequency, int bandwidth, const QVector4D &color)
 | |
| {
 | |
|     float f1 = (centerFrequency - bandwidth / 2);
 | |
|     float f2 = (centerFrequency + bandwidth / 2);
 | |
|     float x1 = (f1 - m_frequencyScale.getRangeMin()) / m_frequencyScale.getRange();
 | |
|     float x2 = (f2 - m_frequencyScale.getRangeMin()) / m_frequencyScale.getRange();
 | |
| 
 | |
|     GLfloat q3[] {
 | |
|         x2, 1,
 | |
|         x1, 1,
 | |
|         x1, 0,
 | |
|         x2, 0,
 | |
|         x1, 0,
 | |
|         x1, 1
 | |
|     };
 | |
| 
 | |
|     m_glShaderSimple.drawSurface(m_glHistogramBoxMatrix, color, q3, 4);
 | |
| }
 | |
| 
 | |
| // Hightlight peak being measured. Note that the peak isn't always at the center
 | |
| void GLSpectrumView::drawPeakMarkers(int64_t startFrequency, int64_t endFrequency, const QVector4D &color)
 | |
| {
 | |
|     float x1 = (startFrequency - m_frequencyScale.getRangeMin()) / m_frequencyScale.getRange();
 | |
|     float x2 = (endFrequency - m_frequencyScale.getRangeMin()) / m_frequencyScale.getRange();
 | |
| 
 | |
|     GLfloat q3[] {
 | |
|         x2, 1,
 | |
|         x1, 1,
 | |
|         x1, 0,
 | |
|         x2, 0,
 | |
|         x1, 0,
 | |
|         x1, 1
 | |
|     };
 | |
| 
 | |
|     m_glShaderSimple.drawSurface(m_glHistogramBoxMatrix, color, q3, 4);
 | |
| }
 | |
| 
 | |
| void GLSpectrumView::drawSpectrumMarkers()
 | |
| {
 | |
|     if (!m_currentSpectrum) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     QVector4D lineColor(1.0f, 1.0f, 1.0f, 0.3f);
 | |
| 
 | |
|     // paint histogram markers
 | |
|     if (m_histogramMarkers.size() > 0)
 | |
|     {
 | |
|         for (int i = 0; i < m_histogramMarkers.size(); i++)
 | |
|         {
 | |
|             if (!m_histogramMarkers.at(i).m_show) {
 | |
|                 continue;
 | |
|             }
 | |
| 
 | |
|             QPointF ypoint = m_histogramMarkers.at(i).m_point;
 | |
|             QString powerStr = m_histogramMarkers.at(i).m_powerStr;
 | |
| 
 | |
|             if (m_histogramMarkers.at(i).m_markerType == SpectrumHistogramMarker::SpectrumMarkerTypePower)
 | |
|             {
 | |
|                 float power = m_linear ?
 | |
|                     m_currentSpectrum[m_histogramMarkers.at(i).m_fftBin] * (m_useCalibration ? m_calibrationGain : 1.0f):
 | |
|                     m_currentSpectrum[m_histogramMarkers.at(i).m_fftBin] + (m_useCalibration ? m_calibrationShiftdB : 0.0f);
 | |
|                 ypoint.ry() =
 | |
|                     (m_powerScale.getRangeMax() - power) / m_powerScale.getRange();
 | |
|                 ypoint.ry() = ypoint.ry() < 0 ?
 | |
|                     0 :
 | |
|                     ypoint.ry() > 1 ? 1 : ypoint.ry();
 | |
|                 powerStr = displayPower(
 | |
|                     power,
 | |
|                     m_linear ? 'e' : 'f',
 | |
|                     m_linear ? 3 : 1
 | |
|                 );
 | |
|             }
 | |
|             else if (m_histogramMarkers.at(i).m_markerType == SpectrumHistogramMarker::SpectrumMarkerTypePowerMax)
 | |
|             {
 | |
|                 float power = m_currentSpectrum[m_histogramMarkers.at(i).m_fftBin];
 | |
| 
 | |
|                 if ((m_histogramMarkers.at(i).m_holdReset) || (power > m_histogramMarkers[i].m_powerMax))
 | |
|                 {
 | |
|                     m_histogramMarkers[i].m_powerMax = power;
 | |
|                     m_histogramMarkers[i].m_holdReset = false;
 | |
|                 }
 | |
| 
 | |
|                 float powerMax = m_linear ?
 | |
|                     m_histogramMarkers[i].m_powerMax * (m_useCalibration ? m_calibrationGain : 1.0f) :
 | |
|                     m_histogramMarkers[i].m_powerMax + (m_useCalibration ? m_calibrationShiftdB : 0.0f);
 | |
| 
 | |
|                 ypoint.ry() =
 | |
|                     (m_powerScale.getRangeMax() - powerMax) / m_powerScale.getRange();
 | |
|                 ypoint.ry() = ypoint.ry() < 0 ?
 | |
|                     0 : ypoint.ry() > 1 ?
 | |
|                         1 : ypoint.ry();
 | |
|                 powerStr = displayPower(
 | |
|                     powerMax,
 | |
|                     m_linear ? 'e' : 'f',
 | |
|                     m_linear ? 3 : 1
 | |
|                 );
 | |
|             }
 | |
| 
 | |
|             // crosshairs
 | |
|             GLfloat h[] {
 | |
|                 (float) m_histogramMarkers.at(i).m_point.x(), 0,
 | |
|                 (float) m_histogramMarkers.at(i).m_point.x(), 1
 | |
|             };
 | |
|             m_glShaderSimple.drawSegments(m_glHistogramBoxMatrix, lineColor, h, 2);
 | |
|             GLfloat v[] {
 | |
|                 0, (float) ypoint.y(),
 | |
|                 1, (float) ypoint.y()
 | |
|             };
 | |
|             m_glShaderSimple.drawSegments(m_glHistogramBoxMatrix, lineColor, v, 2);
 | |
|             QColor textColor = m_histogramMarkers.at(i).m_markerColor;
 | |
|             // text
 | |
|             if (i == 0)
 | |
|             {
 | |
|                 drawTextOverlay(
 | |
|                     m_histogramMarkers.at(i).m_frequencyStr,
 | |
|                     textColor,
 | |
|                     m_textOverlayFont,
 | |
|                     m_histogramMarkers.at(i).m_point.x() * m_histogramRect.width(),
 | |
|                     (m_invertedWaterfall || (m_waterfallHeight == 0)) ? m_histogramRect.height() : 0,
 | |
|                     m_histogramMarkers.at(i).m_point.x() < 0.5f,
 | |
|                     !m_invertedWaterfall && (m_waterfallHeight != 0),
 | |
|                     m_histogramRect);
 | |
|                 drawTextOverlay(
 | |
|                     powerStr,
 | |
|                     textColor,
 | |
|                     m_textOverlayFont,
 | |
|                     0,
 | |
|                     ypoint.y() * m_histogramRect.height(),
 | |
|                     true,
 | |
|                     ypoint.y() < 0.5f,
 | |
|                     m_histogramRect);
 | |
|             }
 | |
|             else
 | |
|             {
 | |
|                 textColor.setAlpha(192);
 | |
|                 float power0, poweri;
 | |
| 
 | |
|                 if (m_histogramMarkers.at(0).m_markerType == SpectrumHistogramMarker::SpectrumMarkerTypePower) {
 | |
|                     power0 = m_currentSpectrum[m_histogramMarkers.at(0).m_fftBin];
 | |
|                 } else if (m_histogramMarkers.at(0).m_markerType == SpectrumHistogramMarker::SpectrumMarkerTypePowerMax) {
 | |
|                     power0 = m_histogramMarkers.at(0).m_powerMax;
 | |
|                 } else {
 | |
|                     power0 = m_linear ? m_histogramMarkers.at(0).m_power : CalcDb::dbPower(m_histogramMarkers.at(0).m_power);
 | |
|                 }
 | |
| 
 | |
|                 if (m_histogramMarkers.at(i).m_markerType == SpectrumHistogramMarker::SpectrumMarkerTypePower) {
 | |
|                     poweri = m_currentSpectrum[m_histogramMarkers.at(i).m_fftBin];
 | |
|                 } else if (m_histogramMarkers.at(i).m_markerType == SpectrumHistogramMarker::SpectrumMarkerTypePowerMax) {
 | |
|                     poweri = m_histogramMarkers.at(i).m_powerMax;
 | |
|                 } else {
 | |
|                     poweri = m_linear ? m_histogramMarkers.at(i).m_power : CalcDb::dbPower(m_histogramMarkers.at(i).m_power);
 | |
|                 }
 | |
| 
 | |
|                 QString deltaPowerStr;
 | |
| 
 | |
|                 if (m_linear) {
 | |
|                     deltaPowerStr = QString::number(poweri - power0, 'e', 3);
 | |
|                 } else {
 | |
|                     deltaPowerStr = QString::number(poweri - power0, 'f', 1);
 | |
|                 }
 | |
| 
 | |
|                 drawTextOverlay(
 | |
|                     m_histogramMarkers.at(i).m_deltaFrequencyStr,
 | |
|                     textColor,
 | |
|                     m_textOverlayFont,
 | |
|                     m_histogramMarkers.at(i).m_point.x() * m_histogramRect.width(),
 | |
|                     (m_invertedWaterfall || (m_waterfallHeight == 0)) ? 0 : m_histogramRect.height(),
 | |
|                     m_histogramMarkers.at(i).m_point.x() < 0.5f,
 | |
|                     (m_invertedWaterfall || (m_waterfallHeight == 0)),
 | |
|                     m_histogramRect);
 | |
|                 drawTextOverlay(
 | |
|                     deltaPowerStr,
 | |
|                     textColor,
 | |
|                     m_textOverlayFont,
 | |
|                     m_histogramRect.width(),
 | |
|                     ypoint.y() * m_histogramRect.height(),
 | |
|                     false,
 | |
|                     ypoint.y() < 0.5f,
 | |
|                     m_histogramRect);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // paint waterfall markers
 | |
|     if (m_waterfallMarkers.size() > 0)
 | |
|     {
 | |
|         // crosshairs
 | |
|         for (int i = 0; i < m_waterfallMarkers.size(); i++)
 | |
|         {
 | |
|             if (!m_waterfallMarkers.at(i).m_show) {
 | |
|                 continue;
 | |
|             }
 | |
| 
 | |
|             GLfloat h[] {
 | |
|                 (float) m_waterfallMarkers.at(i).m_point.x(), 0,
 | |
|                 (float) m_waterfallMarkers.at(i).m_point.x(), 1
 | |
|             };
 | |
|             m_glShaderSimple.drawSegments(m_glWaterfallBoxMatrix, lineColor, h, 2);
 | |
|             GLfloat v[] {
 | |
|                 0, (float) m_waterfallMarkers.at(i).m_point.y(),
 | |
|                 1, (float) m_waterfallMarkers.at(i).m_point.y()
 | |
|             };
 | |
|             m_glShaderSimple.drawSegments(m_glWaterfallBoxMatrix, lineColor, v, 2);
 | |
|         // }
 | |
|         // text
 | |
|         // for (int i = 0; i < m_waterfallMarkers.size(); i++)
 | |
|         // {
 | |
|             QColor textColor = m_waterfallMarkers.at(i).m_markerColor;
 | |
|             textColor.setAlpha(192);
 | |
| 
 | |
|             if (i == 0)
 | |
|             {
 | |
|                 drawTextOverlay(
 | |
|                     m_waterfallMarkers.at(i).m_frequencyStr,
 | |
|                     textColor,
 | |
|                     m_textOverlayFont,
 | |
|                     m_waterfallMarkers.at(i).m_point.x() * m_waterfallRect.width(),
 | |
|                     (!m_invertedWaterfall || (m_histogramHeight == 0)) ? m_waterfallRect.height() : 0,
 | |
|                     m_waterfallMarkers.at(i).m_point.x() < 0.5f,
 | |
|                     m_invertedWaterfall && (m_histogramHeight != 0),
 | |
|                     m_waterfallRect);
 | |
|                 drawTextOverlay(
 | |
|                     m_waterfallMarkers.at(i).m_timeStr,
 | |
|                     textColor,
 | |
|                     m_textOverlayFont,
 | |
|                     0,
 | |
|                     m_waterfallMarkers.at(i).m_point.y() * m_waterfallRect.height(),
 | |
|                     true,
 | |
|                     m_waterfallMarkers.at(i).m_point.y() < 0.5f,
 | |
|                     m_waterfallRect);
 | |
|             }
 | |
|             else
 | |
|             {
 | |
|                 drawTextOverlay(
 | |
|                     m_waterfallMarkers.at(i).m_deltaFrequencyStr,
 | |
|                     textColor,
 | |
|                     m_textOverlayFont,
 | |
|                     m_waterfallMarkers.at(i).m_point.x() * m_waterfallRect.width(),
 | |
|                     (!m_invertedWaterfall || (m_histogramHeight == 0)) ? 0 : m_waterfallRect.height(),
 | |
|                     m_waterfallMarkers.at(i).m_point.x() < 0.5f,
 | |
|                     !m_invertedWaterfall || (m_histogramHeight == 0),
 | |
|                     m_waterfallRect);
 | |
|                 drawTextOverlay(
 | |
|                     m_waterfallMarkers.at(i).m_deltaTimeStr,
 | |
|                     textColor,
 | |
|                     m_textOverlayFont,
 | |
|                     m_waterfallRect.width(),
 | |
|                     m_waterfallMarkers.at(i).m_point.y() * m_waterfallRect.height(),
 | |
|                     false,
 | |
|                     m_waterfallMarkers.at(i).m_point.y() < 0.5f,
 | |
|                     m_waterfallRect);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| void GLSpectrumView::drawAnnotationMarkers()
 | |
| {
 | |
|     if ((!m_currentSpectrum) || (m_visibleAnnotationMarkers.size() == 0)) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     float h = m_annotationMarkerHeight / (float) m_histogramHeight;
 | |
| 	float htop = 1.0f / (float) m_histogramHeight;
 | |
| 
 | |
|     for (const auto &marker : m_visibleAnnotationMarkers)
 | |
|     {
 | |
| 		if (marker->m_show == SpectrumAnnotationMarker::Hidden) {
 | |
| 			continue;
 | |
| 		}
 | |
| 
 | |
|         QVector4D color(marker->m_markerColor.redF(), marker->m_markerColor.greenF(), marker->m_markerColor.blueF(), 0.5f);
 | |
| 
 | |
|         if (marker->m_bandwidth == 0)
 | |
|         {
 | |
|             GLfloat d[] {
 | |
|                 marker->m_startPos, htop,
 | |
|                 marker->m_startPos, h
 | |
|             };
 | |
|             m_glShaderSimple.drawSegments(m_glHistogramBoxMatrix, color, d, 2);
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|             GLfloat q3[] {
 | |
|                 marker->m_stopPos, h,
 | |
|                 marker->m_startPos, h,
 | |
|                 marker->m_startPos, htop,
 | |
|                 marker->m_stopPos, htop
 | |
|             };
 | |
|             m_glShaderSimple.drawSurface(m_glHistogramBoxMatrix, color, q3, 4);
 | |
|         }
 | |
| 
 | |
|         // Always draw a line in the top area, so we can see where bands start/stop when contiguous
 | |
|         // When show is ShowFull, we draw at full height of spectrum
 | |
|         bool full = marker->m_show == SpectrumAnnotationMarker::ShowFull;
 | |
| 
 | |
|         GLfloat d1[] {
 | |
|             marker->m_startPos, full ? 0 : htop,
 | |
|             marker->m_startPos, full ? 1 : h,
 | |
|         };
 | |
|         m_glShaderSimple.drawSegments(m_glHistogramBoxMatrix, color, d1, 2);
 | |
| 
 | |
|         if (marker->m_bandwidth != 0)
 | |
|         {
 | |
|             GLfloat d2[] {
 | |
|                 marker->m_stopPos, full ? 0 : htop,
 | |
|                 marker->m_stopPos, full ? 1 : h,
 | |
|             };
 | |
|             m_glShaderSimple.drawSegments(m_glHistogramBoxMatrix, color, d2, 2);
 | |
|         }
 | |
| 
 | |
|         if ((marker->m_show == SpectrumAnnotationMarker::ShowFull) || (marker->m_show == SpectrumAnnotationMarker::ShowText))
 | |
|         {
 | |
|             float txtpos = marker->m_startPos < 0.5f ?
 | |
|                 marker->m_startPos :
 | |
|                 marker->m_stopPos;
 | |
| 
 | |
|             drawTextOverlay(
 | |
|                 marker->m_text,
 | |
|                 QColor(255, 255, 255, 192),
 | |
|                 m_textOverlayFont,
 | |
|                 txtpos * m_histogramRect.width(),
 | |
|                 0,
 | |
|                 marker->m_startPos < 0.5f,
 | |
|                 true,
 | |
|                 m_histogramRect);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| // Find and display peak in info line
 | |
| void GLSpectrumView::measurePeak()
 | |
| {
 | |
|     float power, frequency;
 | |
| 
 | |
|     findPeak(power, frequency);
 | |
| 
 | |
|     drawTextsRight(
 | |
|         {"Peak: ", ""},
 | |
|         {
 | |
|          displayPower(power, m_linear ? 'e' : 'f', m_linear ? 3 : 1),
 | |
|          displayFull(frequency)
 | |
|         },
 | |
|         {m_peakPowerMaxStr, m_peakFrequencyMaxStr},
 | |
|         {m_peakPowerUnits, "Hz"}
 | |
|     );
 | |
|     if (m_measurements) {
 | |
|         m_measurements->setPeak(0, frequency, power);
 | |
|     }
 | |
| }
 | |
| 
 | |
| // Find and display peaks
 | |
| void GLSpectrumView::measurePeaks()
 | |
| {
 | |
|     // Copy current spectrum so we can modify it
 | |
|     Real *spectrum = new Real[m_nbBins];
 | |
|     std::copy(m_currentSpectrum, m_currentSpectrum + m_nbBins, spectrum);
 | |
| 
 | |
|     for (int i = 0; i < m_measurementPeaks; i++)
 | |
|     {
 | |
|         // Find peak
 | |
|         int peakBin = findPeakBin(spectrum);
 | |
|         int left, right;
 | |
|         peakWidth(spectrum, peakBin, left, right, 0, m_nbBins);
 | |
|         left++;
 | |
|         right--;
 | |
| 
 | |
|         float power = m_linear ?
 | |
|                         spectrum[peakBin] * (m_useCalibration ? m_calibrationGain : 1.0f) :
 | |
|                         spectrum[peakBin] + (m_useCalibration ? m_calibrationShiftdB : 0.0f);
 | |
|         int64_t frequency = binToFrequency(peakBin);
 | |
| 
 | |
|         // Add to table
 | |
|         if (m_measurements) {
 | |
|             m_measurements->setPeak(i, frequency, power);
 | |
|         }
 | |
| 
 | |
|         if (m_measurementHighlight)
 | |
|         {
 | |
|             float x = peakBin / (float)m_nbBins;
 | |
|             float y = (m_powerScale.getRangeMax() - power) / m_powerScale.getRange();
 | |
| 
 | |
|             QString text = QString::number(i + 1);
 | |
| 
 | |
|             drawTextOverlayCentered(
 | |
|                 text,
 | |
|                 QColor(255, 255, 255),
 | |
|                 m_textOverlayFont,
 | |
|                 x * m_histogramRect.width(),
 | |
|                 y * m_histogramRect.height(),
 | |
|                 m_histogramRect);
 | |
|         }
 | |
| 
 | |
|         // Remove peak from spectrum so not found on next pass
 | |
|         for (int j = left; j <= right; j++) {
 | |
|             spectrum[j] = -std::numeric_limits<float>::max();
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     delete[] spectrum;
 | |
| }
 | |
| 
 | |
| // Calculate and display channel power
 | |
| void GLSpectrumView::measureChannelPower()
 | |
| {
 | |
|     float power;
 | |
| 
 | |
|     power = calcChannelPower(m_centerFrequency + m_measurementCenterFrequencyOffset, m_measurementBandwidth);
 | |
|     if (m_measurements) {
 | |
|         m_measurements->setChannelPower(power);
 | |
|     }
 | |
|     if (m_measurementHighlight) {
 | |
|         drawBandwidthMarkers(m_centerFrequency + m_measurementCenterFrequencyOffset, m_measurementBandwidth, m_measurementLightMarkerColor);
 | |
|     }
 | |
| }
 | |
| 
 | |
| // Calculate and display channel power and adjacent channel power
 | |
| void GLSpectrumView::measureAdjacentChannelPower()
 | |
| {
 | |
|     float power, powerLeft, powerRight;
 | |
| 
 | |
|     power = calcChannelPower(m_centerFrequency + m_measurementCenterFrequencyOffset, m_measurementBandwidth);
 | |
|     powerLeft = calcChannelPower(m_centerFrequency + m_measurementCenterFrequencyOffset - m_measurementChSpacing, m_measurementAdjChBandwidth);
 | |
|     powerRight = calcChannelPower(m_centerFrequency + m_measurementCenterFrequencyOffset + m_measurementChSpacing, m_measurementAdjChBandwidth);
 | |
| 
 | |
|     float leftDiff = powerLeft - power;
 | |
|     float rightDiff = powerRight - power;
 | |
| 
 | |
|     if (m_measurements) {
 | |
|         m_measurements->setAdjacentChannelPower(powerLeft, leftDiff, power, powerRight, rightDiff);
 | |
|     }
 | |
| 
 | |
|     if (m_measurementHighlight)
 | |
|     {
 | |
|         drawBandwidthMarkers(m_centerFrequency + m_measurementCenterFrequencyOffset, m_measurementBandwidth, m_measurementLightMarkerColor);
 | |
|         drawBandwidthMarkers(m_centerFrequency + m_measurementCenterFrequencyOffset - m_measurementChSpacing, m_measurementAdjChBandwidth, m_measurementDarkMarkerColor);
 | |
|         drawBandwidthMarkers(m_centerFrequency + m_measurementCenterFrequencyOffset + m_measurementChSpacing, m_measurementAdjChBandwidth, m_measurementDarkMarkerColor);
 | |
|     }
 | |
| }
 | |
| 
 | |
| // Measure bandwidth that has 99% of power
 | |
| void GLSpectrumView::measureOccupiedBandwidth()
 | |
| {
 | |
|     float hzPerBin = m_sampleRate / (float) m_fftSize;
 | |
|     int start = frequencyToBin(m_centerFrequency + m_measurementCenterFrequencyOffset);
 | |
|     float totalPower, power = 0.0f;
 | |
|     int step = 0;
 | |
|     int width = 0;
 | |
|     int idx = start;
 | |
|     float gain = m_useCalibration ? m_calibrationGain : 1.0f;
 | |
|     float shift = m_useCalibration ? m_calibrationShiftdB : 0.0f;
 | |
| 
 | |
|     totalPower = CalcDb::powerFromdB(calcChannelPower(m_centerFrequency + m_measurementCenterFrequencyOffset, m_measurementBandwidth));
 | |
|     do
 | |
|     {
 | |
|         if ((idx >= 0) && (idx < m_nbBins))
 | |
|         {
 | |
|             if (m_linear) {
 | |
|                 power += m_currentSpectrum[idx] * gain;
 | |
|             } else {
 | |
|                 power += CalcDb::powerFromdB(m_currentSpectrum[idx]) + shift;
 | |
|             }
 | |
|             width++;
 | |
|         }
 | |
| 
 | |
|         step++;
 | |
|         if ((step & 1) == 1) {
 | |
|             idx -= step;
 | |
|         } else {
 | |
|             idx += step;
 | |
|         }
 | |
|     }
 | |
|     while (((power / totalPower) < 0.99f) && (step < m_nbBins));
 | |
| 
 | |
|     float occupiedBandwidth = width * hzPerBin;
 | |
|     if (m_measurements) {
 | |
|         m_measurements->setOccupiedBandwidth(occupiedBandwidth);
 | |
|     }
 | |
|     if (m_measurementHighlight)
 | |
|     {
 | |
|         drawBandwidthMarkers(m_centerFrequency + m_measurementCenterFrequencyOffset, m_measurementBandwidth, m_measurementDarkMarkerColor);
 | |
|         drawBandwidthMarkers(m_centerFrequency + m_measurementCenterFrequencyOffset, occupiedBandwidth, m_measurementLightMarkerColor);
 | |
|     }
 | |
| }
 | |
| 
 | |
| // Measure bandwidth -3dB from peak
 | |
| void GLSpectrumView::measure3dBBandwidth()
 | |
| {
 | |
|     // Find max peak and it's power in dB
 | |
|     int peakBin = findPeakBin(m_currentSpectrum);
 | |
|     float peakPower = m_linear ? CalcDb::dbPower(m_currentSpectrum[peakBin]) : m_currentSpectrum[peakBin];
 | |
| 
 | |
|     // Search right until 3dB from peak
 | |
|     int rightBin = peakBin;
 | |
|     for (int i = peakBin + 1; i < m_nbBins; i++)
 | |
|     {
 | |
|         float power = m_linear ? CalcDb::dbPower(m_currentSpectrum[i]) : m_currentSpectrum[i];
 | |
|         if (peakPower - power > 3.0f)
 | |
|         {
 | |
|             rightBin = i - 1;
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // Search left until 3dB from peak
 | |
|     int leftBin = peakBin;
 | |
|     for (int i = peakBin - 1; i >= 0; i--)
 | |
|     {
 | |
|         float power = m_linear ? CalcDb::dbPower(m_currentSpectrum[i]) : m_currentSpectrum[i];
 | |
|         if (peakPower - power > 3.0f)
 | |
|         {
 | |
|             leftBin = i + 1;
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // Calcualte bandwidth
 | |
|     int bins = rightBin - leftBin - 1;
 | |
|     bins = std::max(1, bins);
 | |
|     float hzPerBin = m_sampleRate / (float) m_fftSize;
 | |
|     float bandwidth = bins * hzPerBin;
 | |
|     int centerBin = leftBin + (rightBin - leftBin) / 2;
 | |
|     float centerFrequency = binToFrequency(centerBin);
 | |
| 
 | |
|     if (m_measurements) {
 | |
|         m_measurements->set3dBBandwidth(bandwidth);
 | |
|     }
 | |
|     if (m_measurementHighlight) {
 | |
|         drawBandwidthMarkers(centerFrequency, bandwidth, m_measurementLightMarkerColor);
 | |
|     }
 | |
| }
 | |
| 
 | |
| const QVector4D GLSpectrumView::m_measurementLightMarkerColor = QVector4D(0.6f, 0.6f, 0.6f, 0.2f);
 | |
| const QVector4D GLSpectrumView::m_measurementDarkMarkerColor = QVector4D(0.6f, 0.6f, 0.6f, 0.15f);
 | |
| 
 | |
| // Find the width of a peak, by seaching in either direction until
 | |
| // power is no longer falling
 | |
| void GLSpectrumView::peakWidth(const Real *spectrum, int center, int &left, int &right, int maxLeft, int maxRight) const
 | |
| {
 | |
|     float prevLeft = spectrum[center];
 | |
|     float prevRight = spectrum[center];
 | |
|     left = center - 1;
 | |
|     right = center + 1;
 | |
|     while ((left > maxLeft) && (spectrum[left] < prevLeft) && (right < maxRight) && (spectrum[right] < prevRight))
 | |
|     {
 | |
|         prevLeft = spectrum[left];
 | |
|         left--;
 | |
|         prevRight = spectrum[right];
 | |
|         right++;
 | |
|     }
 | |
| }
 | |
| 
 | |
| int GLSpectrumView::findPeakBin(const Real *spectrum) const
 | |
| {
 | |
|     int bin;
 | |
|     float power;
 | |
| 
 | |
|     bin = 0;
 | |
|     power = spectrum[0];
 | |
|     for (int i = 1; i < m_nbBins; i++)
 | |
|     {
 | |
|         if (spectrum[i] > power)
 | |
|         {
 | |
|             power = spectrum[i];
 | |
|             bin = i;
 | |
|         }
 | |
|     }
 | |
|     return bin;
 | |
| }
 | |
| 
 | |
| float GLSpectrumView::calPower(float power) const
 | |
| {
 | |
|     if (m_linear) {
 | |
|         return power * (m_useCalibration ? m_calibrationGain : 1.0f);
 | |
|     } else {
 | |
|         return CalcDb::powerFromdB(power) + (m_useCalibration ? m_calibrationShiftdB : 0.0f);
 | |
|     }
 | |
| }
 | |
| 
 | |
| int GLSpectrumView::frequencyToBin(int64_t frequency) const
 | |
| {
 | |
|     float rbw = (m_ssbSpectrum ? (m_sampleRate/2) : m_sampleRate) / (float)m_fftSize;
 | |
|     return (frequency - m_frequencyScale.getRangeMin()) / rbw;
 | |
| }
 | |
| 
 | |
| int64_t GLSpectrumView::binToFrequency(int bin) const
 | |
| {
 | |
|     float rbw = (m_ssbSpectrum ? (m_sampleRate/2) : m_sampleRate) / (float)m_fftSize;
 | |
|     return m_frequencyScale.getRangeMin() + bin * rbw;
 | |
| }
 | |
| 
 | |
| // Find a peak and measure SNR / THD / SINAD
 | |
| void GLSpectrumView::measureSNR()
 | |
| {
 | |
|     // Find bin with max peak - that will be our signal
 | |
|     int sig = findPeakBin(m_currentSpectrum);
 | |
|     int sigLeft, sigRight;
 | |
|     peakWidth(m_currentSpectrum, sig, sigLeft, sigRight, 0, m_nbBins);
 | |
|     int sigBins = sigRight - sigLeft - 1;
 | |
|     int binsLeft = sig - sigLeft;
 | |
|     int binsRight = sigRight - sig;
 | |
| 
 | |
|     // Highlight the signal
 | |
|     float sigFreq = binToFrequency(sig);
 | |
|     if (m_measurementHighlight) {
 | |
|         drawPeakMarkers(binToFrequency(sigLeft+1), binToFrequency(sigRight-1), m_measurementLightMarkerColor);
 | |
|     }
 | |
| 
 | |
|     // Find the harmonics and highlight them
 | |
|     QList<int> hBinsLeft;
 | |
|     QList<int> hBinsRight;
 | |
|     QList<int> hBinsBins;
 | |
|     for (int h = 2; h < m_measurementHarmonics + 2; h++)
 | |
|     {
 | |
|         float hFreq = sigFreq * h;
 | |
|         if (hFreq < m_frequencyScale.getRangeMax())
 | |
|         {
 | |
|             int hBin = frequencyToBin(hFreq);
 | |
|             // Check if peak is an adjacent bin
 | |
|             if (m_currentSpectrum[hBin-1] > m_currentSpectrum[hBin]) {
 | |
|                 hBin--;
 | |
|             } else if (m_currentSpectrum[hBin+1] > m_currentSpectrum[hBin]) {
 | |
|                 hBin++;
 | |
|             }
 | |
|             hFreq = binToFrequency(hBin);
 | |
|             int hLeft, hRight;
 | |
|             peakWidth(m_currentSpectrum, hBin, hLeft, hRight, hBin - binsLeft, hBin + binsRight);
 | |
|             int hBins = hRight - hLeft - 1;
 | |
|             if (m_measurementHighlight) {
 | |
|                 drawPeakMarkers(binToFrequency(hLeft+1), binToFrequency(hRight-1), m_measurementDarkMarkerColor);
 | |
|             }
 | |
|             hBinsLeft.append(hLeft);
 | |
|             hBinsRight.append(hRight);
 | |
|             hBinsBins.append(hBins);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // Integrate signal, harmonic and noise power
 | |
|     float sigPower = 0.0f;
 | |
|     float noisePower = 0.0f;
 | |
|     float harmonicPower = 0.0f;
 | |
|     QList<float> noise;
 | |
|     float gain = m_useCalibration ? m_calibrationGain : 1.0f;
 | |
|     float shift = m_useCalibration ? m_calibrationShiftdB : 0.0f;
 | |
| 
 | |
|     for (int i = 0; i < m_nbBins; i++)
 | |
|     {
 | |
|         float power;
 | |
|         if (m_linear) {
 | |
|             power = m_currentSpectrum[i] * gain;
 | |
|         } else {
 | |
|             power = CalcDb::powerFromdB(m_currentSpectrum[i]) + shift;
 | |
|         }
 | |
| 
 | |
|         // Signal power
 | |
|         if ((i > sigLeft) && (i < sigRight))
 | |
|         {
 | |
|             sigPower += power;
 | |
|             continue;
 | |
|         }
 | |
| 
 | |
|         // Harmonics
 | |
|         for (int h = 0; h < hBinsLeft.size(); h++)
 | |
|         {
 | |
|             if ((i > hBinsLeft[h]) && (i < hBinsRight[h]))
 | |
|             {
 | |
|                 harmonicPower += power;
 | |
|                 continue;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // Noise
 | |
|         noisePower += power;
 | |
|         noise.append(power);
 | |
|     }
 | |
| 
 | |
|     // Calculate median of noise
 | |
|     float noiseMedian = 0.0;
 | |
|     if (noise.size() > 0)
 | |
|     {
 | |
|         auto m = noise.begin() + noise.size()/2;
 | |
|         std::nth_element(noise.begin(), m, noise.end());
 | |
|         noiseMedian = noise[noise.size()/2];
 | |
|     }
 | |
| 
 | |
|     // Assume we have similar noise where the signal and harmonics are
 | |
|     float inBandNoise = noiseMedian * sigBins;
 | |
|     noisePower += inBandNoise;
 | |
|     sigPower -= inBandNoise;
 | |
|     for (auto hBins : hBinsBins)
 | |
|     {
 | |
|         float hNoise = noiseMedian * hBins;
 | |
|         noisePower += hNoise;
 | |
|         harmonicPower -= hNoise;
 | |
|     }
 | |
| 
 | |
|     if (m_measurements)
 | |
|     {
 | |
|         // Calculate SNR in dB over full bandwidth
 | |
|         float snr = CalcDb::dbPower(sigPower / noisePower);
 | |
| 
 | |
|         // Calculate SNR, where noise is median of noise summed over signal b/w
 | |
|         float snfr = CalcDb::dbPower(sigPower / inBandNoise);
 | |
| 
 | |
|         // Calculate THD - Total harmonic distortion
 | |
|         float thd = harmonicPower / sigPower;
 | |
|         float thdDB = CalcDb::dbPower(thd);
 | |
| 
 | |
|         // Calculate THD+N - Total harmonic distortion plus noise
 | |
|         float thdpn = CalcDb::dbPower((harmonicPower + noisePower) / sigPower);
 | |
| 
 | |
|         // Calculate SINAD - Signal to noise and distotion ratio (Should be -THD+N)
 | |
|         float sinad = CalcDb::dbPower((sigPower + harmonicPower + noisePower) / (harmonicPower + noisePower));
 | |
| 
 | |
|         m_measurements->setSNR(snr, snfr, thdDB, thdpn, sinad);
 | |
|     }
 | |
| }
 | |
| 
 | |
| void GLSpectrumView::measureSFDR()
 | |
| {
 | |
|     // Find first peak which is our signal
 | |
|     int peakBin = findPeakBin(m_currentSpectrum);
 | |
|     int peakLeft, peakRight;
 | |
|     peakWidth(m_currentSpectrum, peakBin, peakLeft, peakRight, 0, m_nbBins);
 | |
| 
 | |
|     // Find next largest peak, which is the spur
 | |
|     int nextPeakBin = -1;
 | |
|     float nextPeakPower = -std::numeric_limits<float>::max();
 | |
|     for (int i = 0; i < m_nbBins; i++)
 | |
|     {
 | |
|         if ((i < peakLeft) || (i > peakRight))
 | |
|         {
 | |
|             if (m_currentSpectrum[i] > nextPeakPower)
 | |
|             {
 | |
|                 nextPeakBin = i;
 | |
|                 nextPeakPower = m_currentSpectrum[i];
 | |
|             }
 | |
|         }
 | |
|     }
 | |
|     if (nextPeakBin != -1)
 | |
|     {
 | |
|         // Calculate SFDR in dB from difference between two peaks
 | |
|         float peakPower = calPower(m_currentSpectrum[peakBin]);
 | |
|         float nextPeakPower = calPower(m_currentSpectrum[nextPeakBin]);
 | |
|         float peakPowerDB = CalcDb::dbPower(peakPower);
 | |
|         float nextPeakPowerDB = CalcDb::dbPower(nextPeakPower);
 | |
|         float sfdr = peakPowerDB - nextPeakPowerDB;
 | |
| 
 | |
|         // Display
 | |
|         if (m_measurements) {
 | |
|             m_measurements->setSFDR(sfdr);
 | |
|         }
 | |
|         if (m_measurementHighlight)
 | |
|         {
 | |
|             if (m_linear) {
 | |
|                 drawPowerBandMarkers(peakPower, nextPeakPower, m_measurementDarkMarkerColor);
 | |
|             } else {
 | |
|                 drawPowerBandMarkers(peakPowerDB, nextPeakPowerDB, m_measurementDarkMarkerColor);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| // Find power and frequency of max peak in current spectrum
 | |
| void GLSpectrumView::findPeak(float &power, float &frequency) const
 | |
| {
 | |
|     int bin;
 | |
| 
 | |
|     bin = 0;
 | |
|     power = m_currentSpectrum[0];
 | |
|     for (int i = 1; i < m_nbBins; i++)
 | |
|     {
 | |
|         if (m_currentSpectrum[i] > power)
 | |
|         {
 | |
|             power = m_currentSpectrum[i];
 | |
|             bin = i;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     power = m_linear ?
 | |
|                 power * (m_useCalibration ? m_calibrationGain : 1.0f) :
 | |
|                 power + (m_useCalibration ? m_calibrationShiftdB : 0.0f);
 | |
|     frequency = binToFrequency(bin);
 | |
| }
 | |
| 
 | |
| // Calculate channel power in dB
 | |
| float GLSpectrumView::calcChannelPower(int64_t centerFrequency, int channelBandwidth) const
 | |
| {
 | |
|     float hzPerBin = m_sampleRate / (float) m_fftSize;
 | |
|     int bins = channelBandwidth / hzPerBin;
 | |
|     int start = frequencyToBin(centerFrequency) - (bins / 2);
 | |
|     int end = start + bins;
 | |
|     float power = 0.0;
 | |
| 
 | |
|     start = std::max(start, 0);
 | |
|     end = std::min(end, m_nbBins);
 | |
| 
 | |
|     if (m_linear)
 | |
|     {
 | |
|         float gain = m_useCalibration ? m_calibrationGain : 1.0f;
 | |
|         for (int i = start; i < end; i++) {
 | |
|             power += m_currentSpectrum[i] * gain;
 | |
|         }
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         float shift = m_useCalibration ? m_calibrationShiftdB : 0.0f;
 | |
|         for (int i = start; i < end; i++) {
 | |
|             power += CalcDb::powerFromdB(m_currentSpectrum[i]) + shift;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return CalcDb::dbPower(power);
 | |
| }
 | |
| 
 | |
| void GLSpectrumView::stopDrag()
 | |
| {
 | |
|     if (m_cursorState != CSNormal)
 | |
|     {
 | |
|         if ((m_cursorState == CSSplitterMoving) || (m_cursorState == CSChannelMoving)) {
 | |
|             releaseMouse();
 | |
|         }
 | |
| 
 | |
|         setCursor(Qt::ArrowCursor);
 | |
|         m_cursorState = CSNormal;
 | |
|     }
 | |
| }
 | |
| 
 | |
| void GLSpectrumView::applyChanges()
 | |
| {
 | |
|     if (m_nbBins <= 0) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     QFontMetrics fm(font());
 | |
|     int M = fm.horizontalAdvance("-");
 | |
| 
 | |
|     m_topMargin = fm.ascent() * 2.0;
 | |
|     m_bottomMargin = fm.ascent() * 1.0;
 | |
|     m_infoHeight = fm.height() * 3;
 | |
| 
 | |
|     int waterfallTop = 0;
 | |
|     m_frequencyScaleHeight = fm.height() * 3; // +1 line for marker frequency scale
 | |
|     int frequencyScaleTop = 0;
 | |
|     int histogramTop = 0;
 | |
|     //int m_leftMargin;
 | |
|     m_rightMargin = fm.horizontalAdvance("000");
 | |
| 
 | |
|     // displays both histogram and waterfall
 | |
|     if ((m_displayWaterfall || m_display3DSpectrogram) && (m_displayHistogram | m_displayMaxHold | m_displayCurrent))
 | |
|     {
 | |
|         m_waterfallHeight = height() * m_waterfallShare - 1;
 | |
| 
 | |
|         if (m_waterfallHeight < 0) {
 | |
|             m_waterfallHeight = 0;
 | |
|         }
 | |
| 
 | |
|         if (m_invertedWaterfall)
 | |
|         {
 | |
|             histogramTop = m_topMargin;
 | |
|             m_histogramHeight = height() - m_topMargin - m_waterfallHeight - m_frequencyScaleHeight - m_bottomMargin;
 | |
|             waterfallTop = histogramTop + m_histogramHeight + m_frequencyScaleHeight + 1;
 | |
|             frequencyScaleTop = histogramTop + m_histogramHeight + 1;
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|             waterfallTop = m_topMargin;
 | |
|             frequencyScaleTop = waterfallTop + m_waterfallHeight + 1;
 | |
|             histogramTop = waterfallTop + m_waterfallHeight + m_frequencyScaleHeight + 1;
 | |
|             m_histogramHeight = height() - m_topMargin - m_waterfallHeight - m_frequencyScaleHeight - m_bottomMargin;
 | |
|         }
 | |
| 
 | |
|         m_timeScale.setSize(m_waterfallHeight);
 | |
| 
 | |
|         if (m_sampleRate > 0)
 | |
|         {
 | |
|             float timeScaleDiv = ((float)m_sampleRate / (float)m_timingRate);
 | |
| 
 | |
|             if (m_fftSize > m_fftOverlap) {
 | |
|                 timeScaleDiv *= m_fftSize / (float)(m_fftSize - m_fftOverlap);
 | |
|             }
 | |
| 
 | |
|             if (!m_invertedWaterfall) {
 | |
|                 m_timeScale.setRange(m_timingRate > 1 ? Unit::TimeHMS : Unit::Time, (m_waterfallHeight * m_fftSize) / timeScaleDiv, 0);
 | |
|             } else {
 | |
|                 m_timeScale.setRange(m_timingRate > 1 ? Unit::TimeHMS : Unit::Time, 0, (m_waterfallHeight * m_fftSize) / timeScaleDiv);
 | |
|             }
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|             m_timeScale.setRange(Unit::Time, 0, 1);
 | |
|         }
 | |
| 
 | |
|         m_leftMargin = m_timeScale.getScaleWidth();
 | |
| 
 | |
|         setPowerScale(m_histogramHeight);
 | |
| 
 | |
|         m_leftMargin += 2 * M;
 | |
| 
 | |
|         setFrequencyScale();
 | |
| 
 | |
|         m_glWaterfallBoxMatrix.setToIdentity();
 | |
|         m_glWaterfallBoxMatrix.translate(
 | |
|             -1.0f + ((float)(2*m_leftMargin)   / (float) width()),
 | |
|              1.0f - ((float)(2*waterfallTop) / (float) height())
 | |
|         );
 | |
|         m_glWaterfallBoxMatrix.scale(
 | |
|             ((float) 2 * (width() - m_leftMargin - m_rightMargin)) / (float) width(),
 | |
|             (float) (-2*m_waterfallHeight) / (float) height()
 | |
|         );
 | |
| 
 | |
|         m_glHistogramBoxMatrix.setToIdentity();
 | |
|         m_glHistogramBoxMatrix.translate(
 | |
|             -1.0f + ((float)(2*m_leftMargin)   / (float) width()),
 | |
|              1.0f - ((float)(2*histogramTop) / (float) height())
 | |
|         );
 | |
|         m_glHistogramBoxMatrix.scale(
 | |
|             ((float) 2 * (width() - m_leftMargin - m_rightMargin)) / (float) width(),
 | |
|             (float) (-2*m_histogramHeight) / (float) height()
 | |
|         );
 | |
| 
 | |
|         m_glHistogramSpectrumMatrix.setToIdentity();
 | |
|         m_glHistogramSpectrumMatrix.translate(
 | |
|             -1.0f + ((float)(2*m_leftMargin)   / (float) width()),
 | |
|              1.0f - ((float)(2*histogramTop) / (float) height())
 | |
|         );
 | |
|         m_glHistogramSpectrumMatrix.scale(
 | |
|             ((float) 2 * (width() - m_leftMargin - m_rightMargin)) / ((float) width() * (float)(m_nbBins)),
 | |
|             ((float) 2*m_histogramHeight / height()) / m_powerRange
 | |
|         );
 | |
| 
 | |
|         // m_frequencyScaleRect = QRect(
 | |
|         // 	0,
 | |
|         // 	frequencyScaleTop,
 | |
|         // 	width(),
 | |
|         // 	m_frequencyScaleHeight
 | |
|         // );
 | |
| 
 | |
|         m_glFrequencyScaleBoxMatrix.setToIdentity();
 | |
|         m_glFrequencyScaleBoxMatrix.translate (
 | |
|             -1.0f,
 | |
|              1.0f - ((float) 2*frequencyScaleTop / (float) height())
 | |
|         );
 | |
|         m_glFrequencyScaleBoxMatrix.scale (
 | |
|             2.0f,
 | |
|             (float) -2*m_frequencyScaleHeight / (float) height()
 | |
|         );
 | |
| 
 | |
|         m_glLeftScaleBoxMatrix.setToIdentity();
 | |
|         m_glLeftScaleBoxMatrix.translate(-1.0f, 1.0f);
 | |
|         m_glLeftScaleBoxMatrix.scale(
 | |
|             (float)(2*(m_leftMargin - 1)) / (float) width(),
 | |
|             -2.0f
 | |
|         );
 | |
|     }
 | |
|     // displays waterfall/3D spectrogram only
 | |
|     else if (m_displayWaterfall || m_display3DSpectrogram)
 | |
|     {
 | |
|         m_histogramHeight = 0;
 | |
|         histogramTop = 0;
 | |
|         m_bottomMargin = m_frequencyScaleHeight;
 | |
|         m_waterfallHeight = height() - m_topMargin - m_frequencyScaleHeight;
 | |
|         waterfallTop = m_topMargin;
 | |
|         frequencyScaleTop = m_topMargin + m_waterfallHeight + 1;
 | |
| 
 | |
|         m_timeScale.setSize(m_waterfallHeight);
 | |
| 
 | |
|         if (m_sampleRate > 0)
 | |
|         {
 | |
|             float timeScaleDiv = ((float)m_sampleRate / (float)m_timingRate);
 | |
| 
 | |
|             if (m_fftSize > m_fftOverlap) {
 | |
|                 timeScaleDiv *= m_fftSize / (float)(m_fftSize - m_fftOverlap);
 | |
|             }
 | |
| 
 | |
|             if (!m_invertedWaterfall) {
 | |
|                 m_timeScale.setRange(m_timingRate > 1 ? Unit::TimeHMS : Unit::Time, (m_waterfallHeight * m_fftSize) / timeScaleDiv, 0);
 | |
|             } else {
 | |
|                 m_timeScale.setRange(m_timingRate > 1 ? Unit::TimeHMS : Unit::Time, 0, (m_waterfallHeight * m_fftSize) / timeScaleDiv);
 | |
|             }
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|             if (!m_invertedWaterfall) {
 | |
|                 m_timeScale.setRange(m_timingRate > 1 ? Unit::TimeHMS : Unit::Time, 10, 0);
 | |
|             } else {
 | |
|                 m_timeScale.setRange(m_timingRate > 1 ? Unit::TimeHMS : Unit::Time, 0, 10);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         m_leftMargin = m_timeScale.getScaleWidth();
 | |
| 
 | |
|         setPowerScale((height() - m_topMargin - m_bottomMargin) / 2.0);
 | |
| 
 | |
|         m_leftMargin += 2 * M;
 | |
| 
 | |
|         setFrequencyScale();
 | |
| 
 | |
|         m_glWaterfallBoxMatrix.setToIdentity();
 | |
|         m_glWaterfallBoxMatrix.translate(
 | |
|             -1.0f + ((float)(2*m_leftMargin)   / (float) width()),
 | |
|              1.0f - ((float)(2*m_topMargin) / (float) height())
 | |
|         );
 | |
|         m_glWaterfallBoxMatrix.scale(
 | |
|             ((float) 2 * (width() - m_leftMargin - m_rightMargin)) / (float) width(),
 | |
|             (float) (-2*m_waterfallHeight) / (float) height()
 | |
|         );
 | |
| 
 | |
|         // m_frequencyScaleRect = QRect(
 | |
|         // 	0,
 | |
|         // 	frequencyScaleTop,
 | |
|         // 	width(),
 | |
|         // 	m_frequencyScaleHeight
 | |
|         // );
 | |
| 
 | |
|         m_glFrequencyScaleBoxMatrix.setToIdentity();
 | |
|         m_glFrequencyScaleBoxMatrix.translate (
 | |
|             -1.0f,
 | |
|              1.0f - ((float) 2*frequencyScaleTop / (float) height())
 | |
|         );
 | |
|         m_glFrequencyScaleBoxMatrix.scale (
 | |
|             2.0f,
 | |
|             (float) -2*m_frequencyScaleHeight / (float) height()
 | |
|         );
 | |
| 
 | |
|         m_glLeftScaleBoxMatrix.setToIdentity();
 | |
|         m_glLeftScaleBoxMatrix.translate(-1.0f, 1.0f);
 | |
|         m_glLeftScaleBoxMatrix.scale(
 | |
|             (float)(2*(m_leftMargin - 1)) / (float) width(),
 | |
|             -2.0f
 | |
|         );
 | |
|     }
 | |
|     // displays histogram only
 | |
|     else if (m_displayHistogram || m_displayMaxHold || m_displayCurrent)
 | |
|     {
 | |
|         m_bottomMargin = m_frequencyScaleHeight;
 | |
|         frequencyScaleTop = height() - m_bottomMargin;
 | |
|         histogramTop = m_topMargin - 1;
 | |
|         m_waterfallHeight = 0;
 | |
|         m_histogramHeight = height() - m_topMargin - m_frequencyScaleHeight;
 | |
| 
 | |
|         m_leftMargin = 0;
 | |
| 
 | |
|         setPowerScale(m_histogramHeight);
 | |
| 
 | |
|         m_leftMargin += 2 * M;
 | |
| 
 | |
|         setFrequencyScale();
 | |
| 
 | |
|         m_glHistogramSpectrumMatrix.setToIdentity();
 | |
|         m_glHistogramSpectrumMatrix.translate(
 | |
|             -1.0f + ((float)(2*m_leftMargin)   / (float) width()),
 | |
|              1.0f - ((float)(2*histogramTop) / (float) height())
 | |
|         );
 | |
|         m_glHistogramSpectrumMatrix.scale(
 | |
|             ((float) 2 * (width() - m_leftMargin - m_rightMargin)) / ((float) width() * (float)(m_nbBins)),
 | |
|             ((float) 2*(height() - m_topMargin - m_frequencyScaleHeight)) / (height()*m_powerRange)
 | |
|         );
 | |
| 
 | |
|         m_glHistogramBoxMatrix.setToIdentity();
 | |
|         m_glHistogramBoxMatrix.translate(
 | |
|             -1.0f + ((float)(2*m_leftMargin)   / (float) width()),
 | |
|              1.0f - ((float)(2*histogramTop) / (float) height())
 | |
|         );
 | |
|         m_glHistogramBoxMatrix.scale(
 | |
|             ((float) 2 * (width() - m_leftMargin - m_rightMargin)) / (float) width(),
 | |
|             (float) (-2*(height() - m_topMargin - m_frequencyScaleHeight)) / (float) height()
 | |
|         );
 | |
| 
 | |
|         // m_frequencyScaleRect = QRect(
 | |
|         // 	0,
 | |
|         // 	frequencyScaleTop,
 | |
|         // 	width(),
 | |
|         // 	m_frequencyScaleHeight
 | |
|         // );
 | |
| 
 | |
|         m_glFrequencyScaleBoxMatrix.setToIdentity();
 | |
|         m_glFrequencyScaleBoxMatrix.translate (
 | |
|             -1.0f,
 | |
|              1.0f - ((float) 2*frequencyScaleTop / (float) height())
 | |
|         );
 | |
|         m_glFrequencyScaleBoxMatrix.scale (
 | |
|             2.0f,
 | |
|             (float) -2*m_frequencyScaleHeight / (float) height()
 | |
|         );
 | |
| 
 | |
|         m_glLeftScaleBoxMatrix.setToIdentity();
 | |
|         m_glLeftScaleBoxMatrix.translate(-1.0f, 1.0f);
 | |
|         m_glLeftScaleBoxMatrix.scale(
 | |
|             (float)(2*(m_leftMargin - 1)) / (float) width(),
 | |
|             -2.0f
 | |
|         );
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         m_leftMargin = 2;
 | |
|         m_waterfallHeight = 0;
 | |
|     }
 | |
| 
 | |
|     m_glShaderSpectrogram.setScaleX(((width() - m_leftMargin - m_rightMargin) / (float)m_waterfallHeight));
 | |
|     m_glShaderSpectrogram.setScaleZ((m_histogramHeight != 0 ? m_histogramHeight : m_waterfallHeight / 4)  / (float)(width() - m_leftMargin - m_rightMargin));
 | |
| 
 | |
|     // bounding boxes
 | |
|     m_frequencyScaleRect = QRect(
 | |
|         0,
 | |
|         frequencyScaleTop,
 | |
|         width(),
 | |
|         m_frequencyScaleHeight
 | |
|     );
 | |
| 
 | |
|     if ((m_invertedWaterfall) || (m_waterfallHeight == 0))
 | |
|     {
 | |
|         m_histogramRect = QRectF(
 | |
|             (float) m_leftMargin / (float) width(),
 | |
|             (float) m_topMargin / (float) height(),
 | |
|             (float) (width() - m_leftMargin - m_rightMargin) / (float) width(),
 | |
|             (float) (m_histogramHeight) / (float) height()
 | |
|         );
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         m_histogramRect = QRectF(
 | |
|             (float) m_leftMargin / (float) width(),
 | |
|             (float) (waterfallTop + m_waterfallHeight + m_frequencyScaleHeight) / (float) height(),
 | |
|             (float) (width() - m_leftMargin - m_rightMargin) / (float) width(),
 | |
|             (float) m_histogramHeight / (float) height()
 | |
|         );
 | |
|     }
 | |
| 
 | |
|     if (!m_invertedWaterfall || (m_histogramHeight == 0))
 | |
|     {
 | |
|         m_waterfallRect = QRectF(
 | |
|             (float) m_leftMargin / (float) width(),
 | |
|             (float) m_topMargin / (float) height(),
 | |
|             (float) (width() - m_leftMargin - m_rightMargin) / (float) width(),
 | |
|             (float) m_waterfallHeight / (float) height()
 | |
|         );
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         m_waterfallRect = QRectF(
 | |
|             (float) m_leftMargin / (float) width(),
 | |
|             (float) (m_topMargin + m_histogramHeight + m_frequencyScaleHeight) / (float) height(),
 | |
|             (float) (width() - m_leftMargin - m_rightMargin) / (float) width(),
 | |
|             (float) (m_waterfallHeight) / (float) height()
 | |
|         );
 | |
|     }
 | |
| 
 | |
|     m_glShaderSpectrogram.setAspectRatio((width() - m_leftMargin - m_rightMargin) / (float)m_waterfallHeight);
 | |
| 
 | |
|     m_3DSpectrogramBottom = m_bottomMargin;
 | |
|     if (!m_invertedWaterfall) {
 | |
|         m_3DSpectrogramBottom += m_histogramHeight + m_frequencyScaleHeight + 1;
 | |
|     }
 | |
| 
 | |
|     // channel overlays
 | |
|     int64_t centerFrequency;
 | |
|     int frequencySpan;
 | |
|     getFrequencyZoom(centerFrequency, frequencySpan);
 | |
| 
 | |
|     for (int i = 0; i < m_channelMarkerStates.size(); ++i)
 | |
|     {
 | |
|         ChannelMarkerState* dv = m_channelMarkerStates[i];
 | |
| 
 | |
|         qreal xc, pw, nw, dsbw;
 | |
|         ChannelMarker::sidebands_t sidebands = dv->m_channelMarker->getSidebands();
 | |
|         xc = m_centerFrequency + dv->m_channelMarker->getCenterFrequency(); // marker center frequency
 | |
|         dsbw = dv->m_channelMarker->getBandwidth();
 | |
| 
 | |
|         if (sidebands == ChannelMarker::usb) {
 | |
|             nw = dv->m_channelMarker->getLowCutoff();     // negative bandwidth
 | |
|             int bw = dv->m_channelMarker->getBandwidth() / 2;
 | |
|             pw = (qreal) bw; // positive bandwidth
 | |
|         } else if (sidebands == ChannelMarker::lsb) {
 | |
|             pw = dv->m_channelMarker->getLowCutoff();
 | |
|             int bw = dv->m_channelMarker->getBandwidth() / 2;
 | |
|             nw = (qreal) bw;
 | |
|         } else if (sidebands == ChannelMarker::vusb) {
 | |
|             nw = -dv->m_channelMarker->getOppositeBandwidth(); // negative bandwidth
 | |
|             pw = dv->m_channelMarker->getBandwidth(); // positive bandwidth
 | |
|         } else if (sidebands == ChannelMarker::vlsb) {
 | |
|             pw = dv->m_channelMarker->getOppositeBandwidth(); // positive bandwidth
 | |
|             nw = -dv->m_channelMarker->getBandwidth(); // negative bandwidth
 | |
|         } else {
 | |
|             pw = dsbw / 2;
 | |
|             nw = -pw;
 | |
|         }
 | |
| 
 | |
|         // draw the DSB rectangle
 | |
| 
 | |
|         QMatrix4x4 glMatrixDsb;
 | |
|         glMatrixDsb.setToIdentity();
 | |
|         glMatrixDsb.translate(
 | |
|             -1.0f + 2.0f * ((m_leftMargin + m_frequencyScale.getPosFromValue(xc - (dsbw/2))) / (float) width()),
 | |
|              1.0f
 | |
|         );
 | |
|         glMatrixDsb.scale(
 | |
|             2.0f * (dsbw / (float) frequencySpan),
 | |
|             -2.0f
 | |
|         );
 | |
| 
 | |
|         dv->m_glMatrixDsbWaterfall = glMatrixDsb;
 | |
|         dv->m_glMatrixDsbWaterfall.translate(
 | |
|              0.0f,
 | |
|              (float) waterfallTop / (float) height()
 | |
|         );
 | |
|         dv->m_glMatrixDsbWaterfall.scale(
 | |
|             (float) (width() - m_leftMargin - m_rightMargin) / (float) width(),
 | |
|             (float) m_waterfallHeight / (float) height()
 | |
|         );
 | |
| 
 | |
|         dv->m_glMatrixDsbHistogram = glMatrixDsb;
 | |
|         dv->m_glMatrixDsbHistogram.translate(
 | |
|              0.0f,
 | |
|              (float) histogramTop / (float) height()
 | |
|         );
 | |
|         dv->m_glMatrixDsbHistogram.scale(
 | |
|             (float) (width() - m_leftMargin - m_rightMargin) / (float) width(),
 | |
|             (float) m_histogramHeight / (float) height()
 | |
|         );
 | |
| 
 | |
|         dv->m_glMatrixDsbFreqScale = glMatrixDsb;
 | |
|         dv->m_glMatrixDsbFreqScale.translate(
 | |
|              0.0f,
 | |
|              (float) frequencyScaleTop / (float) height()
 | |
|         );
 | |
|         dv->m_glMatrixDsbFreqScale.scale(
 | |
|             (float) (width() - m_leftMargin - m_rightMargin) / (float) width(),
 | |
|             (float) m_frequencyScaleHeight / (float) height()
 | |
|         );
 | |
| 
 | |
|         // draw the effective BW rectangle
 | |
| 
 | |
|         QMatrix4x4 glMatrix;
 | |
|         glMatrix.setToIdentity();
 | |
|         glMatrix.translate(
 | |
|             -1.0f + 2.0f * ((m_leftMargin + m_frequencyScale.getPosFromValue(xc + nw)) / (float) width()),
 | |
|              1.0f
 | |
|         );
 | |
|         glMatrix.scale(
 | |
|             2.0f * ((pw-nw) / (float) frequencySpan),
 | |
|             -2.0f
 | |
|         );
 | |
| 
 | |
|         dv->m_glMatrixWaterfall = glMatrix;
 | |
|         dv->m_glMatrixWaterfall.translate(
 | |
|              0.0f,
 | |
|              (float) waterfallTop / (float) height()
 | |
|         );
 | |
|         dv->m_glMatrixWaterfall.scale(
 | |
|             (float) (width() - m_leftMargin - m_rightMargin) / (float) width(),
 | |
|             (float) m_waterfallHeight / (float) height()
 | |
|         );
 | |
| 
 | |
|         dv->m_glMatrixHistogram = glMatrix;
 | |
|         dv->m_glMatrixHistogram.translate(
 | |
|              0.0f,
 | |
|              (float) histogramTop / (float) height()
 | |
|         );
 | |
|         dv->m_glMatrixHistogram.scale(
 | |
|             (float) (width() - m_leftMargin - m_rightMargin) / (float) width(),
 | |
|             (float) m_histogramHeight / (float) height()
 | |
|         );
 | |
| 
 | |
|         dv->m_glMatrixFreqScale = glMatrix;
 | |
|         dv->m_glMatrixFreqScale.translate(
 | |
|              0.0f,
 | |
|              (float) frequencyScaleTop / (float) height()
 | |
|         );
 | |
|         dv->m_glMatrixFreqScale.scale(
 | |
|             (float) (width() - m_leftMargin - m_rightMargin) / (float) width(),
 | |
|             (float) m_frequencyScaleHeight / (float) height()
 | |
|         );
 | |
| 
 | |
| 
 | |
|         /*
 | |
|         dv->m_glRect.setRect(
 | |
|             m_frequencyScale.getPosFromValue(m_centerFrequency + dv->m_channelMarker->getCenterFrequency() - dv->m_channelMarker->getBandwidth() / 2) / (float)(width() - m_leftMargin - m_rightMargin),
 | |
|             0,
 | |
|             (dv->m_channelMarker->getBandwidth() / (float)m_sampleRate),
 | |
|             1);
 | |
|         */
 | |
| 
 | |
|         if (m_displayHistogram || m_displayMaxHold || m_displayCurrent || m_displayWaterfall)
 | |
|         {
 | |
|             dv->m_rect.setRect(m_frequencyScale.getPosFromValue(xc) + m_leftMargin - 1,
 | |
|             m_topMargin,
 | |
|             5,
 | |
|             height() - m_topMargin - m_bottomMargin);
 | |
|         }
 | |
| 
 | |
|         /*
 | |
|         if(m_displayHistogram || m_displayMaxHold || m_displayWaterfall) {
 | |
|             dv->m_rect.setRect(m_frequencyScale.getPosFromValue(m_centerFrequency + dv->m_channelMarker->getCenterFrequency()) + m_leftMargin - 1,
 | |
|             m_topMargin,
 | |
|             5,
 | |
|             height() - m_topMargin - m_bottomMargin);
 | |
|         }
 | |
|         */
 | |
|     }
 | |
| 
 | |
|     // prepare left scales (time and power)
 | |
|     {
 | |
|         m_leftMarginPixmap = QPixmap(m_leftMargin - 1, height());
 | |
|         m_leftMarginPixmap.fill(Qt::transparent);
 | |
|         {
 | |
|             QPainter painter(&m_leftMarginPixmap);
 | |
|             painter.setPen(QColor(0xf0, 0xf0, 0xff));
 | |
|             painter.setFont(font());
 | |
|             const ScaleEngine::TickList* tickList;
 | |
|             const ScaleEngine::Tick* tick;
 | |
|             if (m_displayWaterfall) {
 | |
|                 tickList = &m_timeScale.getTickList();
 | |
|                 for (int i = 0; i < tickList->count(); i++) {
 | |
|                     tick = &(*tickList)[i];
 | |
|                     if (tick->major) {
 | |
|                         if (tick->textSize > 0)
 | |
|                             painter.drawText(QPointF(m_leftMargin - M - tick->textSize, waterfallTop + fm.ascent() + tick->textPos), tick->text);
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|             if (m_displayHistogram || m_displayMaxHold || m_displayCurrent) {
 | |
|                 tickList = &m_powerScale.getTickList();
 | |
|                 for (int i = 0; i < tickList->count(); i++) {
 | |
|                     tick = &(*tickList)[i];
 | |
|                     if (tick->major) {
 | |
|                         if (tick->textSize > 0)
 | |
|                             painter.drawText(QPointF(m_leftMargin - M - tick->textSize, histogramTop + m_histogramHeight - tick->textPos - 1), tick->text);
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         m_glShaderLeftScale.initTexture(m_leftMarginPixmap.toImage());
 | |
|     }
 | |
|     // prepare frequency scale
 | |
|     if (m_displayWaterfall || m_display3DSpectrogram || m_displayHistogram || m_displayMaxHold || m_displayCurrent) {
 | |
|         m_frequencyPixmap = QPixmap(width(), m_frequencyScaleHeight);
 | |
|         m_frequencyPixmap.fill(Qt::transparent);
 | |
|         {
 | |
|             QPainter painter(&m_frequencyPixmap);
 | |
|             painter.setPen(Qt::NoPen);
 | |
|             painter.setBrush(Qt::black);
 | |
|             painter.setBrush(Qt::transparent);
 | |
|             painter.drawRect(m_leftMargin, 0, width() - m_leftMargin, m_frequencyScaleHeight);
 | |
|             painter.setPen(QColor(0xf0, 0xf0, 0xff));
 | |
|             painter.setFont(font());
 | |
|             const ScaleEngine::TickList* tickList = &m_frequencyScale.getTickList();
 | |
|             const ScaleEngine::Tick* tick;
 | |
| 
 | |
|             for (int i = 0; i < tickList->count(); i++) {
 | |
|                 tick = &(*tickList)[i];
 | |
|                 if (tick->major) {
 | |
|                     if (tick->textSize > 0)
 | |
|                         painter.drawText(QPointF(m_leftMargin + tick->textPos, fm.height() + fm.ascent() / 2 - 1), tick->text);
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             // Frequency overlay on highlighted marker
 | |
|             for (int i = 0; i < m_channelMarkerStates.size(); ++i)
 | |
|             {
 | |
|                 ChannelMarkerState* dv = m_channelMarkerStates[i];
 | |
| 
 | |
|                 if (dv->m_channelMarker->getHighlighted()
 | |
|                     && (dv->m_channelMarker->getSourceOrSinkStream() == m_displaySourceOrSink)
 | |
|                     && dv->m_channelMarker->streamIndexApplies(m_displayStreamIndex))
 | |
|                 {
 | |
|                     qreal xc;
 | |
|                     int shift;
 | |
|                     //ChannelMarker::sidebands_t sidebands = dv->m_channelMarker->getSidebands();
 | |
|                     xc = m_centerFrequency + dv->m_channelMarker->getCenterFrequency(); // marker center frequency
 | |
|                     QString ftext;
 | |
|                     switch (dv->m_channelMarker->getFrequencyScaleDisplayType())
 | |
|                     {
 | |
|                     case ChannelMarker::FScaleDisplay_freq:
 | |
|                         ftext = QString::number((m_centerFrequency + dv->m_channelMarker->getCenterFrequency())/1e6, 'f', 6);
 | |
|                         break;
 | |
|                     case ChannelMarker::FScaleDisplay_title:
 | |
|                         ftext = dv->m_channelMarker->getTitle();
 | |
|                         break;
 | |
|                     case ChannelMarker::FScaleDisplay_addressSend:
 | |
|                         ftext = dv->m_channelMarker->getDisplayAddressSend();
 | |
|                         break;
 | |
|                     case ChannelMarker::FScaleDisplay_addressReceive:
 | |
|                         ftext = dv->m_channelMarker->getDisplayAddressReceive();
 | |
|                         break;
 | |
|                     default:
 | |
|                         ftext = QString::number((m_centerFrequency + dv->m_channelMarker->getCenterFrequency())/1e6, 'f', 6);
 | |
|                         break;
 | |
|                     }
 | |
|                     if (dv->m_channelMarker->getCenterFrequency() < 0) { // left half of scale
 | |
|                         ftext = " " + ftext;
 | |
|                         shift = 0;
 | |
|                     } else { // right half of scale
 | |
|                         ftext = ftext + " ";
 | |
|                         shift = - fm.horizontalAdvance(ftext);
 | |
|                     }
 | |
|                     painter.drawText(QPointF(m_leftMargin + m_frequencyScale.getPosFromValue(xc) + shift, 2*fm.height() + fm.ascent() / 2 - 1), ftext);
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|         }
 | |
| 
 | |
|         m_glShaderFrequencyScale.initTexture(m_frequencyPixmap.toImage());
 | |
|     }
 | |
|     // prepare left scale for spectrogram (time)
 | |
|     {
 | |
|         m_spectrogramTimePixmap = QPixmap(m_leftMargin - 1, fm.ascent() + m_waterfallHeight);
 | |
|         m_spectrogramTimePixmap.fill(Qt::transparent);
 | |
|         {
 | |
|             QPainter painter(&m_spectrogramTimePixmap);
 | |
|             painter.setPen(QColor(0xf0, 0xf0, 0xff));
 | |
|             painter.setFont(font());
 | |
|             const ScaleEngine::TickList* tickList;
 | |
|             const ScaleEngine::Tick* tick;
 | |
|             if (m_display3DSpectrogram) {
 | |
|                 tickList = &m_timeScale.getTickList();
 | |
|                 for (int i = 0; i < tickList->count(); i++) {
 | |
|                     tick = &(*tickList)[i];
 | |
|                     if (tick->major) {
 | |
|                         if (tick->textSize > 0)
 | |
|                             painter.drawText(QPointF(m_leftMargin - M - tick->textSize, fm.height() + tick->textPos), tick->text);
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         m_glShaderSpectrogramTimeScale.initTexture(m_spectrogramTimePixmap.toImage());
 | |
|     }
 | |
|     // prepare vertical scale for spectrogram (power)
 | |
|     {
 | |
|         int h = m_histogramHeight != 0 ? m_histogramHeight : m_waterfallHeight / 4;
 | |
|         m_spectrogramPowerPixmap = QPixmap(m_leftMargin - 1, m_topMargin + h);
 | |
|         m_spectrogramPowerPixmap.fill(Qt::transparent);
 | |
|         {
 | |
|             QPainter painter(&m_spectrogramPowerPixmap);
 | |
|             painter.setPen(QColor(0xf0, 0xf0, 0xff));
 | |
|             painter.setFont(font());
 | |
|             const ScaleEngine::TickList* tickList;
 | |
|             const ScaleEngine::Tick* tick;
 | |
|             if (m_display3DSpectrogram) {
 | |
|                 tickList = &m_powerScale.getTickList();
 | |
|                 for (int i = 0; i < tickList->count(); i++) {
 | |
|                     tick = &(*tickList)[i];
 | |
|                     if (tick->major) {
 | |
|                         if (tick->textSize > 0)
 | |
|                             painter.drawText(QPointF(m_leftMargin - M - tick->textSize, m_topMargin + h - tick->textPos - 1), tick->text);
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         m_glShaderSpectrogramPowerScale.initTexture(m_spectrogramPowerPixmap.toImage());
 | |
|     }
 | |
| 
 | |
|     // Top info line
 | |
|     m_glInfoBoxMatrix.setToIdentity();
 | |
|     m_glInfoBoxMatrix.translate (
 | |
|         -1.0f,
 | |
|         1.0f
 | |
|     );
 | |
|     m_glInfoBoxMatrix.scale (
 | |
|         2.0f,
 | |
|         (float) -2*m_infoHeight / (float) height()
 | |
|     );
 | |
|     m_infoRect = QRect(
 | |
|         0,
 | |
|         0,
 | |
|         width(),
 | |
|         m_infoHeight
 | |
|     );
 | |
|     QString infoText;
 | |
|     formatTextInfo(infoText);
 | |
|     m_infoPixmap = QPixmap(width(), m_infoHeight);
 | |
|     m_infoPixmap.fill(Qt::transparent);
 | |
|     {
 | |
|         QPainter painter(&m_infoPixmap);
 | |
|         painter.setPen(Qt::NoPen);
 | |
|         painter.setBrush(Qt::black);
 | |
|         painter.setBrush(Qt::transparent);
 | |
|         painter.drawRect(m_leftMargin, 0, width() - m_leftMargin, m_infoHeight);
 | |
|         painter.setPen(QColor(0xf0, 0xf0, 0xff));
 | |
|         painter.setFont(font());
 | |
|         painter.drawText(QPointF(m_leftMargin, fm.height() + fm.ascent() / 2 - 2), infoText);
 | |
|     }
 | |
| 
 | |
|     m_glShaderInfo.initTexture(m_infoPixmap.toImage());
 | |
| 
 | |
|     // Peak details in top info line
 | |
|     QString minFrequencyStr = displayFull(m_centerFrequency - m_sampleRate/2); // This can be wider if negative, while max is positive
 | |
|     QString maxFrequencyStr = displayFull(m_centerFrequency + m_sampleRate/2);
 | |
|     m_peakFrequencyMaxStr = minFrequencyStr.size() > maxFrequencyStr.size() ? minFrequencyStr : maxFrequencyStr;
 | |
|     m_peakFrequencyMaxStr = m_peakFrequencyMaxStr.append("Hz");
 | |
|     m_peakPowerMaxStr = m_linear ? "8.000e-10" : "-100.0";
 | |
|     m_peakPowerUnits = m_linear ? "" : "dB";
 | |
| 
 | |
|     bool waterfallFFTSizeChanged = true;
 | |
| 
 | |
|     if (m_waterfallBuffer) {
 | |
|         waterfallFFTSizeChanged = m_waterfallBuffer->width() != m_nbBins;
 | |
|     }
 | |
| 
 | |
|     bool windowSizeChanged = m_waterfallTextureHeight != m_waterfallHeight;
 | |
| 
 | |
|     if (waterfallFFTSizeChanged || windowSizeChanged)
 | |
|     {
 | |
|         if (m_waterfallBuffer) {
 | |
|             delete m_waterfallBuffer;
 | |
|         }
 | |
| 
 | |
|         m_waterfallBuffer = new QImage(m_nbBins, m_waterfallHeight, QImage::Format_ARGB32);
 | |
|         m_waterfallBuffer->fill(qRgb(0x00, 0x00, 0x00));
 | |
| 
 | |
|         if (m_waterfallHeight > 0) {
 | |
|             m_glShaderWaterfall.initTexture(*m_waterfallBuffer);
 | |
|         }
 | |
| 
 | |
|         m_waterfallBufferPos = 0;
 | |
| 
 | |
|         if (m_3DSpectrogramBuffer) {
 | |
|             delete m_3DSpectrogramBuffer;
 | |
|         }
 | |
| 
 | |
|         m_3DSpectrogramBuffer = new QImage(m_nbBins, m_waterfallHeight, QImage::Format_Grayscale8);
 | |
|         m_3DSpectrogramBuffer->fill(qRgb(0x00, 0x00, 0x00));
 | |
| 
 | |
|         if (m_waterfallHeight > 0) {
 | |
|             m_glShaderSpectrogram.initTexture(*m_3DSpectrogramBuffer);
 | |
|         }
 | |
| 
 | |
|         m_3DSpectrogramBufferPos = 0;
 | |
| 
 | |
|         m_waterfallTextureHeight = m_waterfallHeight;
 | |
|         m_waterfallTexturePos = 0;
 | |
|         m_3DSpectrogramTextureHeight = m_waterfallHeight;
 | |
|         m_3DSpectrogramTexturePos = 0;
 | |
|     }
 | |
| 
 | |
|     m_glShaderSpectrogram.initColorMapTexture(m_colorMapName);
 | |
|     m_glShaderColorMap.initColorMapTexture(m_colorMapName);
 | |
|     m_colorMap = ColorMap::getColorMap(m_colorMapName);
 | |
|     // Why only 240 entries in the palette?
 | |
|     for (int i = 0; i <= 239; i++)
 | |
|     {
 | |
|         ((quint8*)&m_waterfallPalette[i])[0] = (quint8)(m_colorMap[i*3] * 255.0);
 | |
|         ((quint8*)&m_waterfallPalette[i])[1] = (quint8)(m_colorMap[i*3+1] * 255.0);
 | |
|         ((quint8*)&m_waterfallPalette[i])[2] = (quint8)(m_colorMap[i*3+2] * 255.0);
 | |
|         ((quint8*)&m_waterfallPalette[i])[3] = 255;
 | |
|     }
 | |
| 
 | |
|     bool histogramFFTSizeChanged = true;
 | |
| 
 | |
|     if (m_histogramBuffer) {
 | |
|         histogramFFTSizeChanged = m_histogramBuffer->width() != m_nbBins;
 | |
|     }
 | |
| 
 | |
|     if (histogramFFTSizeChanged)
 | |
|     {
 | |
|         if (m_histogramBuffer) {
 | |
|             delete m_histogramBuffer;
 | |
|         }
 | |
| 
 | |
|         m_histogramBuffer = new QImage(m_nbBins, 100, QImage::Format_RGB32);
 | |
| 
 | |
|         m_histogramBuffer->fill(qRgb(0x00, 0x00, 0x00));
 | |
|         m_glShaderHistogram.initTexture(*m_histogramBuffer, QOpenGLTexture::ClampToEdge);
 | |
| 
 | |
|         if (m_histogram) {
 | |
|             delete[] m_histogram;
 | |
|         }
 | |
| 
 | |
|         m_histogram = new quint8[100 * m_nbBins];
 | |
|         memset(m_histogram, 0x00, 100 * m_nbBins);
 | |
| 
 | |
|         m_q3FFT.allocate(2*(m_nbBins+1));
 | |
| 
 | |
|         m_q3ColorMap.allocate(4*(m_nbBins+1));
 | |
|         std::fill(m_q3ColorMap.m_array, m_q3ColorMap.m_array+4*(m_nbBins+1), 0.0f);
 | |
|     }
 | |
| 
 | |
|     m_q3TickTime.allocate(4*m_timeScale.getTickList().count());
 | |
|     m_q3TickFrequency.allocate(4*m_frequencyScale.getTickList().count());
 | |
|     m_q3TickPower.allocate(6*m_powerScale.getTickList().count());   // 6 as we need 3d points for 3D spectrogram
 | |
|     updateHistogramMarkers();
 | |
|     updateWaterfallMarkers();
 | |
|     updateSortedAnnotationMarkers();
 | |
| } // applyChanges
 | |
| 
 | |
| void GLSpectrumView::updateHistogramMarkers()
 | |
| {
 | |
|     if (m_sampleRate == 0) {
 | |
|         return;
 | |
|     }
 | |
|     int64_t centerFrequency;
 | |
|     int frequencySpan;
 | |
|     getFrequencyZoom(centerFrequency, frequencySpan);
 | |
|     int effFftSize = m_fftSize * ((float) frequencySpan / (float) m_sampleRate);
 | |
| 
 | |
|     for (int i = 0; i < m_histogramMarkers.size(); i++)
 | |
|     {
 | |
|         float powerI = m_linear ?
 | |
|             m_histogramMarkers.at(i).m_power * (m_useCalibration ? m_calibrationGain : 1.0f) :
 | |
|             CalcDb::dbPower(m_histogramMarkers.at(i).m_power) + (m_useCalibration ? m_calibrationShiftdB : 0.0f);
 | |
|         m_histogramMarkers[i].m_point.rx() =
 | |
|             (m_histogramMarkers[i].m_frequency - m_frequencyScale.getRangeMin()) / m_frequencyScale.getRange();
 | |
|         m_histogramMarkers[i].m_point.ry() =
 | |
|             (m_powerScale.getRangeMax() - powerI) / m_powerScale.getRange();
 | |
|         // m_histogramMarkers[i].m_fftBin =
 | |
|         //     (((m_histogramMarkers[i].m_frequency - m_centerFrequency) / (float) m_sampleRate) + 0.5) * m_fftSize;
 | |
|         m_histogramMarkers[i].m_fftBin =
 | |
|             (((m_histogramMarkers[i].m_frequency - centerFrequency) / (float) frequencySpan) + 0.5) * effFftSize;
 | |
|         m_histogramMarkers[i].m_point.rx() = m_histogramMarkers[i].m_point.rx() < 0 ?
 | |
|             0 : m_histogramMarkers[i].m_point.rx() > 1 ?
 | |
|                 1 : m_histogramMarkers[i].m_point.rx();
 | |
|         m_histogramMarkers[i].m_point.ry() = m_histogramMarkers[i].m_point.ry() < 0 ?
 | |
|             0 : m_histogramMarkers[i].m_point.ry() > 1 ?
 | |
|                 1 : m_histogramMarkers[i].m_point.ry();
 | |
|         m_histogramMarkers[i].m_fftBin = m_histogramMarkers[i].m_fftBin < 0 ?
 | |
|             0 : m_histogramMarkers[i].m_fftBin > m_fftSize - 1 ?
 | |
|                 m_fftSize - 1 : m_histogramMarkers[i].m_fftBin;
 | |
|         m_histogramMarkers[i].m_frequencyStr = displayScaled(
 | |
|             m_histogramMarkers[i].m_frequency,
 | |
|             'f',
 | |
|             getPrecision((m_centerFrequency*1000)/m_sampleRate),
 | |
|             false);
 | |
|         m_histogramMarkers[i].m_powerStr = displayPower(
 | |
|             powerI,
 | |
|             m_linear ? 'e' : 'f',
 | |
|             m_linear ? 3 : 1);
 | |
| 
 | |
|         if (i > 0)
 | |
|         {
 | |
|             int64_t deltaFrequency = m_histogramMarkers.at(i).m_frequency - m_histogramMarkers.at(0).m_frequency;
 | |
|             m_histogramMarkers[i].m_deltaFrequencyStr = displayScaled(
 | |
|                 deltaFrequency,
 | |
|                 'f',
 | |
|                 getPrecision(deltaFrequency/m_sampleRate),
 | |
|                 true);
 | |
|             float power0 = m_linear ?
 | |
|                 m_histogramMarkers.at(0).m_power * (m_useCalibration ? m_calibrationGain : 1.0f) :
 | |
|                 CalcDb::dbPower(m_histogramMarkers.at(0).m_power) + (m_useCalibration ? m_calibrationShiftdB : 0.0f);
 | |
|             m_histogramMarkers[i].m_deltaPowerStr = displayPower(
 | |
|                 powerI - power0,
 | |
|                 m_linear ? 'e' : 'f',
 | |
|                 m_linear ? 3 : 1);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| void GLSpectrumView::updateHistogramPeaks()
 | |
| {
 | |
|     int j = 0;
 | |
|     for (int i = 0; i < m_histogramMarkers.size(); i++)
 | |
|     {
 | |
|         if (j >= (int) m_peakFinder.getPeaks().size()) {
 | |
|             break;
 | |
|         }
 | |
| 
 | |
|         int fftBin = m_peakFinder.getPeaks()[j].second;
 | |
|         Real power = m_peakFinder.getPeaks()[j].first;
 | |
|         // qDebug("GLSpectrumView::updateHistogramPeaks: %d %d %f", j, fftBin, power);
 | |
| 
 | |
|         if ((m_histogramMarkers.at(i).m_markerType == SpectrumHistogramMarker::SpectrumMarkerTypePower) ||
 | |
|             ((m_histogramMarkers.at(i).m_markerType == SpectrumHistogramMarker::SpectrumMarkerTypePowerMax) &&
 | |
|              (m_histogramMarkers.at(i).m_holdReset || (power > m_histogramMarkers.at(i).m_powerMax))))
 | |
|         {
 | |
|             float binSize = m_frequencyScale.getRange() / m_nbBins;
 | |
|             m_histogramMarkers[i].m_fftBin = fftBin;
 | |
|             m_histogramMarkers[i].m_frequency = m_frequencyScale.getRangeMin() + binSize*fftBin;
 | |
|             m_histogramMarkers[i].m_point.rx() = binSize*fftBin / m_frequencyScale.getRange();
 | |
| 
 | |
|             if (i == 0)
 | |
|             {
 | |
|                 m_histogramMarkers[i].m_frequencyStr = displayScaled(
 | |
|                     m_histogramMarkers[i].m_frequency,
 | |
|                     'f',
 | |
|                     getPrecision((m_centerFrequency*1000)/m_sampleRate),
 | |
|                     false
 | |
|                 );
 | |
|             }
 | |
|             else
 | |
|             {
 | |
|                 int64_t deltaFrequency = m_histogramMarkers.at(i).m_frequency - m_histogramMarkers.at(0).m_frequency;
 | |
|                 m_histogramMarkers[i].m_deltaFrequencyStr = displayScaled(
 | |
|                     deltaFrequency,
 | |
|                     'f',
 | |
|                     getPrecision(deltaFrequency/m_sampleRate),
 | |
|                     true
 | |
|                 );
 | |
|             }
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|             continue;
 | |
|         }
 | |
| 
 | |
|         j++;
 | |
|     }
 | |
| }
 | |
| 
 | |
| void GLSpectrumView::updateWaterfallMarkers()
 | |
| {
 | |
|     for (int i = 0; i < m_waterfallMarkers.size(); i++)
 | |
|     {
 | |
|         m_waterfallMarkers[i].m_point.rx() =
 | |
|             (m_waterfallMarkers[i].m_frequency - m_frequencyScale.getRangeMin()) / m_frequencyScale.getRange();
 | |
|         m_waterfallMarkers[i].m_point.ry() =
 | |
|             (m_waterfallMarkers[i].m_time - m_timeScale.getRangeMin()) / m_timeScale.getRange();
 | |
|         m_waterfallMarkers[i].m_point.rx() = m_waterfallMarkers[i].m_point.rx() < 0 ?
 | |
|             0 : m_waterfallMarkers[i].m_point.rx() > 1 ?
 | |
|                 1 : m_waterfallMarkers[i].m_point.rx();
 | |
|         m_waterfallMarkers[i].m_point.ry() = m_waterfallMarkers[i].m_point.ry() < 0 ?
 | |
|             0 : m_waterfallMarkers[i].m_point.ry() > 1 ?
 | |
|                 1 : m_waterfallMarkers[i].m_point.ry();
 | |
|         m_waterfallMarkers[i].m_frequencyStr = displayScaled(
 | |
|             m_waterfallMarkers[i].m_frequency,
 | |
|             'f',
 | |
|             getPrecision((m_centerFrequency*1000)/m_sampleRate),
 | |
|             false);
 | |
|         m_waterfallMarkers[i].m_timeStr = displayScaledF(
 | |
|             m_waterfallMarkers[i].m_time,
 | |
|             'f',
 | |
|             3,
 | |
|             true);
 | |
| 
 | |
|         if (i > 0)
 | |
|         {
 | |
|             int64_t deltaFrequency = m_waterfallMarkers.at(i).m_frequency - m_waterfallMarkers.at(0).m_frequency;
 | |
|             m_waterfallMarkers.back().m_deltaFrequencyStr = displayScaled(
 | |
|                 deltaFrequency,
 | |
|                 'f',
 | |
|                 getPrecision(deltaFrequency/m_sampleRate),
 | |
|                 true);
 | |
|             m_waterfallMarkers.back().m_deltaTimeStr = displayScaledF(
 | |
|                 m_waterfallMarkers.at(i).m_time - m_waterfallMarkers.at(0).m_time,
 | |
|                 'f',
 | |
|                 3,
 | |
|                 true);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| void GLSpectrumView::updateAnnotationMarkers()
 | |
| {
 | |
|     emit updateAnnotations(); // Notify other plugins we have updated annotations
 | |
| 
 | |
|     if (!(m_markersDisplay & SpectrumSettings::MarkersDisplayAnnotations)) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     m_sortedAnnotationMarkers.clear();
 | |
| 
 | |
|     for (auto &marker : m_annotationMarkers) {
 | |
|         m_sortedAnnotationMarkers.push_back(&marker);
 | |
|     }
 | |
| 
 | |
|     std::sort(m_sortedAnnotationMarkers.begin(), m_sortedAnnotationMarkers.end(), annotationDisplayLessThan);
 | |
|     updateSortedAnnotationMarkers();
 | |
| }
 | |
| 
 | |
| void GLSpectrumView::updateSortedAnnotationMarkers()
 | |
| {
 | |
|     if (!(m_markersDisplay & SpectrumSettings::MarkersDisplayAnnotations)) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     m_visibleAnnotationMarkers.clear();
 | |
| 
 | |
|     for (auto &marker : m_sortedAnnotationMarkers)
 | |
|     {
 | |
|         float startPos = (marker->m_startFrequency - m_frequencyScale.getRangeMin()) / m_frequencyScale.getRange();
 | |
|         float stopPos = ((marker->m_startFrequency + marker->m_bandwidth) - m_frequencyScale.getRangeMin()) / m_frequencyScale.getRange();
 | |
| 
 | |
|         if ((startPos > 1.0f) || (stopPos < 0.0f)) // out of range
 | |
| 		{
 | |
|             continue;
 | |
|         }
 | |
| 
 | |
|         m_visibleAnnotationMarkers.push_back(marker);
 | |
|         m_visibleAnnotationMarkers.back()->m_startPos = startPos < 0.0f ? 0.0f : startPos;
 | |
|         m_visibleAnnotationMarkers.back()->m_stopPos = stopPos > 1.0f ? 1.0f : stopPos;
 | |
|     }
 | |
| }
 | |
| 
 | |
| void GLSpectrumView::updateMarkersDisplay()
 | |
| {
 | |
|     if (m_markersDisplay & SpectrumSettings::MarkersDisplayAnnotations) {
 | |
|         updateAnnotationMarkers();
 | |
|     }
 | |
| }
 | |
| 
 | |
| void GLSpectrumView::updateCalibrationPoints()
 | |
| {
 | |
|     if (m_calibrationPoints.size() == 0)
 | |
|     {
 | |
|         m_calibrationGain = 1.0;
 | |
|         m_calibrationShiftdB = 0.0;
 | |
|     }
 | |
|     else if (m_calibrationPoints.size() == 1)
 | |
|     {
 | |
|         m_calibrationGain = m_calibrationPoints.first().m_powerCalibratedReference /
 | |
|              m_calibrationPoints.first().m_powerRelativeReference;
 | |
|         m_calibrationShiftdB = CalcDb::dbPower(m_calibrationGain);
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         QList<SpectrumCalibrationPoint> sortedCalibrationPoints = m_calibrationPoints;
 | |
|         std::sort(sortedCalibrationPoints.begin(), sortedCalibrationPoints.end(), calibrationPointsLessThan);
 | |
| 
 | |
|         if (m_centerFrequency <= sortedCalibrationPoints.first().m_frequency)
 | |
|         {
 | |
|             m_calibrationGain = m_calibrationPoints.first().m_powerCalibratedReference /
 | |
|                 m_calibrationPoints.first().m_powerRelativeReference;
 | |
|             m_calibrationShiftdB = CalcDb::dbPower(m_calibrationGain);
 | |
|         }
 | |
|         else if (m_centerFrequency >= sortedCalibrationPoints.last().m_frequency)
 | |
|         {
 | |
|             m_calibrationGain = m_calibrationPoints.last().m_powerCalibratedReference /
 | |
|                 m_calibrationPoints.last().m_powerRelativeReference;
 | |
|             m_calibrationShiftdB = CalcDb::dbPower(m_calibrationGain);
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|             int lowIndex = 0;
 | |
|             int highIndex = sortedCalibrationPoints.size() - 1;
 | |
| 
 | |
|             for (int index = 0; index < sortedCalibrationPoints.size(); index++)
 | |
|             {
 | |
|                 if (m_centerFrequency < sortedCalibrationPoints[index].m_frequency)
 | |
|                 {
 | |
|                     highIndex = index;
 | |
|                     break;
 | |
|                 }
 | |
|                 else
 | |
|                 {
 | |
|                     lowIndex = index;
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             // frequency interpolation is always linear
 | |
|             double deltaFrequency = sortedCalibrationPoints[highIndex].m_frequency -
 | |
|                 sortedCalibrationPoints[lowIndex].m_frequency;
 | |
|             double shiftFrequency = m_centerFrequency - sortedCalibrationPoints[lowIndex].m_frequency;
 | |
|             double interpolationRatio = shiftFrequency / deltaFrequency;
 | |
| 
 | |
|             // calculate low and high gains in linear mode
 | |
|             double gainLow = sortedCalibrationPoints[lowIndex].m_powerCalibratedReference /
 | |
|                 sortedCalibrationPoints[lowIndex].m_powerRelativeReference;
 | |
|             double gainHigh = sortedCalibrationPoints[highIndex].m_powerCalibratedReference /
 | |
|                 sortedCalibrationPoints[highIndex].m_powerRelativeReference;
 | |
| 
 | |
|             // power interpolation depends on interpolation options
 | |
|             if (m_calibrationInterpMode == SpectrumSettings::CalibInterpLinear)
 | |
|             {
 | |
|                 m_calibrationGain = gainLow + interpolationRatio*(gainHigh - gainLow); // linear driven
 | |
|                 m_calibrationShiftdB = CalcDb::dbPower(m_calibrationGain);
 | |
|             }
 | |
|             else if (m_calibrationInterpMode == SpectrumSettings::CalibInterpLog)
 | |
|             {
 | |
|                 m_calibrationShiftdB = CalcDb::dbPower(gainLow)
 | |
|                     + interpolationRatio*(CalcDb::dbPower(gainHigh) - CalcDb::dbPower(gainLow)); // log driven
 | |
|                 m_calibrationGain = CalcDb::powerFromdB(m_calibrationShiftdB);
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     updateHistogramMarkers();
 | |
| 
 | |
|     if (m_messageQueueToGUI && m_useCalibration) {
 | |
|         m_messageQueueToGUI->push(new MsgReportCalibrationShift(m_calibrationShiftdB));
 | |
|     }
 | |
| 
 | |
|     m_changesPending = true;
 | |
| }
 | |
| 
 | |
| bool GLSpectrumView::event(QEvent* event)
 | |
| {
 | |
|     if (event->type() == QEvent::Gesture)
 | |
|     {
 | |
|         QGestureEvent *gestureEvent = static_cast<QGestureEvent *>(event);
 | |
| 
 | |
|         if (QPanGesture *pan = static_cast<QPanGesture *>(gestureEvent->gesture(Qt::PanGesture)))
 | |
|         {
 | |
|             if (pan->state() == Qt::GestureStarted)
 | |
|             {
 | |
|                 m_scrollStartCenterFreq = m_centerFrequency;
 | |
|             }
 | |
|             else if (pan->state() == Qt::GestureUpdated)
 | |
|             {
 | |
|                 QPointF offset = pan->offset();
 | |
|                 float histogramWidth = width() - m_leftMargin - m_rightMargin;
 | |
|                 qint64 frequency = (qint64)(m_scrollStartCenterFreq + -offset.x()/histogramWidth * m_frequencyScale.getRange());
 | |
|                 queueRequestCenterFrequency(frequency);
 | |
|             }
 | |
|             return true;
 | |
|         }
 | |
|         else if (QPinchGesture *pinch = static_cast<QPinchGesture *>(gestureEvent->gesture(Qt::PinchGesture)))
 | |
|         {
 | |
|             // Don't get GestureStarted and startCenterPoint is always 0,0
 | |
|             // https://bugreports.qt.io/browse/QTBUG-109205
 | |
|             if (!m_pinching)
 | |
|             {
 | |
|                 m_scrollStartCenterFreq = m_centerFrequency;
 | |
|                 m_pinchStart = pinch->centerPoint();
 | |
|                 m_pinching = true;
 | |
|                 m_pinching3D = m_display3DSpectrogram && pointInWaterfallOrSpectrogram(mapFromGlobal(m_pinchStart.toPoint()));
 | |
|             }
 | |
|             else
 | |
|             {
 | |
|                 if (pinch->changeFlags() & QPinchGesture::CenterPointChanged)
 | |
|                 {
 | |
|                     if (!m_pinching3D)
 | |
|                     {
 | |
|                         // Scroll frequency up or down
 | |
|                         QPointF offset = pinch->centerPoint() - m_pinchStart;
 | |
|                         float histogramWidth = width() - m_leftMargin - m_rightMargin;
 | |
|                         qint64 frequency = (qint64)(m_scrollStartCenterFreq + -offset.x()/histogramWidth * m_frequencyScale.getRange());
 | |
|                         queueRequestCenterFrequency(frequency);
 | |
|                     }
 | |
|                 }
 | |
|                 if (pinch->changeFlags() & QPinchGesture::ScaleFactorChanged)
 | |
|                 {
 | |
|                     if (!m_pinching3D)
 | |
|                     {
 | |
|                         // Zoom in/out of spectrum
 | |
|                         QPoint p = mapFromGlobal(pinch->centerPoint().toPoint());
 | |
|                         zoomFactor(p, pinch->scaleFactor());
 | |
|                     }
 | |
|                     else
 | |
|                     {
 | |
|                         // Scale Z axis of 3D spectragram
 | |
|                         m_glShaderSpectrogram.userScaleZ(pinch->scaleFactor());
 | |
|                     }
 | |
|                 }
 | |
|                 if (pinch->state() == Qt::GestureFinished)
 | |
|                 {
 | |
|                     m_pinching = false;
 | |
|                     m_pinching3D = false;
 | |
|                 }
 | |
|             }
 | |
|             return true;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     return QOpenGLWidget::event(event);
 | |
| }
 | |
| 
 | |
| void GLSpectrumView::mouseMoveEvent(QMouseEvent* event)
 | |
| {
 | |
|     if (m_rotate3DSpectrogram && !m_pinching3D)
 | |
|     {
 | |
|         // Rotate 3D Spectrogram
 | |
|         QPointF delta = m_mousePrevLocalPos - event->localPos();
 | |
|         m_mousePrevLocalPos = event->localPos();
 | |
|         m_glShaderSpectrogram.rotateZ(-delta.x()/2.0f);
 | |
|         m_glShaderSpectrogram.rotateX(-delta.y()/2.0f);
 | |
|         repaint(); // Force repaint in case acquisition is stopped
 | |
|         return;
 | |
|     }
 | |
|     if (m_pan3DSpectrogram)
 | |
|     {
 | |
|         // Pan 3D Spectrogram
 | |
|         QPointF delta = m_mousePrevLocalPos - event->localPos();
 | |
|         m_mousePrevLocalPos = event->localPos();
 | |
|         m_glShaderSpectrogram.translateX(-delta.x()/2.0f/500.0f);
 | |
|         m_glShaderSpectrogram.translateY(delta.y()/2.0f/500.0f);
 | |
|         repaint(); // Force repaint in case acquisition is stopped
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     if (m_scaleZ3DSpectrogram)
 | |
|     {
 | |
|         // Scale 3D Spectrogram in Z dimension
 | |
|         QPointF delta = m_mousePrevLocalPos - event->localPos();
 | |
|         m_mousePrevLocalPos = event->localPos();
 | |
|         m_glShaderSpectrogram.userScaleZ(1.0+(float)delta.y()/20.0);
 | |
|         repaint(); // Force repaint in case acquisition is stopped
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     if (m_scrollFrequency)
 | |
|     {
 | |
|         // Request containing widget to adjust center frequency
 | |
|         // Not all containers will support this - mainly for MainSpectrumGUI
 | |
|         // This can be a little slow on some SDRs, so we use delta from where
 | |
|         // button was originally pressed rather than do it incrementally
 | |
|         QPointF delta = m_mousePrevLocalPos - event->localPos();
 | |
|         float histogramWidth = width() - m_leftMargin - m_rightMargin;
 | |
|         qint64 frequency = (qint64)(m_scrollStartCenterFreq + delta.x()/histogramWidth * m_frequencyScale.getRange());
 | |
|         queueRequestCenterFrequency(frequency);
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     if (m_displayWaterfall || m_displayHistogram || m_displayMaxHold || m_displayCurrent)
 | |
|     {
 | |
|         if (m_frequencyScaleRect.contains(event->pos()))
 | |
|         {
 | |
|             if (m_cursorState == CSNormal)
 | |
|             {
 | |
|                 setCursor(Qt::SizeVerCursor);
 | |
|                 m_cursorState = CSSplitter;
 | |
|                 return;
 | |
|             }
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|             if (m_cursorState == CSSplitter)
 | |
|             {
 | |
|                 setCursor(Qt::ArrowCursor);
 | |
|                 m_cursorState = CSNormal;
 | |
|                 return;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (m_cursorState == CSSplitterMoving)
 | |
|     {
 | |
|         QMutexLocker mutexLocker(&m_mutex);
 | |
|         float newShare;
 | |
| 
 | |
|         if (!m_invertedWaterfall) {
 | |
|             newShare = (float) (event->y() - m_frequencyScaleRect.height()) / (float) height();
 | |
|         } else {
 | |
|             newShare = 1.0 - (float) (event->y() + m_frequencyScaleRect.height()) / (float) height();
 | |
|         }
 | |
| 
 | |
|         if (newShare < 0.1) {
 | |
|             newShare = 0.1f;
 | |
|         } else if (newShare > 0.8) {
 | |
|             newShare = 0.8f;
 | |
|         }
 | |
| 
 | |
|         m_waterfallShare = newShare;
 | |
|         m_changesPending = true;
 | |
| 
 | |
|         if (m_messageQueueToGUI) {
 | |
|             m_messageQueueToGUI->push(new MsgReportWaterfallShare(m_waterfallShare));
 | |
|         }
 | |
| 
 | |
|         update();
 | |
|         return;
 | |
|     }
 | |
|     else if (m_cursorState == CSChannelMoving)
 | |
|     {
 | |
|         // Determine if user is trying to move the channel outside of the current frequency range
 | |
|         // and if so, request an adjustment to the center frequency
 | |
|         // FIXME: This doesn't take zoom into account, so only works when zoomed out
 | |
|         Real freqAbs = m_frequencyScale.getValueFromPos(event->x() - m_leftMarginPixmap.width() - 1);
 | |
|         Real freqMin = m_centerFrequency - m_sampleRate / 2.0f;
 | |
|         Real freqMax = m_centerFrequency + m_sampleRate / 2.0f;
 | |
|         if (freqAbs < freqMin) {
 | |
|             queueRequestCenterFrequency(m_centerFrequency - (freqMin - freqAbs));
 | |
|         } else if (freqAbs > freqMax) {
 | |
|             queueRequestCenterFrequency(m_centerFrequency + (freqAbs - freqMax));
 | |
|         }
 | |
| 
 | |
|         Real freq = freqAbs - m_centerFrequency;
 | |
|         if (m_channelMarkerStates[m_cursorChannel]->m_channelMarker->getMovable()
 | |
|             && (m_channelMarkerStates[m_cursorChannel]->m_channelMarker->getSourceOrSinkStream() == m_displaySourceOrSink)
 | |
|             && m_channelMarkerStates[m_cursorChannel]->m_channelMarker->streamIndexApplies(m_displayStreamIndex))
 | |
|         {
 | |
|             m_channelMarkerStates[m_cursorChannel]->m_channelMarker->setCenterFrequencyByCursor(freq);
 | |
|             channelMarkerChanged();
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (m_displayWaterfall || m_displayHistogram || m_displayMaxHold || m_displayCurrent)
 | |
|     {
 | |
|         for (int i = 0; i < m_channelMarkerStates.size(); ++i)
 | |
|         {
 | |
|             if ((m_channelMarkerStates[i]->m_channelMarker->getSourceOrSinkStream() != m_displaySourceOrSink)
 | |
|                 || !m_channelMarkerStates[i]->m_channelMarker->streamIndexApplies(m_displayStreamIndex))
 | |
|             {
 | |
|                 continue;
 | |
|             }
 | |
| 
 | |
|             if (m_channelMarkerStates[i]->m_rect.contains(event->pos()))
 | |
|             {
 | |
|                 if (m_cursorState == CSNormal)
 | |
|                 {
 | |
|                     setCursor(Qt::SizeHorCursor);
 | |
|                     m_cursorState = CSChannel;
 | |
|                     m_cursorChannel = i;
 | |
|                     m_channelMarkerStates[i]->m_channelMarker->setHighlightedByCursor(true);
 | |
|                     channelMarkerChanged();
 | |
| 
 | |
|                     return;
 | |
|                 }
 | |
|                 else if (m_cursorState == CSChannel)
 | |
|                 {
 | |
|                     return;
 | |
|                 }
 | |
|             }
 | |
|             else if (m_channelMarkerStates[i]->m_channelMarker->getHighlighted())
 | |
|             {
 | |
|                 // Don't clear highlight while dragging a channel, as we want the
 | |
|                 // frequency of the channel to be continuously displayed
 | |
|                 if (m_cursorState != CSChannelMoving)
 | |
|                 {
 | |
|                     m_channelMarkerStates[i]->m_channelMarker->setHighlightedByCursor(false);
 | |
|                     channelMarkerChanged();
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (m_cursorState == CSChannel)
 | |
|     {
 | |
|         setCursor(Qt::ArrowCursor);
 | |
|         m_cursorState = CSNormal;
 | |
| 
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     event->setAccepted(false);
 | |
| }
 | |
| 
 | |
| void GLSpectrumView::mousePressEvent(QMouseEvent* event)
 | |
| {
 | |
|     const QPointF& ep = event->localPos();
 | |
| 
 | |
|     if ((event->button() == Qt::MiddleButton) && (m_displayMaxHold || m_displayCurrent || m_displayHistogram) && pointInHistogram(ep))
 | |
|     {
 | |
|         m_scrollFrequency = true;
 | |
|         m_scrollStartCenterFreq = m_centerFrequency;
 | |
|         m_mousePrevLocalPos = ep;
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     if ((event->button() == Qt::MiddleButton) && m_display3DSpectrogram && pointInWaterfallOrSpectrogram(ep))
 | |
|     {
 | |
|         m_pan3DSpectrogram = true;
 | |
|         m_mousePrevLocalPos = ep;
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     if ((event->button() == Qt::RightButton) && m_display3DSpectrogram && pointInWaterfallOrSpectrogram(ep))
 | |
|     {
 | |
|         m_scaleZ3DSpectrogram = true;
 | |
|         m_mousePrevLocalPos = ep;
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     if (event->button() == Qt::RightButton)
 | |
|     {
 | |
|         QPointF pHis = ep;
 | |
|         bool doUpdate = false;
 | |
|         pHis.rx() = (ep.x()/width() - m_histogramRect.left()) / m_histogramRect.width();
 | |
|         pHis.ry() = (ep.y()/height() - m_histogramRect.top()) / m_histogramRect.height();
 | |
| 
 | |
|         if (event->modifiers() & Qt::ShiftModifier)
 | |
|         {
 | |
|             if ((pHis.x() >= 0) && (pHis.x() <= 1) && (pHis.y() >= 0) && (pHis.y() <= 1))
 | |
|             {
 | |
|                 m_histogramMarkers.clear();
 | |
|                 doUpdate = true;
 | |
|                 if (m_messageQueueToGUI) {
 | |
|                     m_messageQueueToGUI->push(new MsgReportHistogramMarkersChange());
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|             if ((m_histogramMarkers.size() > 0) && (pHis.x() >= 0) && (pHis.x() <= 1) && (pHis.y() >= 0) && (pHis.y() <= 1))
 | |
|             {
 | |
|                 m_histogramMarkers.pop_back();
 | |
|                 doUpdate = true;
 | |
|                 if (m_messageQueueToGUI) {
 | |
|                     m_messageQueueToGUI->push(new MsgReportHistogramMarkersChange());
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         QPointF pWat = ep;
 | |
|         pWat.rx() = (ep.x()/width() - m_waterfallRect.left()) / m_waterfallRect.width();
 | |
|         pWat.ry() = (ep.y()/height() - m_waterfallRect.top()) / m_waterfallRect.height();
 | |
| 
 | |
|         if (event->modifiers() & Qt::ShiftModifier)
 | |
|         {
 | |
|             if ((pWat.x() >= 0) && (pWat.x() <= 1) && (pWat.y() >= 0) && (pWat.y() <= 1))
 | |
|             {
 | |
|                 m_waterfallMarkers.clear();
 | |
|                 doUpdate = true;
 | |
|                 if (m_messageQueueToGUI) {
 | |
|                     m_messageQueueToGUI->push(new MsgReportWaterfallMarkersChange());
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|             if ((m_waterfallMarkers.size() > 0) && (pWat.x() >= 0) && (pWat.x() <= 1) && (pWat.y() >= 0) && (pWat.y() <= 1))
 | |
|             {
 | |
|                 m_waterfallMarkers.pop_back();
 | |
|                 doUpdate = true;
 | |
|                 if (m_messageQueueToGUI) {
 | |
|                     m_messageQueueToGUI->push(new MsgReportWaterfallMarkersChange());
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         if (doUpdate) {
 | |
|             update();
 | |
|         }
 | |
|     }
 | |
|     else if (event->button() == Qt::LeftButton)
 | |
|     {
 | |
|         if (event->modifiers() & Qt::ShiftModifier)
 | |
|         {
 | |
|             QPointF pHis = ep;
 | |
|             bool doUpdate = false;
 | |
|             pHis.rx() = (ep.x()/width() - m_histogramRect.left()) / m_histogramRect.width();
 | |
|             pHis.ry() = (ep.y()/height() - m_histogramRect.top()) / m_histogramRect.height();
 | |
|             float frequency = m_frequencyScale.getRangeMin() + pHis.x()*m_frequencyScale.getRange();
 | |
|             float powerVal = m_powerScale.getRangeMax() - pHis.y()*m_powerScale.getRange();
 | |
|             float power = m_linear ? powerVal : CalcDb::powerFromdB(powerVal);
 | |
|             int fftBin = (((frequency - m_centerFrequency) / (float) m_sampleRate) * m_fftSize) + (m_fftSize / 2);
 | |
| 
 | |
|             if ((pHis.x() >= 0) && (pHis.x() <= 1) && (pHis.y() >= 0) && (pHis.y() <= 1))
 | |
|             {
 | |
|                 if (m_histogramMarkers.size() < SpectrumHistogramMarker::m_maxNbOfMarkers)
 | |
|                 {
 | |
|                     m_histogramMarkers.push_back(SpectrumHistogramMarker());
 | |
|                     m_histogramMarkers.back().m_point = pHis;
 | |
|                     m_histogramMarkers.back().m_frequency = frequency;
 | |
|                     m_histogramMarkers.back().m_fftBin = fftBin;
 | |
|                     m_histogramMarkers.back().m_frequencyStr = displayScaled(
 | |
|                         frequency,
 | |
|                         'f',
 | |
|                         getPrecision((m_centerFrequency*1000)/m_sampleRate),
 | |
|                         false);
 | |
|                     m_histogramMarkers.back().m_power = power;
 | |
|                     m_histogramMarkers.back().m_powerStr = displayPower(
 | |
|                         powerVal,
 | |
|                         m_linear ? 'e' : 'f',
 | |
|                         m_linear ? 3 : 1);
 | |
| 
 | |
|                     if (m_histogramMarkers.size() > 1)
 | |
|                     {
 | |
|                         int64_t deltaFrequency = frequency - m_histogramMarkers.at(0).m_frequency;
 | |
|                         m_histogramMarkers.back().m_deltaFrequencyStr = displayScaled(
 | |
|                             deltaFrequency,
 | |
|                             'f',
 | |
|                             getPrecision(deltaFrequency/m_sampleRate),
 | |
|                             true);
 | |
|                         float power0 = m_linear ?
 | |
|                             m_histogramMarkers.at(0).m_power :
 | |
|                             CalcDb::dbPower(m_histogramMarkers.at(0).m_power);
 | |
|                         m_histogramMarkers.back().m_deltaPowerStr = displayPower(
 | |
|                             power - power0,
 | |
|                             m_linear ? 'e' : 'f',
 | |
|                             m_linear ? 3 : 1);
 | |
|                     }
 | |
| 
 | |
|                     if (m_messageQueueToGUI) {
 | |
|                         m_messageQueueToGUI->push(new MsgReportHistogramMarkersChange());
 | |
|                     }
 | |
|                     doUpdate = true;
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             QPointF pWat = ep;
 | |
|             pWat.rx() = (ep.x()/width() - m_waterfallRect.left()) / m_waterfallRect.width();
 | |
|             pWat.ry() = (ep.y()/height() - m_waterfallRect.top()) / m_waterfallRect.height();
 | |
|             frequency = m_frequencyScale.getRangeMin() + pWat.x()*m_frequencyScale.getRange();
 | |
|             float time = m_timeScale.getRangeMin() + pWat.y()*m_timeScale.getRange();
 | |
| 
 | |
|             if ((pWat.x() >= 0) && (pWat.x() <= 1) && (pWat.y() >= 0) && (pWat.y() <= 1) && !m_display3DSpectrogram)
 | |
|             {
 | |
|                 if (m_waterfallMarkers.size() < SpectrumWaterfallMarker::m_maxNbOfMarkers)
 | |
|                 {
 | |
|                     m_waterfallMarkers.push_back(SpectrumWaterfallMarker());
 | |
|                     m_waterfallMarkers.back().m_point = pWat;
 | |
|                     m_waterfallMarkers.back().m_frequency = frequency;
 | |
|                     m_waterfallMarkers.back().m_frequencyStr = displayScaled(
 | |
|                         frequency,
 | |
|                         'f',
 | |
|                         getPrecision((m_centerFrequency*1000)/m_sampleRate),
 | |
|                         false);
 | |
|                     m_waterfallMarkers.back().m_time = time;
 | |
|                     m_waterfallMarkers.back().m_timeStr = displayScaledF(
 | |
|                         time,
 | |
|                         'f',
 | |
|                         3,
 | |
|                         true);
 | |
| 
 | |
|                     if (m_waterfallMarkers.size() > 1)
 | |
|                     {
 | |
|                         int64_t deltaFrequency = frequency - m_waterfallMarkers.at(0).m_frequency;
 | |
|                         m_waterfallMarkers.back().m_deltaFrequencyStr = displayScaled(
 | |
|                             deltaFrequency,
 | |
|                             'f',
 | |
|                             getPrecision(deltaFrequency/m_sampleRate),
 | |
|                             true);
 | |
|                         m_waterfallMarkers.back().m_deltaTimeStr = displayScaledF(
 | |
|                             time - m_waterfallMarkers.at(0).m_time,
 | |
|                             'f',
 | |
|                             3,
 | |
|                             true);
 | |
|                     }
 | |
| 
 | |
|                     if (m_messageQueueToGUI) {
 | |
|                         m_messageQueueToGUI->push(new MsgReportWaterfallMarkersChange());
 | |
|                     }
 | |
|                     doUpdate = true;
 | |
|                 }
 | |
|             }
 | |
| 
 | |
|             if (doUpdate) {
 | |
|                 update();
 | |
|             }
 | |
|         }
 | |
|         else if (event->modifiers() & Qt::AltModifier)
 | |
|         {
 | |
|             frequencyPan(event);
 | |
|         }
 | |
|         else if (event->modifiers() & Qt::ControlModifier)
 | |
|         {
 | |
|             if (!m_display3DSpectrogram && pointInWaterfallOrSpectrogram(ep))
 | |
|             {
 | |
|                 QPointF pWat = ep;
 | |
|                 pWat.rx() = (ep.x()/width() - m_waterfallRect.left()) / m_waterfallRect.width();
 | |
|                 pWat.ry() = (ep.y()/height() - m_waterfallRect.top()) / m_waterfallRect.height();
 | |
|                 float time = m_timeScale.getRangeMin() + pWat.y()*m_timeScale.getRange();
 | |
|                 emit timeSelected(time);
 | |
|             }
 | |
|             return;
 | |
|         }
 | |
|         else if (m_display3DSpectrogram)
 | |
|         {
 | |
|             // Detect click and drag to rotate 3D spectrogram
 | |
|             if (pointInWaterfallOrSpectrogram(ep))
 | |
|             {
 | |
|                 m_rotate3DSpectrogram = true;
 | |
|                 m_mousePrevLocalPos = ep;
 | |
|                 return;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         if ((m_markersDisplay & SpectrumSettings::MarkersDisplayAnnotations) &&
 | |
|             (ep.y() <= m_histogramRect.top()*height() + m_annotationMarkerHeight + 2.0f))
 | |
|         {
 | |
|             QPointF pHis;
 | |
|             pHis.rx() = (ep.x()/width() - m_histogramRect.left()) / m_histogramRect.width();
 | |
|             qint64 selectedFrequency = m_frequencyScale.getRangeMin() + pHis.x() * m_frequencyScale.getRange();
 | |
|             bool selected = false;
 | |
| 
 | |
|             for (auto iMarker = m_visibleAnnotationMarkers.rbegin(); iMarker != m_visibleAnnotationMarkers.rend(); ++iMarker)
 | |
|             {
 | |
| 				if ((*iMarker)->m_show == SpectrumAnnotationMarker::Hidden) {
 | |
| 					continue;
 | |
| 				}
 | |
| 
 | |
|                 qint64 stopFrequency = (*iMarker)->m_startFrequency +
 | |
|                     ((*iMarker)->m_bandwidth == 0 ? m_frequencyScale.getRange()*0.01f : (*iMarker)->m_bandwidth);
 | |
| 
 | |
|                 if (((*iMarker)->m_startFrequency < selectedFrequency) && (selectedFrequency <= stopFrequency) && !selected)
 | |
|                 {
 | |
|                     switch ((*iMarker)->m_show)
 | |
|                     {
 | |
|                     case SpectrumAnnotationMarker::ShowTop:
 | |
|                         (*iMarker)->m_show = SpectrumAnnotationMarker::ShowText;
 | |
|                         break;
 | |
|                     case SpectrumAnnotationMarker::ShowText:
 | |
|                         (*iMarker)->m_show = SpectrumAnnotationMarker::ShowFull;
 | |
|                         break;
 | |
|                     case SpectrumAnnotationMarker::ShowFull:
 | |
|                         (*iMarker)->m_show = SpectrumAnnotationMarker::ShowTop;
 | |
|                         break;
 | |
|                     case SpectrumAnnotationMarker::Hidden:
 | |
|                         break;
 | |
|                     }
 | |
|                     selected = true;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         if  (m_cursorState == CSSplitter)
 | |
|         {
 | |
|             grabMouse();
 | |
|             m_cursorState = CSSplitterMoving;
 | |
|             return;
 | |
|         }
 | |
|         else if (m_cursorState == CSChannel)
 | |
|         {
 | |
|             grabMouse();
 | |
|             m_cursorState = CSChannelMoving;
 | |
|             return;
 | |
|         }
 | |
|         else if ((m_cursorState == CSNormal) &&
 | |
|             (m_channelMarkerStates.size() == 1) &&
 | |
|             !(event->modifiers() & Qt::ShiftModifier) &&
 | |
|             !(event->modifiers() & Qt::AltModifier) &&
 | |
|             !(event->modifiers() & Qt::ControlModifier) &&
 | |
|             (ep.y() > m_histogramRect.top()*height() + m_annotationMarkerHeight + 2.0f)) // out of annotation selection zone
 | |
|         {
 | |
|             grabMouse();
 | |
|             setCursor(Qt::SizeHorCursor);
 | |
|             m_cursorState = CSChannelMoving;
 | |
|             m_cursorChannel = 0;
 | |
|             Real freq = m_frequencyScale.getValueFromPos(event->x() - m_leftMarginPixmap.width() - 1) - m_centerFrequency;
 | |
| 
 | |
|             if (m_channelMarkerStates[m_cursorChannel]->m_channelMarker->getMovable()
 | |
|                 && (m_channelMarkerStates[m_cursorChannel]->m_channelMarker->getSourceOrSinkStream() == m_displaySourceOrSink)
 | |
|                 && m_channelMarkerStates[m_cursorChannel]->m_channelMarker->streamIndexApplies(m_displayStreamIndex))
 | |
|             {
 | |
|                 m_channelMarkerStates[m_cursorChannel]->m_channelMarker->setCenterFrequencyByCursor(freq);
 | |
|                 channelMarkerChanged();
 | |
|             }
 | |
| 
 | |
|             return;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| void GLSpectrumView::mouseReleaseEvent(QMouseEvent*)
 | |
| {
 | |
|     m_scrollFrequency = false;
 | |
|     m_pan3DSpectrogram = false;
 | |
|     m_rotate3DSpectrogram = false;
 | |
|     m_scaleZ3DSpectrogram = false;
 | |
|     if (m_cursorState == CSSplitterMoving)
 | |
|     {
 | |
|         releaseMouse();
 | |
|         m_cursorState = CSSplitter;
 | |
|     }
 | |
|     else if (m_cursorState == CSChannelMoving)
 | |
|     {
 | |
|         releaseMouse();
 | |
|         m_cursorState = CSChannel;
 | |
|     }
 | |
| }
 | |
| 
 | |
| void GLSpectrumView::wheelEvent(QWheelEvent *event)
 | |
| {
 | |
| #if QT_VERSION >= QT_VERSION_CHECK(5, 14, 0)
 | |
|     const QPointF& ep = event->position();
 | |
| #else
 | |
|     const QPointF& ep = event->pos();
 | |
| #endif
 | |
|     if (m_display3DSpectrogram && pointInWaterfallOrSpectrogram(ep))
 | |
|     {
 | |
|         // Scale 3D spectrogram when mouse wheel moved
 | |
|         // Some mice use delta in steps of 120 for 15 degrees
 | |
|         // for one step of mouse wheel
 | |
|         // Other mice/trackpads use smaller values
 | |
|         int delta = event->angleDelta().y();
 | |
|         if (delta != 0) {
 | |
|              m_glShaderSpectrogram.verticalAngle(-5.0*delta/120.0);
 | |
|         }
 | |
|         repaint(); // Force repaint in case acquisition is stopped
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         if (event->modifiers() & Qt::ShiftModifier) {
 | |
|             channelMarkerMove(event, 100);
 | |
|         } else if (event->modifiers() & Qt::ControlModifier) {
 | |
|             channelMarkerMove(event, 10);
 | |
|         } else {
 | |
|             channelMarkerMove(event, 1);
 | |
|         }
 | |
|     }
 | |
|     event->accept();
 | |
| }
 | |
| 
 | |
| void GLSpectrumView::zoomFactor(const QPointF& p, float factor)
 | |
| {
 | |
|     float pwx = (p.x() - m_leftMargin) / (width() - m_leftMargin - m_rightMargin); // x position in window
 | |
| 
 | |
|     if ((pwx >= 0.0f) && (pwx <= 1.0f))
 | |
|     {
 | |
|         // When we zoom, we want the frequency under the cursor to remain the same
 | |
| 
 | |
|         // Determine frequency at cursor position
 | |
|         float zoomFreq = m_frequencyScale.getRangeMin() + pwx*m_frequencyScale.getRange();
 | |
| 
 | |
|         // Calculate current centre frequency
 | |
|         float currentCF = (m_frequencyZoomFactor == 1) ? m_centerFrequency : ((m_frequencyZoomPos - 0.5) * m_sampleRate + m_centerFrequency);
 | |
| 
 | |
|         // Calculate difference from frequency under cursor to centre frequency
 | |
|         float freqDiff = (currentCF - zoomFreq);
 | |
| 
 | |
|         // Calculate what that difference would be if there was no zoom
 | |
|         float freqDiffZoom1 = freqDiff * m_frequencyZoomFactor;
 | |
| 
 | |
|         m_frequencyZoomFactor *= factor;
 | |
|         m_frequencyZoomFactor = std::min(m_frequencyZoomFactor, m_maxFrequencyZoom);
 | |
|         m_frequencyZoomFactor = std::max(m_frequencyZoomFactor, 1.0f);
 | |
| 
 | |
|         // Calculate what frequency difference should be at new zoom
 | |
|         float zoomedFreqDiff = freqDiffZoom1 / m_frequencyZoomFactor;
 | |
|         // Then calculate what the center frequency should be
 | |
|         float zoomedCF = zoomFreq + zoomedFreqDiff;
 | |
| 
 | |
|         // Calculate zoom position which will set the desired center frequency
 | |
|         float zoomPos = (zoomedCF - m_centerFrequency) / m_sampleRate + 0.5;
 | |
|         zoomPos = std::max(0.0f, zoomPos);
 | |
|         zoomPos = std::min(1.0f, zoomPos);
 | |
| 
 | |
|         frequencyZoom(zoomPos);
 | |
|     }
 | |
|  }
 | |
| 
 | |
| void GLSpectrumView::zoom(const QPointF& p, int y)
 | |
| {
 | |
|     float pwx = (p.x() - m_leftMargin) / (width() - m_leftMargin - m_rightMargin); // x position in window
 | |
| 
 | |
|     if ((pwx >= 0.0f) && (pwx <= 1.0f))
 | |
|     {
 | |
|         // When we zoom, we want the frequency under the cursor to remain the same
 | |
| 
 | |
|         // Determine frequency at cursor position
 | |
|         float zoomFreq = m_frequencyScale.getRangeMin() + pwx*m_frequencyScale.getRange();
 | |
| 
 | |
|         // Calculate current centre frequency
 | |
|         int adjSampleRate = m_ssbSpectrum ? m_sampleRate/2 : m_sampleRate;
 | |
|         qint64 adjCenterFrequency = m_centerFrequency + (m_ssbSpectrum ? m_sampleRate/4 : 0);
 | |
|         float currentCF = (m_frequencyZoomFactor == 1) ?
 | |
|             adjCenterFrequency : (m_frequencyZoomPos - 0.5) * adjSampleRate + adjCenterFrequency;
 | |
| 
 | |
|         // Calculate difference from frequency under cursor to centre frequency
 | |
|         float freqDiff = (currentCF - zoomFreq);
 | |
| 
 | |
|         // Calculate what that difference would be if there was no zoom
 | |
|         float freqDiffZoom1 = freqDiff * m_frequencyZoomFactor;
 | |
| 
 | |
|         if (y > 0) // zoom in
 | |
|         {
 | |
|             if (m_frequencyZoomFactor < m_maxFrequencyZoom) {
 | |
|                 m_frequencyZoomFactor += 0.5f;
 | |
|             } else {
 | |
|                 return;
 | |
|             }
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|             if (m_frequencyZoomFactor > 1.0f) {
 | |
|                 m_frequencyZoomFactor -= 0.5f;
 | |
|             } else {
 | |
|                 return;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // Calculate what frequency difference should be at new zoom
 | |
|         float zoomedFreqDiff = freqDiffZoom1 / m_frequencyZoomFactor;
 | |
|         // Then calculate what the center frequency should be
 | |
|         float zoomedCF = zoomFreq + zoomedFreqDiff;
 | |
| 
 | |
|         // Calculate zoom position which will set the desired center frequency
 | |
|         float zoomPos = (zoomedCF - adjCenterFrequency) / adjSampleRate + 0.5;
 | |
|         zoomPos = std::max(0.0f, zoomPos);
 | |
|         zoomPos = std::min(1.0f, zoomPos);
 | |
| 
 | |
|         frequencyZoom(zoomPos);
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         float pwyh, pwyw;
 | |
| 
 | |
|         if (m_invertedWaterfall) // histo on top
 | |
|         {
 | |
|             pwyh = (p.y() - m_topMargin) / m_histogramHeight;
 | |
|             pwyw = (p.y() - m_topMargin - m_histogramHeight - m_frequencyScaleHeight) / m_waterfallHeight;
 | |
|         }
 | |
|         else // waterfall on top
 | |
|         {
 | |
|             pwyw = (p.y() - m_topMargin) / m_waterfallHeight;
 | |
|             pwyh = (p.y() - m_topMargin - m_waterfallHeight - m_frequencyScaleHeight) / m_histogramHeight;
 | |
|         }
 | |
| 
 | |
|         //qDebug("GLSpectrumView::zoom: pwyh: %f pwyw: %f", pwyh, pwyw);
 | |
| 
 | |
|         if ((pwyw >= 0.0f) && (pwyw <= 1.0f)) {
 | |
|             timeZoom(y > 0);
 | |
|         }
 | |
| 
 | |
|         if ((pwyh >= 0.0f) && (pwyh <= 1.0f) && !m_linear) {
 | |
|             powerZoom(pwyh, y > 0);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| void GLSpectrumView::frequencyZoom(float zoomPos)
 | |
| {
 | |
|     m_frequencyZoomPos = zoomPos;
 | |
|     updateFFTLimits();
 | |
| }
 | |
| 
 | |
| void GLSpectrumView::frequencyPan(QMouseEvent *event)
 | |
| {
 | |
|     if (m_frequencyZoomFactor == 1.0f) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     const QPointF& p = event->pos();
 | |
|     float pw = (p.x() - m_leftMargin) / (width() - m_leftMargin - m_rightMargin); // position in window
 | |
|     pw = pw < 0.0f ? 0.0f : pw > 1.0f ? 1.0 : pw;
 | |
|     float dw = pw - 0.5f;
 | |
|     m_frequencyZoomPos += dw * (1.0f / m_frequencyZoomFactor);
 | |
|     float lim = 0.5f / m_frequencyZoomFactor;
 | |
|     m_frequencyZoomPos = m_frequencyZoomPos < lim ? lim : m_frequencyZoomPos > 1 - lim ? 1 - lim : m_frequencyZoomPos;
 | |
| 
 | |
|     qDebug("GLSpectrumView::frequencyPan: pw: %f p: %f", pw, m_frequencyZoomPos);
 | |
|     updateFFTLimits();
 | |
| }
 | |
| 
 | |
| void GLSpectrumView::timeZoom(bool zoomInElseOut)
 | |
| {
 | |
|     if ((m_fftOverlap  == 0) && !zoomInElseOut) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
| 	if (zoomInElseOut && (m_fftOverlap == m_fftSize - 1)) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     m_fftOverlap = m_fftOverlap + (zoomInElseOut ? 1 : -1);
 | |
|     m_changesPending = true;
 | |
| 
 | |
|     if (m_messageQueueToGUI) {
 | |
|         m_messageQueueToGUI->push(new MsgReportFFTOverlap(m_fftOverlap));
 | |
|     }
 | |
| }
 | |
| 
 | |
| void GLSpectrumView::powerZoom(float pw, bool zoomInElseOut)
 | |
| {
 | |
|     m_powerRange = m_powerRange + (zoomInElseOut ? -2 : 2);
 | |
| 
 | |
|     if (pw > 2.0/3.0) { // bottom
 | |
|         m_referenceLevel = m_referenceLevel + (zoomInElseOut ? -2 : 2);
 | |
|     } else if (pw > 1.0/3.0) { // middle
 | |
|         m_referenceLevel = m_referenceLevel + (zoomInElseOut ? -1 : 1);
 | |
|     } // top
 | |
| 
 | |
|     m_powerRange = m_powerRange < 1 ? 1 : m_powerRange > 100 ? 100 : m_powerRange;
 | |
|     m_referenceLevel = m_referenceLevel < -110 ? -110 : m_referenceLevel > 0 ? 0 : m_referenceLevel;
 | |
|     m_changesPending = true;
 | |
| 
 | |
|     if (m_messageQueueToGUI) {
 | |
|         m_messageQueueToGUI->push(new MsgReportPowerScale(m_referenceLevel, m_powerRange));
 | |
|     }
 | |
| }
 | |
| 
 | |
| void GLSpectrumView::resetFrequencyZoom()
 | |
| {
 | |
|     m_frequencyZoomFactor = 1.0f;
 | |
|     m_frequencyZoomPos = 0.5f;
 | |
| 
 | |
|     updateFFTLimits();
 | |
| }
 | |
| 
 | |
| void GLSpectrumView::updateFFTLimits()
 | |
| {
 | |
|     if (!m_spectrumVis) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     SpectrumVis::MsgFrequencyZooming *msg = SpectrumVis::MsgFrequencyZooming::create(
 | |
|         m_frequencyZoomFactor, m_frequencyZoomPos
 | |
|     );
 | |
| 
 | |
|     m_spectrumVis->getInputMessageQueue()->push(msg);
 | |
|     m_changesPending = true;
 | |
| }
 | |
| 
 | |
| void GLSpectrumView::setFrequencyScale()
 | |
| {
 | |
|     int frequencySpan;
 | |
|     int64_t centerFrequency;
 | |
| 
 | |
|     getFrequencyZoom(centerFrequency, frequencySpan);
 | |
|     m_frequencyScale.setSize(width() - m_leftMargin - m_rightMargin);
 | |
|     m_frequencyScale.setRange(Unit::Frequency, centerFrequency - frequencySpan / 2.0, centerFrequency + frequencySpan / 2.0);
 | |
|     m_frequencyScale.setMakeOpposite(m_lsbDisplay);
 | |
| }
 | |
| 
 | |
| void GLSpectrumView::setPowerScale(int height)
 | |
| {
 | |
|     m_powerScale.setSize(height);
 | |
| 
 | |
|     if (m_linear)
 | |
|     {
 | |
|         Real referenceLevel = m_useCalibration ? m_referenceLevel * m_calibrationGain : m_referenceLevel;
 | |
|         m_powerScale.setRange(Unit::Scientific, 0.0f, referenceLevel);
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         Real referenceLevel = m_useCalibration ? m_referenceLevel + m_calibrationShiftdB : m_referenceLevel;
 | |
|         m_powerScale.setRange(Unit::Decibel, referenceLevel - m_powerRange, referenceLevel);
 | |
|     }
 | |
| 
 | |
|     if (m_powerScale.getScaleWidth() > m_leftMargin) {
 | |
|         m_leftMargin = m_powerScale.getScaleWidth();
 | |
|     }
 | |
| }
 | |
| 
 | |
| void GLSpectrumView::getFrequencyZoom(int64_t& centerFrequency, int& frequencySpan)
 | |
| {
 | |
|     int adjSampleRate = m_ssbSpectrum ? m_sampleRate/2 : m_sampleRate;
 | |
|     qint64 adjCenterFrequency = m_centerFrequency + (m_ssbSpectrum ? m_sampleRate/4 : 0);
 | |
|     frequencySpan = (m_frequencyZoomFactor == 1) ?
 | |
|         adjSampleRate : adjSampleRate * (1.0 / m_frequencyZoomFactor);
 | |
|     centerFrequency = (m_frequencyZoomFactor == 1) ?
 | |
|         adjCenterFrequency : (m_frequencyZoomPos - 0.5) * adjSampleRate + adjCenterFrequency;
 | |
| }
 | |
| 
 | |
| // void GLSpectrumView::updateFFTLimits()
 | |
| // {
 | |
| // 	m_fftMin = m_frequencyZoomFactor == 1 ? 0 : (m_frequencyZoomPos - (0.5f / m_frequencyZoomFactor)) * m_fftSize;
 | |
| // 	m_fftMax = m_frequencyZoomFactor == 1 ? m_fftSize : (m_frequencyZoomPos - (0.5f / m_frequencyZoomFactor)) * m_fftSize;
 | |
| // }
 | |
| 
 | |
| void GLSpectrumView::channelMarkerMove(QWheelEvent *event, int mul)
 | |
| {
 | |
|     for (int i = 0; i < m_channelMarkerStates.size(); ++i)
 | |
|     {
 | |
|         if ((m_channelMarkerStates[i]->m_channelMarker->getSourceOrSinkStream() != m_displaySourceOrSink)
 | |
|             || !m_channelMarkerStates[i]->m_channelMarker->streamIndexApplies(m_displayStreamIndex))
 | |
|         {
 | |
|             continue;
 | |
|         }
 | |
| 
 | |
|         if (m_channelMarkerStates[i]->m_rect.contains(event->position()))
 | |
|         {
 | |
|             int freq = m_channelMarkerStates[i]->m_channelMarker->getCenterFrequency();
 | |
| 
 | |
|             if (event->angleDelta().y() > 0) {
 | |
|                 freq += 10 * mul;
 | |
|             } else if (event->angleDelta().y() < 0) {
 | |
|                 freq -= 10 * mul;
 | |
|             }
 | |
| 
 | |
|             // calculate scale relative cursor position for new frequency
 | |
|             float x_pos = m_frequencyScale.getPosFromValue(m_centerFrequency + freq);
 | |
| 
 | |
|             if ((x_pos >= 0.0) && (x_pos < m_frequencyScale.getSize())) // cursor must be in scale
 | |
|             {
 | |
|                 m_channelMarkerStates[i]->m_channelMarker->setCenterFrequencyByCursor(freq);
 | |
|                 m_channelMarkerStates[i]->m_channelMarker->setCenterFrequency(freq);
 | |
| 
 | |
|                 // cursor follow-up
 | |
|                 int xd = x_pos + m_leftMargin;
 | |
|                 QCursor c = cursor();
 | |
|                 QPoint cp_a = c.pos();
 | |
|                 QPoint cp_w = mapFromGlobal(cp_a);
 | |
|                 cp_w.setX(xd);
 | |
|                 cp_a = mapToGlobal(cp_w);
 | |
|                 c.setPos(cp_a);
 | |
|                 setCursor(c);
 | |
|             }
 | |
| 
 | |
|             return;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     zoom(event->position(), event->angleDelta().y());
 | |
| }
 | |
| 
 | |
| // Return if specified point is within the bounds of the waterfall / 3D spectrogram screen area
 | |
| bool GLSpectrumView::pointInWaterfallOrSpectrogram(const QPointF &point) const
 | |
| {
 | |
|     // m_waterfallRect is normalised to [0,1]
 | |
|     QPointF pWat = point;
 | |
|     pWat.rx() = (point.x()/width() - m_waterfallRect.left()) / m_waterfallRect.width();
 | |
|     pWat.ry() = (point.y()/height() - m_waterfallRect.top()) / m_waterfallRect.height();
 | |
| 
 | |
|     return (pWat.x() >= 0) && (pWat.x() <= 1) && (pWat.y() >= 0) && (pWat.y() <= 1);
 | |
| }
 | |
| 
 | |
| // Return if specified point is within the bounds of the histogram screen area
 | |
| bool GLSpectrumView::pointInHistogram(const QPointF &point) const
 | |
| {
 | |
|     // m_histogramRect is normalised to [0,1]
 | |
|     QPointF p = point;
 | |
|     p.rx() = (point.x()/width() - m_histogramRect.left()) / m_histogramRect.width();
 | |
|     p.ry() = (point.y()/height() - m_histogramRect.top()) / m_histogramRect.height();
 | |
| 
 | |
|     return (p.x() >= 0) && (p.x() <= 1) && (p.y() >= 0) && (p.y() <= 1);
 | |
| }
 | |
| 
 | |
| void GLSpectrumView::enterEvent(EnterEventType* event)
 | |
| {
 | |
|     m_mouseInside = true;
 | |
|     update();
 | |
|     QOpenGLWidget::enterEvent(event);
 | |
| }
 | |
| 
 | |
| void GLSpectrumView::leaveEvent(QEvent* event)
 | |
| {
 | |
|     m_mouseInside = false;
 | |
|     update();
 | |
|     QOpenGLWidget::leaveEvent(event);
 | |
| }
 | |
| 
 | |
| void GLSpectrumView::tick()
 | |
| {
 | |
|     if (m_displayChanged)
 | |
|     {
 | |
|         m_displayChanged = false;
 | |
|         update();
 | |
|     }
 | |
| }
 | |
| 
 | |
| void GLSpectrumView::channelMarkerChanged()
 | |
| {
 | |
|     QMutexLocker mutexLocker(&m_mutex);
 | |
|     m_changesPending = true;
 | |
|     update();
 | |
| }
 | |
| 
 | |
| void GLSpectrumView::channelMarkerDestroyed(QObject* object)
 | |
| {
 | |
|     removeChannelMarker((ChannelMarker*)object);
 | |
| }
 | |
| 
 | |
| void GLSpectrumView::setWaterfallShare(Real waterfallShare)
 | |
| {
 | |
|     QMutexLocker mutexLocker(&m_mutex);
 | |
| 
 | |
|     if (waterfallShare < 0.1f) {
 | |
|         m_waterfallShare = 0.1f;
 | |
|     } else if (waterfallShare > 0.8f) {
 | |
|         m_waterfallShare = 0.8f;
 | |
|     } else {
 | |
|         m_waterfallShare = waterfallShare;
 | |
|     }
 | |
| 
 | |
|     m_changesPending = true;
 | |
| }
 | |
| 
 | |
| void GLSpectrumView::setFPSPeriodMs(int fpsPeriodMs)
 | |
| {
 | |
|     if (fpsPeriodMs == 0)
 | |
|     {
 | |
|         disconnect(&m_timer, SIGNAL(timeout()), this, SLOT(tick()));
 | |
|         m_timer.stop();
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         connect(&m_timer, SIGNAL(timeout()), this, SLOT(tick()));
 | |
|         m_timer.start(fpsPeriodMs);
 | |
|     }
 | |
| 
 | |
|     m_fpsPeriodMs = fpsPeriodMs;
 | |
| }
 | |
| 
 | |
| void GLSpectrumView::cleanup()
 | |
| {
 | |
|     //makeCurrent();
 | |
|     m_glShaderSimple.cleanup();
 | |
|     m_glShaderFrequencyScale.cleanup();
 | |
|     m_glShaderHistogram.cleanup();
 | |
|     m_glShaderLeftScale.cleanup();
 | |
|     m_glShaderWaterfall.cleanup();
 | |
|     m_glShaderTextOverlay.cleanup();
 | |
|     m_glShaderInfo.cleanup();
 | |
|     m_glShaderSpectrogram.cleanup();
 | |
|     m_glShaderSpectrogramTimeScale.cleanup();
 | |
|     m_glShaderSpectrogramPowerScale.cleanup();
 | |
|     //doneCurrent();
 | |
| }
 | |
| 
 | |
| // Display number with full precision, group separators and eng. unit suffixes
 | |
| // E.g:
 | |
| // -1.505,123,304G
 | |
| //    456.034,123M
 | |
| //        300.345k
 | |
| //            789
 | |
| QString GLSpectrumView::displayFull(int64_t value)
 | |
| {
 | |
|     if (value == 0) {
 | |
|         return "0";
 | |
|     }
 | |
|     int64_t absValue = std::abs(value);
 | |
| 
 | |
|     QString digits = QString::number(absValue);
 | |
|     int cnt = digits.size();
 | |
| 
 | |
|     QString point = QLocale::system().decimalPoint();
 | |
|     QString group = QLocale::system().groupSeparator();
 | |
|     int i;
 | |
|     for (i = cnt - 3; i >= 4; i -= 3)
 | |
|     {
 | |
|         digits = digits.insert(i, group);
 | |
|     }
 | |
|     if (absValue >= 1000) {
 | |
|         digits = digits.insert(i, point);
 | |
|     }
 | |
|     if (cnt > 9) {
 | |
|         digits = digits.append("G");
 | |
|     } else if (cnt > 6) {
 | |
|         digits = digits.append("M");
 | |
|     } else if (cnt > 3) {
 | |
|         digits = digits.append("k");
 | |
|     }
 | |
|     if (value < 0) {
 | |
|         digits = digits.insert(0, "-");
 | |
|     }
 | |
| 
 | |
|     return digits;
 | |
| }
 | |
| 
 | |
| QString GLSpectrumView::displayScaled(int64_t value, char type, int precision, bool showMult)
 | |
| {
 | |
|     int64_t posValue = (value < 0) ? -value : value;
 | |
| 
 | |
|     if (posValue < 1000) {
 | |
|         return tr("%1").arg(QString::number(value, type, precision));
 | |
|     } else if (posValue < 1000000) {
 | |
|         return tr("%1%2").arg(QString::number(value / 1000.0, type, precision)).arg(showMult ? "k" : "");
 | |
|     } else if (posValue < 1000000000) {
 | |
|         return tr("%1%2").arg(QString::number(value / 1000000.0, type, precision)).arg(showMult ? "M" : "");
 | |
|     } else if (posValue < 1000000000000) {
 | |
|         return tr("%1%2").arg(QString::number(value / 1000000000.0, type, precision)).arg(showMult ? "G" : "");
 | |
|     } else {
 | |
|         return tr("%1").arg(QString::number(value, 'e', precision));
 | |
|     }
 | |
| }
 | |
| 
 | |
| QString GLSpectrumView::displayPower(float value, char type, int precision)
 | |
| {
 | |
|     return tr("%1").arg(QString::number(value, type, precision));
 | |
| }
 | |
| 
 | |
| QString GLSpectrumView::displayScaledF(float value, char type, int precision, bool showMult)
 | |
| {
 | |
|     float posValue = (value < 0) ? -value : value;
 | |
| 
 | |
|     if (posValue == 0)
 | |
|     {
 | |
|         return tr("%1").arg(QString::number(value, 'f', precision));
 | |
|     }
 | |
|     else if (posValue < 1)
 | |
|     {
 | |
|         if (posValue > 0.001) {
 | |
|             return tr("%1%2").arg(QString::number(value * 1000.0, type, precision)).arg(showMult ? "m" : "");
 | |
|         } else if (posValue > 0.000001) {
 | |
|             return tr("%1%2").arg(QString::number(value * 1000000.0, type, precision)).arg(showMult ? "u" : "");
 | |
|         } else if (posValue > 1e-9) {
 | |
|             return tr("%1%2").arg(QString::number(value * 1e9, type, precision)).arg(showMult ? "n" : "");
 | |
|         } else if (posValue > 1e-12) {
 | |
|             return tr("%1%2").arg(QString::number(value * 1e12, type, precision)).arg(showMult ? "p" : "");
 | |
|         } else {
 | |
|             return tr("%1").arg(QString::number(value, 'e', precision));
 | |
|         }
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         if (posValue < 1e3) {
 | |
|             return tr("%1").arg(QString::number(value, type, precision));
 | |
|         } else if (posValue < 1e6) {
 | |
|             return tr("%1%2").arg(QString::number(value / 1000.0, type, precision)).arg(showMult ? "k" : "");
 | |
|         } else if (posValue < 1e9) {
 | |
|             return tr("%1%2").arg(QString::number(value / 1000000.0, type, precision)).arg(showMult ? "M" : "");
 | |
|         } else if (posValue < 1e12) {
 | |
|             return tr("%1%2").arg(QString::number(value / 1000000000.0, type, precision)).arg(showMult ? "G" : "");
 | |
|         } else {
 | |
|             return tr("%1").arg(QString::number(value, 'e', precision));
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| int GLSpectrumView::getPrecision(int value)
 | |
| {
 | |
|     int posValue = (value < 0) ? -value : value;
 | |
| 
 | |
|     if (posValue < 1000) {
 | |
|         return 3;
 | |
|     } else if (posValue < 10000) {
 | |
|         return 4;
 | |
|     } else if (posValue < 100000) {
 | |
|         return 5;
 | |
|     } else {
 | |
|         return 6;
 | |
|     }
 | |
| }
 | |
| 
 | |
| // Draw text right justified in top info bar - currently unused
 | |
| void GLSpectrumView::drawTextRight(const QString &text, const QString &value, const QString &max, const QString &units)
 | |
| {
 | |
|     drawTextsRight({text}, {value}, {max}, {units});
 | |
| }
 | |
| 
 | |
| void GLSpectrumView::drawTextsRight(const QStringList &text, const QStringList &value, const QStringList &max, const QStringList &units)
 | |
| {
 | |
|     QFontMetrics fm(font());
 | |
| 
 | |
|     m_infoPixmap.fill(Qt::transparent);
 | |
| 
 | |
|     QPainter painter(&m_infoPixmap);
 | |
|     painter.setPen(Qt::NoPen);
 | |
|     painter.setBrush(Qt::black);
 | |
|     painter.setBrush(Qt::transparent);
 | |
|     painter.drawRect(m_leftMargin, 0, width() - m_leftMargin, m_infoHeight);
 | |
|     painter.setPen(QColor(0xf0, 0xf0, 0xff));
 | |
|     painter.setFont(font());
 | |
| 
 | |
|     int x = width() - m_rightMargin;
 | |
|     int y = fm.height() + fm.ascent() / 2 - 2;
 | |
|     int textWidth, maxWidth;
 | |
|     for (int i = text.length() - 1; i >= 0; i--)
 | |
|     {
 | |
|         textWidth = fm.horizontalAdvance(units[i]);
 | |
|         painter.drawText(QPointF(x - textWidth, y), units[i]);
 | |
|         x -= textWidth;
 | |
| 
 | |
|         textWidth = fm.horizontalAdvance(value[i]);
 | |
|         maxWidth = fm.horizontalAdvance(max[i]);
 | |
|         painter.drawText(QPointF(x - textWidth, y), value[i]);
 | |
|         x -= maxWidth;
 | |
| 
 | |
|         textWidth = fm.horizontalAdvance(text[i]);
 | |
|         painter.drawText(QPointF(x - textWidth, y), text[i]);
 | |
|         x -= textWidth;
 | |
|     }
 | |
| 
 | |
|     m_glShaderTextOverlay.initTexture(m_infoPixmap.toImage());
 | |
| 
 | |
|     GLfloat vtx1[] = {
 | |
|             0, 1,
 | |
|             1, 1,
 | |
|             1, 0,
 | |
|             0, 0
 | |
|     };
 | |
|     GLfloat tex1[] = {
 | |
|             0, 1,
 | |
|             1, 1,
 | |
|             1, 0,
 | |
|             0, 0
 | |
|     };
 | |
| 
 | |
|     m_glShaderTextOverlay.drawSurface(m_glInfoBoxMatrix, tex1, vtx1, 4);
 | |
| }
 | |
| 
 | |
| void GLSpectrumView::drawTextOverlayCentered (
 | |
|     const QString &text,
 | |
|     const QColor &color,
 | |
|     const QFont& font,
 | |
|     float shiftX,
 | |
|     float shiftY,
 | |
|     const QRectF &glRect)
 | |
| {
 | |
|     if (text.isEmpty()) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     QFontMetricsF metrics(font);
 | |
|     QRectF textRect = metrics.boundingRect(text);
 | |
|     QRectF overlayRect(0, 0, textRect.width() * 1.05f + 4.0f, textRect.height());
 | |
|     QPixmap channelOverlayPixmap = QPixmap(overlayRect.width(), overlayRect.height());
 | |
|     channelOverlayPixmap.fill(Qt::transparent);
 | |
|     QPainter painter(&channelOverlayPixmap);
 | |
|     painter.setRenderHints(QPainter::Antialiasing | QPainter::TextAntialiasing, false);
 | |
|     painter.fillRect(overlayRect, QColor(0, 0, 0, 0x80));
 | |
|     QColor textColor(color);
 | |
|     textColor.setAlpha(0xC0);
 | |
|     painter.setPen(textColor);
 | |
|     painter.setFont(font);
 | |
|     painter.drawText(QPointF(2.0f, overlayRect.height() - 4.0f), text);
 | |
|     painter.end();
 | |
| 
 | |
|     m_glShaderTextOverlay.initTexture(channelOverlayPixmap.toImage());
 | |
| 
 | |
|     {
 | |
|         GLfloat vtx1[] = {
 | |
|             0, 1,
 | |
|             1, 1,
 | |
|             1, 0,
 | |
|             0, 0};
 | |
|         GLfloat tex1[] = {
 | |
|             0, 1,
 | |
|             1, 1,
 | |
|             1, 0,
 | |
|             0, 0};
 | |
| 
 | |
|         float rectX = glRect.x() + shiftX - ((overlayRect.width()/2)/width());
 | |
|         float rectY = glRect.y() + shiftY + (4.0f / height()) - ((overlayRect.height()+5)/height());
 | |
|         float rectW = overlayRect.width() / (float) width();
 | |
|         float rectH = overlayRect.height() / (float) height();
 | |
| 
 | |
|         QMatrix4x4 mat;
 | |
|         mat.setToIdentity();
 | |
|         mat.translate(-1.0f + 2.0f * rectX, 1.0f - 2.0f * rectY);
 | |
|         mat.scale(2.0f * rectW, -2.0f * rectH);
 | |
|         m_glShaderTextOverlay.drawSurface(mat, tex1, vtx1, 4);
 | |
|     }
 | |
| }
 | |
| 
 | |
| void GLSpectrumView::drawTextOverlay(
 | |
|     const QString &text,
 | |
|     const QColor &color,
 | |
|     const QFont& font,
 | |
|     float shiftX,
 | |
|     float shiftY,
 | |
|     bool leftHalf,
 | |
|     bool topHalf,
 | |
|     const QRectF &glRect)
 | |
| {
 | |
|     if (text.isEmpty()) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     QFontMetricsF metrics(font);
 | |
|     QRectF textRect = metrics.boundingRect(text);
 | |
|     QRectF overlayRect(0, 0, textRect.width() * 1.05f + 4.0f, textRect.height());
 | |
|     QPixmap channelOverlayPixmap = QPixmap(overlayRect.width(), overlayRect.height());
 | |
|     channelOverlayPixmap.fill(Qt::transparent);
 | |
|     QPainter painter(&channelOverlayPixmap);
 | |
|     painter.setRenderHints(QPainter::Antialiasing | QPainter::TextAntialiasing, false);
 | |
|     painter.fillRect(overlayRect, QColor(0, 0, 0, 0x80));
 | |
|     QColor textColor(color);
 | |
|     textColor.setAlpha(0xC0);
 | |
|     painter.setPen(textColor);
 | |
|     painter.setFont(font);
 | |
|     painter.drawText(QPointF(2.0f, overlayRect.height() - 4.0f), text);
 | |
|     painter.end();
 | |
| 
 | |
|     m_glShaderTextOverlay.initTexture(channelOverlayPixmap.toImage());
 | |
| 
 | |
|     {
 | |
|         GLfloat vtx1[] = {
 | |
|             0, 1,
 | |
|             1, 1,
 | |
|             1, 0,
 | |
|             0, 0};
 | |
|         GLfloat tex1[] = {
 | |
|             0, 1,
 | |
|             1, 1,
 | |
|             1, 0,
 | |
|             0, 0};
 | |
| 
 | |
|         // float shiftX = glRect.width() - ((overlayRect.width() + 4.0f) / width());
 | |
|         // float shiftY = 4.0f / height();
 | |
|         float rectX = glRect.x() + shiftX - (leftHalf ? 0 : (overlayRect.width()+1)/width());
 | |
|         float rectY = glRect.y() + shiftY + (4.0f / height()) - (topHalf ? 0 : (overlayRect.height()+5)/height());
 | |
|         float rectW = overlayRect.width() / (float) width();
 | |
|         float rectH = overlayRect.height() / (float) height();
 | |
| 
 | |
|         QMatrix4x4 mat;
 | |
|         mat.setToIdentity();
 | |
|         mat.translate(-1.0f + 2.0f * rectX, 1.0f - 2.0f * rectY);
 | |
|         mat.scale(2.0f * rectW, -2.0f * rectH);
 | |
|         m_glShaderTextOverlay.drawSurface(mat, tex1, vtx1, 4);
 | |
|     }
 | |
| }
 | |
| 
 | |
| void GLSpectrumView::formatTextInfo(QString& info)
 | |
| {
 | |
|     if (m_useCalibration) {
 | |
|         info.append(tr("CAL:%1dB ").arg(QString::number(m_calibrationShiftdB, 'f', 1)));
 | |
|     }
 | |
| 
 | |
|     if (m_frequencyZoomFactor != 1.0f) {
 | |
|         info.append(tr("%1x ").arg(QString::number(m_frequencyZoomFactor, 'f', 1)));
 | |
|     }
 | |
| 
 | |
|     if (m_sampleRate == 0)
 | |
|     {
 | |
|         info.append(tr("CF:%1 SP:%2").arg(m_centerFrequency).arg(m_sampleRate));
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         int64_t centerFrequency;
 | |
|         int frequencySpan;
 | |
|         getFrequencyZoom(centerFrequency, frequencySpan);
 | |
|         info.append(tr("CF:%1 ").arg(displayScaled(centerFrequency, 'f', getPrecision(centerFrequency/frequencySpan), true)));
 | |
|         info.append(tr("SP:%1 ").arg(displayScaled(frequencySpan, 'f', 3, true)));
 | |
|     }
 | |
| }
 | |
| 
 | |
| bool GLSpectrumView::eventFilter(QObject *object, QEvent *event)
 | |
| {
 | |
|     if (event->type() == QEvent::KeyPress)
 | |
|     {
 | |
|         QKeyEvent *keyEvent = static_cast<QKeyEvent *>(event);
 | |
|         switch (keyEvent->key())
 | |
|         {
 | |
|         case Qt::Key_Up:
 | |
|             if (keyEvent->modifiers() & Qt::ShiftModifier) {
 | |
|                 m_glShaderSpectrogram.lightRotateX(-5.0f);
 | |
|             } else if (keyEvent->modifiers() & Qt::AltModifier) {
 | |
|                 m_glShaderSpectrogram.lightTranslateY(0.05);
 | |
|             } else if (keyEvent->modifiers() & Qt::ControlModifier) {
 | |
|                 m_glShaderSpectrogram.translateY(0.05);
 | |
|             } else {
 | |
|                 m_glShaderSpectrogram.rotateX(-5.0f);
 | |
|             }
 | |
|             break;
 | |
|         case Qt::Key_Down:
 | |
|             if (keyEvent->modifiers() & Qt::ShiftModifier) {
 | |
|                 m_glShaderSpectrogram.lightRotateX(5.0f);
 | |
|             } else if (keyEvent->modifiers() & Qt::AltModifier) {
 | |
|                 m_glShaderSpectrogram.lightTranslateY(-0.05);
 | |
|             } else if (keyEvent->modifiers() & Qt::ControlModifier) {
 | |
|                 m_glShaderSpectrogram.translateY(-0.05);
 | |
|             } else {
 | |
|                 m_glShaderSpectrogram.rotateX(5.0f);
 | |
|             }
 | |
|             break;
 | |
|         case Qt::Key_Left:
 | |
|             if (keyEvent->modifiers() & Qt::ShiftModifier) {
 | |
|                 m_glShaderSpectrogram.lightRotateZ(5.0f);
 | |
|             } else if (keyEvent->modifiers() & Qt::AltModifier) {
 | |
|                 m_glShaderSpectrogram.lightTranslateX(-0.05);
 | |
|             } else if (keyEvent->modifiers() & Qt::ControlModifier) {
 | |
|                 m_glShaderSpectrogram.translateX(-0.05);
 | |
|             } else {
 | |
|                 m_glShaderSpectrogram.rotateZ(5.0f);
 | |
|             }
 | |
|             break;
 | |
|         case Qt::Key_Right:
 | |
|             if (keyEvent->modifiers() & Qt::ShiftModifier) {
 | |
|                 m_glShaderSpectrogram.lightRotateZ(-5.0f);
 | |
|             } else if (keyEvent->modifiers() & Qt::AltModifier) {
 | |
|                 m_glShaderSpectrogram.lightTranslateX(0.05);
 | |
|             } else if (keyEvent->modifiers() & Qt::ControlModifier) {
 | |
|                 m_glShaderSpectrogram.translateX(0.05);
 | |
|             } else {
 | |
|                 m_glShaderSpectrogram.rotateZ(-5.0f);
 | |
|             }
 | |
|             break;
 | |
|         case Qt::Key_Equal: // So you don't need to press shift
 | |
|         case Qt::Key_Plus:
 | |
|             if (keyEvent->modifiers() & Qt::ControlModifier) {
 | |
|                 m_glShaderSpectrogram.userScaleZ(1.1f);
 | |
|             } else {
 | |
|                 m_glShaderSpectrogram.verticalAngle(-1.0f);
 | |
|             }
 | |
|             break;
 | |
|         case Qt::Key_Minus:
 | |
|             if (keyEvent->modifiers() & Qt::ControlModifier) {
 | |
|                 m_glShaderSpectrogram.userScaleZ(0.9f);
 | |
|             } else {
 | |
|                 m_glShaderSpectrogram.verticalAngle(1.0f);
 | |
|             }
 | |
|             break;
 | |
|         case Qt::Key_R:
 | |
|             m_glShaderSpectrogram.reset();
 | |
|             break;
 | |
|         case Qt::Key_F:
 | |
|             // Project straight down and scale to view, so it's a bit like 2D
 | |
|             m_glShaderSpectrogram.reset();
 | |
|             m_glShaderSpectrogram.rotateX(45.0f);
 | |
|             m_glShaderSpectrogram.verticalAngle(-9.0f);
 | |
|             m_glShaderSpectrogram.userScaleZ(0.0f);
 | |
|             break;
 | |
|         }
 | |
|         repaint(); // Force repaint in case acquisition is stopped
 | |
|         return true;
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         return QOpenGLWidget::eventFilter(object, event);
 | |
|     }
 | |
| }
 |