mirror of
				https://github.com/f4exb/sdrangel.git
				synced 2025-10-31 04:50:29 -04:00 
			
		
		
		
	
		
			
				
	
	
		
			361 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			361 lines
		
	
	
		
			12 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| ///////////////////////////////////////////////////////////////////////////////////
 | |
| // Copyright (C) 2019 F4EXB                                                      //
 | |
| // written by Edouard Griffiths                                                  //
 | |
| //                                                                               //
 | |
| // This program is free software; you can redistribute it and/or modify          //
 | |
| // it under the terms of the GNU General Public License as published by          //
 | |
| // the Free Software Foundation as version 3 of the License, or                  //
 | |
| // (at your option) any later version.                                           //
 | |
| //                                                                               //
 | |
| // This program is distributed in the hope that it will be useful,               //
 | |
| // but WITHOUT ANY WARRANTY; without even the implied warranty of                //
 | |
| // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the                  //
 | |
| // GNU General Public License V3 for more details.                               //
 | |
| //                                                                               //
 | |
| // You should have received a copy of the GNU General Public License             //
 | |
| // along with this program. If not, see <http://www.gnu.org/licenses/>.          //
 | |
| ///////////////////////////////////////////////////////////////////////////////////
 | |
| 
 | |
| 
 | |
| #include <QString>
 | |
| #include <QDebug>
 | |
| #include <algorithm>
 | |
| 
 | |
| #include "inthalfbandfilter.h"
 | |
| #include "dspcommands.h"
 | |
| #include "hbfilterchainconverter.h"
 | |
| #include "upchannelizer.h"
 | |
| 
 | |
| UpChannelizer::UpChannelizer(ChannelSampleSource* sampleSource) :
 | |
|     m_filterChainSetMode(false),
 | |
|     m_sampleSource(sampleSource),
 | |
|     m_basebandSampleRate(0),
 | |
|     m_requestedInputSampleRate(0),
 | |
|     m_requestedCenterFrequency(0),
 | |
|     m_channelSampleRate(0),
 | |
|     m_channelFrequencyOffset(0),
 | |
|     m_log2Interp(0),
 | |
|     m_filterChainHash(0)
 | |
| {
 | |
| }
 | |
| 
 | |
| UpChannelizer::~UpChannelizer()
 | |
| {
 | |
|     freeFilterChain();
 | |
| }
 | |
| 
 | |
| void UpChannelizer::pullOne(Sample& sample)
 | |
| {
 | |
|     if (m_sampleSource == nullptr)
 | |
|     {
 | |
|         m_sampleBuffer.clear();
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     unsigned int log2Interp = m_filterStages.size();
 | |
| 
 | |
|     if (log2Interp == 0) // optimization when no downsampling is done anyway
 | |
|     {
 | |
|         m_sampleSource->pullOne(sample);
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         FilterStages::iterator stage = m_filterStages.begin();
 | |
|         std::vector<Sample>::iterator stageSample = m_stageSamples.begin();
 | |
| 
 | |
|         for (; stage != m_filterStages.end(); ++stage, ++stageSample)
 | |
|         {
 | |
|             if(stage == m_filterStages.end() - 1)
 | |
|             {
 | |
|                 if ((*stage)->work(&m_sampleIn, &(*stageSample)))
 | |
|                 {
 | |
|                     m_sampleSource->pullOne(m_sampleIn); // get new input sample
 | |
|                 }
 | |
|             }
 | |
|             else
 | |
|             {
 | |
|                 if (!(*stage)->work(&(*(stageSample+1)), &(*stageSample)))
 | |
|                 {
 | |
|                     break;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         sample = *m_stageSamples.begin();
 | |
|     }
 | |
| }
 | |
| 
 | |
| void UpChannelizer::pull(SampleVector::iterator begin, unsigned int nbSamples)
 | |
| {
 | |
|     if (m_sampleSource == nullptr)
 | |
|     {
 | |
|         m_sampleBuffer.clear();
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     unsigned int log2Interp = m_filterStages.size();
 | |
| 
 | |
|     if (log2Interp == 0) // optimization when no downsampling is done anyway
 | |
|     {
 | |
|         m_sampleSource->pull(begin, nbSamples);
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         std::for_each(
 | |
|             begin,
 | |
|             begin + nbSamples,
 | |
|             [this](Sample& s) {
 | |
|                 pullOne(s);
 | |
|             }
 | |
|         );
 | |
|     }
 | |
| }
 | |
| 
 | |
| void UpChannelizer::prefetch(unsigned int nbSamples)
 | |
| {
 | |
|     unsigned int log2Interp = m_filterStages.size();
 | |
|     m_sampleSource->prefetch(nbSamples/(1<<log2Interp)); // 2^n less samples will be produced by the source
 | |
| }
 | |
| 
 | |
| void UpChannelizer::setChannelization(int requestedSampleRate, qint64 requestedCenterFrequency)
 | |
| {
 | |
|     m_requestedInputSampleRate = requestedSampleRate;
 | |
|     m_requestedCenterFrequency = requestedCenterFrequency;
 | |
|     applyChannelization();
 | |
| }
 | |
| 
 | |
| void UpChannelizer::setBasebandSampleRate(int basebandSampleRate, bool interp)
 | |
| {
 | |
|     m_basebandSampleRate = basebandSampleRate;
 | |
| 
 | |
|     if (interp) {
 | |
|         applyInterpolation();
 | |
|     } else {
 | |
|         applyChannelization();
 | |
|     }
 | |
| }
 | |
| 
 | |
| void UpChannelizer::applyChannelization()
 | |
| {
 | |
|     m_filterChainSetMode = false;
 | |
| 
 | |
|     if (m_basebandSampleRate == 0)
 | |
|     {
 | |
|         qDebug() << "UpChannelizer::applyConfiguration: aborting (out=0):"
 | |
|                 << " out:" << m_basebandSampleRate
 | |
|                 << " req:" << m_requestedInputSampleRate
 | |
|                 << " in:" << m_channelSampleRate
 | |
|                 << " fc:" << m_channelFrequencyOffset;
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     freeFilterChain();
 | |
| 
 | |
|     m_channelFrequencyOffset = createFilterChain(
 | |
|         m_basebandSampleRate / -2, m_basebandSampleRate / 2,
 | |
|         m_requestedCenterFrequency - m_requestedInputSampleRate / 2, m_requestedCenterFrequency + m_requestedInputSampleRate / 2);
 | |
| 
 | |
|     m_channelSampleRate = m_basebandSampleRate / (1 << m_filterStages.size());
 | |
| 
 | |
|     qDebug() << "UpChannelizer::applyConfiguration: done: "
 | |
|             << " out:" << m_basebandSampleRate
 | |
|             << " req:" << m_requestedInputSampleRate
 | |
|             << " in:" << m_channelSampleRate
 | |
|             << " fc:" << m_channelFrequencyOffset;
 | |
| }
 | |
| 
 | |
| void UpChannelizer::setInterpolation(unsigned int log2Interp, unsigned int filterChainHash)
 | |
| {
 | |
|     m_log2Interp = log2Interp;
 | |
|     m_filterChainHash = filterChainHash;
 | |
|     applyInterpolation();
 | |
| }
 | |
| 
 | |
| void UpChannelizer::applyInterpolation()
 | |
| {
 | |
|     m_filterChainSetMode = true;
 | |
|     std::vector<unsigned int> stageIndexes;
 | |
|     m_channelFrequencyOffset = m_basebandSampleRate * HBFilterChainConverter::convertToIndexes(m_log2Interp, m_filterChainHash, stageIndexes);
 | |
|     m_requestedCenterFrequency = m_channelFrequencyOffset;
 | |
| 
 | |
|     freeFilterChain();
 | |
| 
 | |
|     m_channelFrequencyOffset = m_basebandSampleRate * setFilterChain(stageIndexes);
 | |
|     m_channelSampleRate = m_basebandSampleRate / (1 << m_filterStages.size());
 | |
|     m_requestedInputSampleRate = m_channelSampleRate;
 | |
| 
 | |
| 	qDebug() << "UpChannelizer::applyInterpolation:"
 | |
|             << " m_log2Interp:" << m_log2Interp
 | |
|             << " m_filterChainHash:" << m_filterChainHash
 | |
|             << " out:" << m_basebandSampleRate
 | |
| 			<< " in:" << m_channelSampleRate
 | |
| 			<< " fc:" << m_channelFrequencyOffset;
 | |
| }
 | |
| 
 | |
| #ifdef USE_SSE4_1
 | |
| UpChannelizer::FilterStage::FilterStage(Mode mode) :
 | |
|     m_filter(new IntHalfbandFilterEO1<UPCHANNELIZER_HB_FILTER_ORDER>),
 | |
|     m_workFunction(0)
 | |
| {
 | |
|     switch(mode) {
 | |
|         case ModeCenter:
 | |
|             m_workFunction = &IntHalfbandFilterEO1<UPCHANNELIZER_HB_FILTER_ORDER>::workInterpolateCenter;
 | |
|             break;
 | |
| 
 | |
|         case ModeLowerHalf:
 | |
|             m_workFunction = &IntHalfbandFilterEO1<UPCHANNELIZER_HB_FILTER_ORDER>::workInterpolateLowerHalf;
 | |
|             break;
 | |
| 
 | |
|         case ModeUpperHalf:
 | |
|             m_workFunction = &IntHalfbandFilterEO1<UPCHANNELIZER_HB_FILTER_ORDER>::workInterpolateUpperHalf;
 | |
|             break;
 | |
|     }
 | |
| }
 | |
| #else
 | |
| UpChannelizer::FilterStage::FilterStage(Mode mode) :
 | |
|     m_filter(new IntHalfbandFilterDB<qint32, UPCHANNELIZER_HB_FILTER_ORDER>),
 | |
|     m_workFunction(0)
 | |
| {
 | |
|     switch(mode) {
 | |
|         case ModeCenter:
 | |
|             m_workFunction = &IntHalfbandFilterDB<qint32, UPCHANNELIZER_HB_FILTER_ORDER>::workInterpolateCenter;
 | |
|             break;
 | |
| 
 | |
|         case ModeLowerHalf:
 | |
|             m_workFunction = &IntHalfbandFilterDB<qint32, UPCHANNELIZER_HB_FILTER_ORDER>::workInterpolateLowerHalf;
 | |
|             break;
 | |
| 
 | |
|         case ModeUpperHalf:
 | |
|             m_workFunction = &IntHalfbandFilterDB<qint32, UPCHANNELIZER_HB_FILTER_ORDER>::workInterpolateUpperHalf;
 | |
|             break;
 | |
|     }
 | |
| }
 | |
| #endif
 | |
| 
 | |
| UpChannelizer::FilterStage::~FilterStage()
 | |
| {
 | |
|     delete m_filter;
 | |
| }
 | |
| 
 | |
| bool UpChannelizer::signalContainsChannel(Real sigStart, Real sigEnd, Real chanStart, Real chanEnd) const
 | |
| {
 | |
|     //qDebug("   testing signal [%f, %f], channel [%f, %f]", sigStart, sigEnd, chanStart, chanEnd);
 | |
|     if(sigEnd <= sigStart)
 | |
|         return false;
 | |
|     if(chanEnd <= chanStart)
 | |
|         return false;
 | |
|     return (sigStart <= chanStart) && (sigEnd >= chanEnd);
 | |
| }
 | |
| 
 | |
| Real UpChannelizer::createFilterChain(Real sigStart, Real sigEnd, Real chanStart, Real chanEnd)
 | |
| {
 | |
|     Real sigBw = sigEnd - sigStart;
 | |
|     Real rot = sigBw / 4;
 | |
|     Sample s;
 | |
| 
 | |
|     qDebug() << "UpChannelizer::createFilterChain: start:"
 | |
|             << " sig: ["  << sigStart << ":" << sigEnd << "]"
 | |
|             << " BW: " << sigBw
 | |
|             << " chan: [" << chanStart << ":" << chanEnd << "]"
 | |
|             << " rot: " << rot;
 | |
| 
 | |
|     // check if it fits into the left half
 | |
|     if(signalContainsChannel(sigStart, sigStart + sigBw / 2.0, chanStart, chanEnd))
 | |
|     {
 | |
|         qDebug() << "UpChannelizer::createFilterChain: take left half (rotate by +1/4 and decimate by 2):"
 | |
|                 << " [" << m_filterStages.size() << "]"
 | |
|                 << " sig: ["  << sigStart << ":" << sigStart + sigBw / 2.0 << "]";
 | |
|         m_filterStages.push_back(new FilterStage(FilterStage::ModeLowerHalf));
 | |
|         m_stageSamples.push_back(s);
 | |
|         return createFilterChain(sigStart, sigStart + sigBw / 2.0, chanStart, chanEnd);
 | |
|     }
 | |
| 
 | |
|     // check if it fits into the right half
 | |
|     if(signalContainsChannel(sigEnd - sigBw / 2.0f, sigEnd, chanStart, chanEnd))
 | |
|     {
 | |
|         qDebug() << "UpChannelizer::createFilterChain: take right half (rotate by -1/4 and decimate by 2):"
 | |
|                 << " [" << m_filterStages.size() << "]"
 | |
|                 << " sig: ["  << sigEnd - sigBw / 2.0f << ":" << sigEnd << "]";
 | |
|         m_filterStages.push_back(new FilterStage(FilterStage::ModeUpperHalf));
 | |
|         m_stageSamples.push_back(s);
 | |
|         return createFilterChain(sigEnd - sigBw / 2.0f, sigEnd, chanStart, chanEnd);
 | |
|     }
 | |
| 
 | |
|     // check if it fits into the center
 | |
|     // Was: if(signalContainsChannel(sigStart + rot + safetyMargin, sigStart + rot + sigBw / 2.0f - safetyMargin, chanStart, chanEnd)) {
 | |
|     if(signalContainsChannel(sigStart + rot, sigEnd - rot, chanStart, chanEnd))
 | |
|     {
 | |
|         qDebug() << "UpChannelizer::createFilterChain: take center half (decimate by 2):"
 | |
|                 << " [" << m_filterStages.size() << "]"
 | |
|                 << " sig: ["  << sigStart + rot << ":" << sigEnd - rot << "]";
 | |
|         m_filterStages.push_back(new FilterStage(FilterStage::ModeCenter));
 | |
|         m_stageSamples.push_back(s);
 | |
|         // Was: return createFilterChain(sigStart + rot, sigStart + sigBw / 2.0f + rot, chanStart, chanEnd);
 | |
|         return createFilterChain(sigStart + rot, sigEnd - rot, chanStart, chanEnd);
 | |
|     }
 | |
| 
 | |
|     Real ofs = ((chanEnd - chanStart) / 2.0 + chanStart) - ((sigEnd - sigStart) / 2.0 + sigStart);
 | |
| 
 | |
|     qDebug() << "UpChannelizer::createFilterChain: complete:"
 | |
|             << " #stages: " << m_filterStages.size()
 | |
|             << " BW: "  << sigBw
 | |
|             << " ofs: " << ofs;
 | |
| 
 | |
|     return ofs;
 | |
| }
 | |
| 
 | |
| double UpChannelizer::setFilterChain(const std::vector<unsigned int>& stageIndexes)
 | |
| {
 | |
|     // filters are described from lower to upper level but the chain is constructed the other way round
 | |
|     std::vector<unsigned int>::const_reverse_iterator rit = stageIndexes.rbegin();
 | |
|     double ofs = 0.0, ofs_stage = 0.25;
 | |
|     Sample s;
 | |
| 
 | |
|     // Each index is a base 3 number with 0 = low, 1 = center, 2 = high
 | |
|     // Functions at upper level will convert a number to base 3 to describe the filter chain. Common converting
 | |
|     // algorithms will go from LSD to MSD. This explains the reverse order.
 | |
|     for (; rit != stageIndexes.rend(); ++rit)
 | |
|     {
 | |
|         if (*rit == 0)
 | |
|         {
 | |
|             m_filterStages.push_back(new FilterStage(FilterStage::ModeLowerHalf));
 | |
|             m_stageSamples.push_back(s);
 | |
|             ofs -= ofs_stage;
 | |
|             qDebug("UpChannelizer::setFilterChain: lower half: ofs: %f", ofs);
 | |
|         }
 | |
|         else if (*rit == 1)
 | |
|         {
 | |
|             m_filterStages.push_back(new FilterStage(FilterStage::ModeCenter));
 | |
|             m_stageSamples.push_back(s);
 | |
|             qDebug("UpChannelizer::setFilterChain: center: ofs: %f", ofs);
 | |
|         }
 | |
|         else if (*rit == 2)
 | |
|         {
 | |
|             m_filterStages.push_back(new FilterStage(FilterStage::ModeUpperHalf));
 | |
|             m_stageSamples.push_back(s);
 | |
|             ofs += ofs_stage;
 | |
|             qDebug("UpChannelizer::setFilterChain: upper half: ofs: %f", ofs);
 | |
|         }
 | |
| 
 | |
|         ofs_stage /= 2;
 | |
|     }
 | |
| 
 | |
|     qDebug() << "UpChannelizer::setFilterChain: complete:"
 | |
|             << " #stages: " << m_filterStages.size()
 | |
|             << " ofs: " << ofs;
 | |
| 
 | |
|     return ofs;
 | |
| }
 | |
| 
 | |
| void UpChannelizer::freeFilterChain()
 | |
| {
 | |
|     for(FilterStages::iterator it = m_filterStages.begin(); it != m_filterStages.end(); ++it)
 | |
|         delete *it;
 | |
|     m_filterStages.clear();
 | |
|     m_stageSamples.clear();
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 | |
| 
 |