mirror of
				https://github.com/f4exb/sdrangel.git
				synced 2025-10-31 13:00:26 -04:00 
			
		
		
		
	
		
			
				
	
	
		
			663 lines
		
	
	
		
			25 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			663 lines
		
	
	
		
			25 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| ///////////////////////////////////////////////////////////////////////////////////////
 | |
| // Copyright (C) 2022 Jon Beniston, M7RCE <jon@beniston.com>                         //
 | |
| //                                                                                   //
 | |
| // This program is free software; you can redistribute it and/or modify              //
 | |
| // it under the terms of the GNU General Public License as published by              //
 | |
| // the Free Software Foundation as version 3 of the License, or                      //
 | |
| // (at your option) any later version.                                               //
 | |
| //                                                                                   //
 | |
| // This program is distributed in the hope that it will be useful,                   //
 | |
| // but WITHOUT ANY WARRANTY; without even the implied warranty of                    //
 | |
| // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the                      //
 | |
| // GNU General Public License V3 for more details.                                   //
 | |
| //                                                                                   //
 | |
| // You should have received a copy of the GNU General Public License                 //
 | |
| // along with this program. If not, see <http://www.gnu.org/licenses/>.              //
 | |
| ///////////////////////////////////////////////////////////////////////////////////////
 | |
| /*
 | |
|  * Reed-Solomon -- Reed-Solomon encoder / decoder library
 | |
|  *
 | |
|  * Copyright (c) 2014 Hard Consulting Corporation.
 | |
|  * Copyright (c) 2006 Phil Karn, KA9Q
 | |
|  *
 | |
|  * It may be used under the terms of the GNU Lesser General Public License (LGPL).
 | |
|  *
 | |
|  * Simplified version of https://github.com/pjkundert/ezpwd-reed-solomon which
 | |
|  * seems to be the fastest open-source decoder.
 | |
|  *
 | |
|  */
 | |
| 
 | |
| #ifndef REEDSOLOMON_H
 | |
| #define REEDSOLOMON_H
 | |
| 
 | |
| #include <algorithm>
 | |
| #include <array>
 | |
| #include <cstdint>
 | |
| #include <cstring>
 | |
| #include <type_traits>
 | |
| #include <vector>
 | |
| 
 | |
| // Preprocessor defines available:
 | |
| //
 | |
| // EZPWD_NO_MOD_TAB -- define to force no "modnn" Galois modulo table acceleration
 | |
| //
 | |
| //#define EZPWD_NO_MOD_TAB
 | |
| 
 | |
| namespace ReedSolomon {
 | |
| 
 | |
| //
 | |
| // reed_solomon_base - Reed-Solomon codec generic base class
 | |
| //
 | |
| class reed_solomon_base {
 | |
| public:
 | |
|     virtual size_t datum() const = 0;   // a data element's bits
 | |
|     virtual size_t symbol() const = 0;  // a symbol's bits
 | |
|     virtual int size() const = 0;       // R-S block size (maximum total symbols)
 | |
|     virtual int nroots() const = 0;     // R-S roots (parity symbols)
 | |
|     virtual int load() const = 0;       // R-S net payload (data symbols)
 | |
| 
 | |
|     virtual ~reed_solomon_base() {}
 | |
| 
 | |
|     reed_solomon_base() {}
 | |
| 
 | |
|     //
 | |
|     // {en,de}code -- Compute/Correct errors/erasures in a Reed-Solomon encoded container
 | |
|     //
 | |
|     ///     For decode, optionally specify some known erasure positions (up to nroots()).  If
 | |
|     /// non-empty 'erasures' is provided, it contains the positions of each erasure.  If a
 | |
|     /// non-zero pointer to a 'position' vector is provided, its capacity will be increased to
 | |
|     /// be capable of storing up to 'nroots()' ints; the actual deduced error locations will be
 | |
|     /// returned.
 | |
|     ///
 | |
|     /// RETURN VALUE
 | |
|     ///
 | |
|     ///     Return -1 on error.  The encode returns the number of parity symbols produced;
 | |
|     /// decode returns the number of symbols corrected.  Both errors and erasures are included,
 | |
|     /// so long as they are actually different than the deduced value.  In other words, if a
 | |
|     /// symbol is marked as an erasure but it actually turns out to be correct, it's index will
 | |
|     /// NOT be included in the returned count, nor the modified erasure vector!
 | |
|     ///
 | |
| 
 | |
|     virtual int encode(const uint8_t *data, int len, uint8_t *parity) const = 0;
 | |
| 
 | |
|     virtual int decode1(uint8_t *data, int len, uint8_t *parity,
 | |
|                        const std::vector<int> &erasure = std::vector<int>(), std::vector<int> *position = 0) const = 0;
 | |
| 
 | |
|     int decode(uint8_t *data,
 | |
|                int len,
 | |
|                int pad = 0,  // ignore 'pad' symbols at start of array
 | |
|                const std::vector<int> &erasure = std::vector<int>(),
 | |
|                std::vector<int> *position = 0) const
 | |
|     {
 | |
|         return decode1((uint8_t*)(data + pad), len, (uint8_t*)(data + len), erasure, position);
 | |
|     }
 | |
| 
 | |
| };
 | |
| 
 | |
| //
 | |
| // gfpoly - default field polynomial generator functor.
 | |
| //
 | |
| template <int PLY>
 | |
| struct gfpoly {
 | |
|     int operator()(int sr) const
 | |
|     {
 | |
|         if (sr == 0) {
 | |
|             sr = 1;
 | |
|         } else {
 | |
|             sr <<= 1;
 | |
|             if (sr & (1 << 8))
 | |
|                 sr ^= PLY;
 | |
|             sr &= ((1 << 8) - 1);
 | |
|         }
 | |
|         return sr;
 | |
|     }
 | |
| };
 | |
| 
 | |
| //
 | |
| // class reed_solomon_tabs -- R-S tables common to all RS(NN,*) with same SYM, PRM and PLY
 | |
| //
 | |
| template <int PRM, class PLY>
 | |
| class reed_solomon_tabs : public reed_solomon_base {
 | |
| public:
 | |
|     typedef uint8_t symbol_t;
 | |
|     static const size_t DATUM = 8;     // bits
 | |
|     static const size_t SYMBOL = 8;  // bits / symbol
 | |
|     static const int MM = 8;
 | |
|     static const int SIZE = (1 << 8) - 1;  // maximum symbols in field
 | |
|     static const int NN = SIZE;
 | |
|     static const int A0 = SIZE;
 | |
|     static const int MODS  // modulo table: 1/2 the symbol size squared, up to 4k
 | |
| #if defined(EZPWD_NO_MOD_TAB)
 | |
|         = 0;
 | |
| #else
 | |
|         = 8 > 8 ? (1 << 12) : (1 << 8 << 8 / 2);
 | |
| #endif
 | |
| 
 | |
|     static int iprim;  // initialized to -1, below
 | |
| 
 | |
| protected:
 | |
|     static std::array<uint8_t, NN + 1> alpha_to;
 | |
|     static std::array<uint8_t, NN + 1> index_of;
 | |
|     static std::array<uint8_t, MODS> mod_of;
 | |
|     virtual ~reed_solomon_tabs() {}
 | |
| 
 | |
|     reed_solomon_tabs() : reed_solomon_base()
 | |
|     {
 | |
|         // Do init if not already done.  We check one value which is initialized to -1; this is
 | |
|         // safe, 'cause the value will not be set 'til the initializing thread has completely
 | |
|         // initialized the structure.  Worst case scenario: multiple threads will initialize
 | |
|         // identically.  No mutex necessary.
 | |
|         if (iprim >= 0)
 | |
|             return;
 | |
| 
 | |
|         // Generate Galois field lookup tables
 | |
|         index_of[0] = A0;  // log(zero) = -inf
 | |
|         alpha_to[A0] = 0;  // alpha**-inf = 0
 | |
|         PLY poly;
 | |
|         int sr = poly(0);
 | |
|         for (int i = 0; i < NN; i++) {
 | |
|             index_of[sr] = i;
 | |
|             alpha_to[i] = sr;
 | |
|             sr = poly(sr);
 | |
|         }
 | |
|         // If it's not primitive, raise exception or abort
 | |
|         if (sr != alpha_to[0]) {
 | |
|             abort();
 | |
|         }
 | |
| 
 | |
|         // Generate modulo table for some commonly used (non-trivial) values
 | |
|         for (int x = NN; x < NN + MODS; ++x)
 | |
|             mod_of[x - NN] = _modnn(x);
 | |
|         // Find prim-th root of 1, index form, used in decoding.
 | |
|         int iptmp = 1;
 | |
|         while (iptmp % PRM != 0)
 | |
|             iptmp += NN;
 | |
|         iprim = iptmp / PRM;
 | |
|     }
 | |
| 
 | |
|     //
 | |
|     // modnn -- modulo replacement for galois field arithmetic, optionally w/ table acceleration
 | |
|     //
 | |
|     //  @x:         the value to reduce (will never be -'ve)
 | |
|     //
 | |
|     //  where
 | |
|     //  MM = number of bits per symbol
 | |
|     //  NN = (2^MM) - 1
 | |
|     //
 | |
|     //  Simple arithmetic modulo would return a wrong result for values >= 3 * NN
 | |
|     //
 | |
|     uint8_t _modnn(int x) const
 | |
|     {
 | |
|         while (x >= NN) {
 | |
|             x -= NN;
 | |
|             x = (x >> MM) + (x & NN);
 | |
|         }
 | |
|         return x;
 | |
|     }
 | |
| 
 | |
|     uint8_t modnn(int x) const
 | |
|     {
 | |
|         while (x >= NN + MODS) {
 | |
|             x -= NN;
 | |
|             x = (x >> MM) + (x & NN);
 | |
|         }
 | |
|         if (MODS && x >= NN)
 | |
|             x = mod_of[x - NN];
 | |
|         return x;
 | |
|     }
 | |
| };
 | |
| 
 | |
| //
 | |
| // class reed_solomon - Reed-Solomon codec
 | |
| //
 | |
| // @TYP:            A symbol datum; {en,de}code operates on arrays of these
 | |
| // @DATUM:          Bits per datum (a TYP())
 | |
| // @SYM{BOL}, MM:   Bits per symbol
 | |
| // @NN:             Symbols per block (== (1<<MM)-1)
 | |
| // @alpha_to:       log lookup table
 | |
| // @index_of:       Antilog lookup table
 | |
| // @genpoly:        Generator polynomial
 | |
| // @NROOTS:         Number of generator roots = number of parity symbols
 | |
| // @FCR:            First consecutive root, index form
 | |
| // @PRM:            Primitive element, index form
 | |
| // @iprim:          prim-th root of 1, index form
 | |
| // @PLY:            The primitive generator polynominal functor
 | |
| //
 | |
| //     All reed_solomon<T, ...> instances with the same template type parameters share a common
 | |
| // (static) set of alpha_to, index_of and genpoly tables.  The first instance to be constructed
 | |
| // initializes the tables.
 | |
| //
 | |
| //     Each specialized type of reed_solomon implements a specific encode/decode method
 | |
| // appropriate to its datum 'TYP'.  When accessed via a generic reed_solomon_base pointer, only
 | |
| // access via "safe" (size specifying) containers or iterators is available.
 | |
| //
 | |
| template <int RTS, int FCR, int PRM, class PLY>
 | |
| class reed_solomon : public reed_solomon_tabs<PRM, PLY> {
 | |
| public:
 | |
|     typedef reed_solomon_tabs<PRM, PLY> tabs_t;
 | |
|     using tabs_t::A0;
 | |
|     using tabs_t::DATUM;
 | |
|     using tabs_t::MM;
 | |
|     using tabs_t::NN;
 | |
|     using tabs_t::SIZE;
 | |
|     using tabs_t::SYMBOL;
 | |
| 
 | |
|     using tabs_t::iprim;
 | |
| 
 | |
|     using tabs_t::alpha_to;
 | |
|     using tabs_t::index_of;
 | |
| 
 | |
|     using tabs_t::modnn;
 | |
| 
 | |
|     static const int NROOTS = RTS;
 | |
|     static const int LOAD = SIZE - NROOTS;  // maximum non-parity symbol payload
 | |
| 
 | |
| protected:
 | |
|     static std::array<uint8_t, NROOTS + 1> genpoly;
 | |
| 
 | |
| public:
 | |
|     virtual size_t datum() const { return DATUM; }
 | |
| 
 | |
|     virtual size_t symbol() const { return SYMBOL; }
 | |
| 
 | |
|     virtual int size() const { return SIZE; }
 | |
| 
 | |
|     virtual int nroots() const { return NROOTS; }
 | |
| 
 | |
|     virtual int load() const { return LOAD; }
 | |
| 
 | |
|     using reed_solomon_base::decode;
 | |
|     virtual int decode1(uint8_t *data, int len, uint8_t *parity,
 | |
|                        const std::vector<int> &erasure = std::vector<int>(), std::vector<int> *position = 0) const
 | |
|     {
 | |
|         return decode_mask(data, len, parity, erasure, position);
 | |
|     }
 | |
| 
 | |
|     //
 | |
|     // decode_mask  -- mask INP data into valid SYMBOL data
 | |
|     //
 | |
|     ///     Incoming data may be in a variety of sizes, and may contain information beyond the
 | |
|     /// R-S symbol capacity.  For example, we might use a 6-bit R-S symbol to correct the lower
 | |
|     /// 6 bits of an 8-bit data character.  This would allow us to correct common substitution
 | |
|     /// errors (such as '2' for '3', 'R' for 'T', 'n' for 'm').
 | |
|     ///
 | |
|     int decode_mask(uint8_t *data, int len,
 | |
|                     uint8_t *parity = 0,  // either 0, or pointer to all parity symbols
 | |
|                     const std::vector<int> &erasure = std::vector<int>(), std::vector<int> *position = 0) const
 | |
|     {
 | |
|         if (!parity) {
 | |
|             len -= NROOTS;
 | |
|             parity = data + len;
 | |
|         }
 | |
| 
 | |
|         int corrects;
 | |
|         if (!erasure.size() && !position) {
 | |
|             // No erasures, and error position info not wanted.
 | |
|             corrects = decode(data, len, parity);
 | |
|         } else {
 | |
|             // Either erasure location info specified, or resultant error position info wanted;
 | |
|             // Prepare pos (a temporary, if no position vector provided), and copy any provided
 | |
|             // erasure positions.  After number of corrections is known, resize the position
 | |
|             // vector.  Thus, we use any supplied erasure info, and optionally return any
 | |
|             // correction position info separately.
 | |
|             std::vector<int> _pos;
 | |
|             std::vector<int> &pos = position ? *position : _pos;
 | |
|             pos.resize(std::max(size_t(NROOTS), erasure.size()));
 | |
|             std::copy(erasure.begin(), erasure.end(), pos.begin());
 | |
|             corrects = decode(data, len, parity, &pos.front(), erasure.size());
 | |
|             if (corrects > int(pos.size())) {
 | |
|                 return -1;
 | |
|             }
 | |
|             pos.resize(std::max(0, corrects));
 | |
|         }
 | |
| 
 | |
|         return corrects;
 | |
|     }
 | |
| 
 | |
|     virtual ~reed_solomon()
 | |
|     {
 | |
|     }
 | |
| 
 | |
|     reed_solomon() : reed_solomon_tabs<PRM, PLY>()
 | |
|     {
 | |
|         // We check one element of the array; this is safe, 'cause the value will not be
 | |
|         // initialized 'til the initializing thread has completely initialized the array.  Worst
 | |
|         // case scenario: multiple threads will initialize identically.  No mutex necessary.
 | |
|         if (genpoly[0])
 | |
|             return;
 | |
| 
 | |
|         std::array<uint8_t, NROOTS + 1> tmppoly;  // uninitialized
 | |
|         // Form RS code generator polynomial from its roots.  Only lower-index entries are
 | |
|         // consulted, when computing subsequent entries; only index 0 needs initialization.
 | |
|         tmppoly[0] = 1;
 | |
|         for (int i = 0, root = FCR * PRM; i < NROOTS; i++, root += PRM) {
 | |
|             tmppoly[i + 1] = 1;
 | |
|             // Multiply tmppoly[] by  @**(root + x)
 | |
|             for (int j = i; j > 0; j--) {
 | |
|                 if (tmppoly[j] != 0)
 | |
|                     tmppoly[j] = tmppoly[j - 1] ^ alpha_to[modnn(index_of[tmppoly[j]] + root)];
 | |
|                 else
 | |
|                     tmppoly[j] = tmppoly[j - 1];
 | |
|             }
 | |
|             // tmppoly[0] can never be zero
 | |
|             tmppoly[0] = alpha_to[modnn(index_of[tmppoly[0]] + root)];
 | |
|         }
 | |
|         // convert NROOTS entries of tmppoly[] to genpoly[] in index form for quicker encoding,
 | |
|         // in reverse order so genpoly[0] is last element initialized.
 | |
|         for (int i = NROOTS; i >= 0; --i)
 | |
|             genpoly[i] = index_of[tmppoly[i]];
 | |
|     }
 | |
| 
 | |
|     virtual int encode(const uint8_t *data, int len, uint8_t *parity)  // at least nroots
 | |
|         const
 | |
|     {
 | |
|         // Check length parameter for validity
 | |
|         for (int i = 0; i < NROOTS; i++)
 | |
|             parity[i] = 0;
 | |
|         for (int i = 0; i < len; i++) {
 | |
|             uint8_t feedback = index_of[data[i] ^ parity[0]];
 | |
|             if (feedback != A0) {
 | |
|                 for (int j = 1; j < NROOTS; j++)
 | |
|                     parity[j] ^= alpha_to[modnn(feedback + genpoly[NROOTS - j])];
 | |
|             }
 | |
| 
 | |
|             std::rotate(parity, parity + 1, parity + NROOTS);
 | |
|             if (feedback != A0)
 | |
|                 parity[NROOTS - 1] = alpha_to[modnn(feedback + genpoly[0])];
 | |
|             else
 | |
|                 parity[NROOTS - 1] = 0;
 | |
|         }
 | |
|         return NROOTS;
 | |
|     }
 | |
| 
 | |
|     int decode(uint8_t *data, int len,
 | |
|                uint8_t *parity,    // Requires: at least NROOTS
 | |
|                int *eras_pos = 0,  // Capacity: at least NROOTS
 | |
|                int no_eras = 0,    // Maximum:  at most  NROOTS
 | |
|                uint8_t *corr = 0)  // Capacity: at least NROOTS
 | |
|         const
 | |
|     {
 | |
|         typedef std::array<uint8_t, NROOTS> typ_nroots;
 | |
|         typedef std::array<uint8_t, NROOTS + 1> typ_nroots_1;
 | |
|         typedef std::array<int, NROOTS> int_nroots;
 | |
| 
 | |
|         typ_nroots_1 lambda{{0}};
 | |
|         typ_nroots syn;
 | |
|         typ_nroots_1 b;
 | |
|         typ_nroots_1 t;
 | |
|         typ_nroots_1 omega;
 | |
|         int_nroots root;
 | |
|         typ_nroots_1 reg;
 | |
|         int_nroots loc;
 | |
|         int count = 0;
 | |
| 
 | |
|         // Check length parameter and erasures for validity
 | |
|         int pad = NN - NROOTS - len;
 | |
|         if (no_eras) {
 | |
|             if (no_eras > NROOTS) {
 | |
|                 return -1;
 | |
|             }
 | |
|             for (int i = 0; i < no_eras; ++i) {
 | |
|                 if (eras_pos[i] < 0 || eras_pos[i] >= len + NROOTS) {
 | |
|                     return -1;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // form the syndromes; i.e., evaluate data(x) at roots of g(x)
 | |
|         for (int i = 0; i < NROOTS; i++)
 | |
|             syn[i] = data[0];
 | |
| 
 | |
|         for (int j = 1; j < len; j++) {
 | |
|             for (int i = 0; i < NROOTS; i++) {
 | |
|                 if (syn[i] == 0) {
 | |
|                     syn[i] = data[j];
 | |
|                 } else {
 | |
|                     syn[i] = data[j] ^ alpha_to[modnn(index_of[syn[i]] + (FCR + i) * PRM)];
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         for (int j = 0; j < NROOTS; j++) {
 | |
|             for (int i = 0; i < NROOTS; i++) {
 | |
|                 if (syn[i] == 0) {
 | |
|                     syn[i] = parity[j];
 | |
|                 } else {
 | |
|                     syn[i] = parity[j] ^ alpha_to[modnn(index_of[syn[i]] + (FCR + i) * PRM)];
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // Convert syndromes to index form, checking for nonzero condition
 | |
|         uint8_t syn_error = 0;
 | |
|         for (int i = 0; i < NROOTS; i++) {
 | |
|             syn_error |= syn[i];
 | |
|             syn[i] = index_of[syn[i]];
 | |
|         }
 | |
| 
 | |
|         int deg_lambda = 0;
 | |
|         int deg_omega = 0;
 | |
|         int r = no_eras;
 | |
|         int el = no_eras;
 | |
|         if (!syn_error) {
 | |
|             // if syndrome is zero, data[] is a codeword and there are no errors to correct.
 | |
|             count = 0;
 | |
|             goto finish;
 | |
|         }
 | |
| 
 | |
|         lambda[0] = 1;
 | |
|         if (no_eras > 0) {
 | |
|             // Init lambda to be the erasure locator polynomial.  Convert erasure positions
 | |
|             // from index into data, to index into Reed-Solomon block.
 | |
|             lambda[1] = alpha_to[modnn(PRM * (NN - 1 - (eras_pos[0] + pad)))];
 | |
|             for (int i = 1; i < no_eras; i++) {
 | |
|                 uint8_t u = modnn(PRM * (NN - 1 - (eras_pos[i] + pad)));
 | |
|                 for (int j = i + 1; j > 0; j--) {
 | |
|                     uint8_t tmp = index_of[lambda[j - 1]];
 | |
|                     if (tmp != A0) {
 | |
|                         lambda[j] ^= alpha_to[modnn(u + tmp)];
 | |
|                     }
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         for (int i = 0; i < NROOTS + 1; i++)
 | |
|             b[i] = index_of[lambda[i]];
 | |
| 
 | |
|         //
 | |
|         // Begin Berlekamp-Massey algorithm to determine error+erasure locator polynomial
 | |
|         //
 | |
|         while (++r <= NROOTS) {  // r is the step number
 | |
|             // Compute discrepancy at the r-th step in poly-form
 | |
|             uint8_t discr_r = 0;
 | |
|             for (int i = 0; i < r; i++) {
 | |
|                 if ((lambda[i] != 0) && (syn[r - i - 1] != A0)) {
 | |
|                     discr_r ^= alpha_to[modnn(index_of[lambda[i]] + syn[r - i - 1])];
 | |
|                 }
 | |
|             }
 | |
|             discr_r = index_of[discr_r];  // Index form
 | |
|             if (discr_r == A0) {
 | |
|                 // 2 lines below: B(x) <-- x*B(x)
 | |
|                 // Rotate the last element of b[NROOTS+1] to b[0]
 | |
|                 std::rotate(b.begin(), b.begin() + NROOTS, b.end());
 | |
|                 b[0] = A0;
 | |
|             } else {
 | |
|                 // 7 lines below: T(x) <-- lambda(x)-discr_r*x*b(x)
 | |
|                 t[0] = lambda[0];
 | |
|                 for (int i = 0; i < NROOTS; i++) {
 | |
|                     if (b[i] != A0) {
 | |
|                         t[i + 1] = lambda[i + 1] ^ alpha_to[modnn(discr_r + b[i])];
 | |
|                     } else
 | |
|                         t[i + 1] = lambda[i + 1];
 | |
|                 }
 | |
|                 if (2 * el <= r + no_eras - 1) {
 | |
|                     el = r + no_eras - el;
 | |
|                     // 2 lines below: B(x) <-- inv(discr_r) * lambda(x)
 | |
|                     for (int i = 0; i <= NROOTS; i++) {
 | |
|                         b[i] = ((lambda[i] == 0) ? A0 : modnn(index_of[lambda[i]] - discr_r + NN));
 | |
|                     }
 | |
|                 } else {
 | |
|                     // 2 lines below: B(x) <-- x*B(x)
 | |
|                     std::rotate(b.begin(), b.begin() + NROOTS, b.end());
 | |
|                     b[0] = A0;
 | |
|                 }
 | |
|                 lambda = t;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         // Convert lambda to index form and compute deg(lambda(x))
 | |
|         for (int i = 0; i < NROOTS + 1; i++) {
 | |
|             lambda[i] = index_of[lambda[i]];
 | |
|             if (lambda[i] != NN)
 | |
|                 deg_lambda = i;
 | |
|         }
 | |
|         // Find roots of error+erasure locator polynomial by Chien search
 | |
|         reg = lambda;
 | |
|         count = 0;  // Number of roots of lambda(x)
 | |
|         for (int i = 1, k = iprim - 1; i <= NN; i++, k = modnn(k + iprim)) {
 | |
|             uint8_t q = 1;  // lambda[0] is always 0
 | |
|             for (int j = deg_lambda; j > 0; j--) {
 | |
|                 if (reg[j] != A0) {
 | |
|                     reg[j] = modnn(reg[j] + j);
 | |
|                     q ^= alpha_to[reg[j]];
 | |
|                 }
 | |
|             }
 | |
|             if (q != 0)
 | |
|                 continue;  // Not a root
 | |
|             // store root (index-form) and error location number
 | |
|             root[count] = i;
 | |
|             loc[count] = k;
 | |
|             // If we've already found max possible roots, abort the search to save time
 | |
|             if (++count == deg_lambda)
 | |
|                 break;
 | |
|         }
 | |
|         if (deg_lambda != count) {
 | |
|             // deg(lambda) unequal to number of roots => uncorrectable error detected
 | |
|             count = -1;
 | |
|             goto finish;
 | |
|         }
 | |
|         //
 | |
|         // Compute err+eras evaluator poly omega(x) = s(x)*lambda(x) (modulo x**NROOTS). in
 | |
|         // index form. Also find deg(omega).
 | |
|         //
 | |
|         deg_omega = deg_lambda - 1;
 | |
|         for (int i = 0; i <= deg_omega; i++) {
 | |
|             uint8_t tmp = 0;
 | |
|             for (int j = i; j >= 0; j--) {
 | |
|                 if ((syn[i - j] != A0) && (lambda[j] != A0))
 | |
|                     tmp ^= alpha_to[modnn(syn[i - j] + lambda[j])];
 | |
|             }
 | |
|             omega[i] = index_of[tmp];
 | |
|         }
 | |
| 
 | |
|         //
 | |
|         // Compute error values in poly-form. num1 = omega(inv(X(l))), num2 = inv(X(l))**(fcr-1)
 | |
|         // and den = lambda_pr(inv(X(l))) all in poly-form
 | |
|         //
 | |
|         for (int j = count - 1; j >= 0; j--) {
 | |
|             uint8_t num1 = 0;
 | |
|             for (int i = deg_omega; i >= 0; i--) {
 | |
|                 if (omega[i] != A0)
 | |
|                     num1 ^= alpha_to[modnn(omega[i] + i * root[j])];
 | |
|             }
 | |
|             uint8_t num2 = alpha_to[modnn(root[j] * (FCR - 1) + NN)];
 | |
|             uint8_t den = 0;
 | |
| 
 | |
|             // lambda[i+1] for i even is the formal derivative lambda_pr of lambda[i]
 | |
|             for (int i = std::min(deg_lambda, NROOTS - 1) & ~1; i >= 0; i -= 2) {
 | |
|                 if (lambda[i + 1] != A0) {
 | |
|                     den ^= alpha_to[modnn(lambda[i + 1] + i * root[j])];
 | |
|                 }
 | |
|             }
 | |
|             // Apply error to data.  Padding ('pad' unused symbols) begin at index 0.
 | |
|             if (num1 != 0) {
 | |
|                 if (loc[j] < pad) {
 | |
|                     // If the computed error position is in the 'pad' (the unused portion of the
 | |
|                     // R-S data capacity), then our solution has failed -- we've computed a
 | |
|                     // correction location outside of the data and parity we've been provided!
 | |
|                     count = -1;
 | |
|                     goto finish;
 | |
|                 }
 | |
| 
 | |
|                 uint8_t cor = alpha_to[modnn(index_of[num1] + index_of[num2] + NN - index_of[den])];
 | |
|                 // Store the error correction pattern, if a correction buffer is available
 | |
|                 if (corr)
 | |
|                     corr[j] = cor;
 | |
|                 // If a data/parity buffer is given and the error is inside the message or
 | |
|                 // parity data, correct it
 | |
|                 if (loc[j] < (NN - NROOTS)) {
 | |
|                     if (data) {
 | |
|                         data[loc[j] - pad] ^= cor;
 | |
|                     }
 | |
|                 } else if (loc[j] < NN) {
 | |
|                     if (parity)
 | |
|                         parity[loc[j] - (NN - NROOTS)] ^= cor;
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
| 
 | |
|     finish:
 | |
|         if (eras_pos != NULL) {
 | |
|             for (int i = 0; i < count; i++)
 | |
|                 eras_pos[i] = loc[i] - pad;
 | |
|         }
 | |
|         return count;
 | |
|     }
 | |
| };
 | |
| 
 | |
| //
 | |
| // Define the static reed_solomon...<...> members; allowed in header for template types.
 | |
| //
 | |
| //     The reed_solomon_tags<...>::iprim < 0 is used to indicate to the first instance that the
 | |
| // static tables require initialization.
 | |
| //
 | |
| template <int PRM, class PLY>
 | |
| int reed_solomon_tabs<PRM, PLY>::iprim = -1;
 | |
| 
 | |
| template <int PRM, class PLY>
 | |
| std::array<uint8_t, reed_solomon_tabs<PRM, PLY>::NN + 1> reed_solomon_tabs<PRM, PLY>::alpha_to;
 | |
| 
 | |
| template <int PRM, class PLY>
 | |
| std::array<uint8_t, reed_solomon_tabs<PRM, PLY>::NN + 1> reed_solomon_tabs<PRM, PLY>::index_of;
 | |
| template <int PRM, class PLY>
 | |
| std::array<uint8_t, reed_solomon_tabs<PRM, PLY>::MODS> reed_solomon_tabs<PRM, PLY>::mod_of;
 | |
| 
 | |
| template <int RTS, int FCR, int PRM, class PLY>
 | |
| std::array<uint8_t, reed_solomon<RTS, FCR, PRM, PLY>::NROOTS + 1> reed_solomon<RTS, FCR, PRM, PLY>::genpoly;
 | |
| 
 | |
| //
 | |
| // RS( ... ) -- Define a reed-solomon codec
 | |
| //
 | |
| // @SYMBOLS:        Total number of symbols; must be a power of 2 minus 1, eg 2^8-1 == 255
 | |
| // @PAYLOAD:        The maximum number of non-parity symbols, eg 253 ==> 2 parity symbols
 | |
| // @POLY:           A primitive polynomial appropriate to the SYMBOLS size
 | |
| // @FCR:            The first consecutive root of the Reed-Solomon generator polynomial
 | |
| // @PRIM:           The primitive root of the generator polynomial
 | |
| //
 | |
| 
 | |
| //
 | |
| // RS<SYMBOLS, PAYLOAD> -- Standard partial specializations for Reed-Solomon codec type access
 | |
| //
 | |
| //     Normally, Reed-Solomon codecs are described with terms like RS(255,252).  Obtain various
 | |
| // standard Reed-Solomon codecs using macros of a similar form, eg. RS<255, 252>. Standard PLY,
 | |
| // FCR and PRM values are provided for various SYMBOL sizes, along with appropriate basic types
 | |
| // capable of holding all internal Reed-Solomon tabular data.
 | |
| //
 | |
| //     In order to provide "default initialization" of const RS<...> types, a user-provided
 | |
| // default constructor must be provided.
 | |
| //
 | |
| template <size_t SYMBOLS, size_t PAYLOAD>
 | |
| struct RS;
 | |
| template <size_t PAYLOAD>
 | |
| struct RS<255, PAYLOAD> : public ReedSolomon::reed_solomon<(255) - (PAYLOAD), 0, 1, ReedSolomon::gfpoly<0x11d>>
 | |
| {
 | |
|     RS()
 | |
|         : ReedSolomon::reed_solomon<(255) - (PAYLOAD), 0, 1, ReedSolomon::gfpoly<0x11d>>()
 | |
|     {
 | |
|     }
 | |
| };
 | |
| 
 | |
| }  // namespace ReedSolomon
 | |
| 
 | |
| #endif  // REEDSOLOMON_H
 |