mirror of
				https://github.com/f4exb/sdrangel.git
				synced 2025-10-30 20:40:20 -04:00 
			
		
		
		
	
		
			
				
	
	
		
			457 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			457 lines
		
	
	
		
			14 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /*  fir.c
 | |
| 
 | |
| This file is part of a program that implements a Software-Defined Radio.
 | |
| 
 | |
| Copyright (C) 2013, 2016, 2022 Warren Pratt, NR0V
 | |
| Copyright (C) 2024 Edouard Griffiths, F4EXB Adapted to SDRangel
 | |
| 
 | |
| This program is free software; you can redistribute it and/or
 | |
| modify it under the terms of the GNU General Public License
 | |
| as published by the Free Software Foundation; either version 2
 | |
| of the License, or (at your option) any later version.
 | |
| 
 | |
| This program is distributed in the hope that it will be useful,
 | |
| but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
| GNU General Public License for more details.
 | |
| 
 | |
| You should have received a copy of the GNU General Public License
 | |
| along with this program; if not, write to the Free Software
 | |
| Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
 | |
| 
 | |
| The author can be reached by email at
 | |
| 
 | |
| warren@pratt.one
 | |
| */
 | |
| 
 | |
| #define _CRT_SECURE_NO_WARNINGS
 | |
| 
 | |
| #include <limits>
 | |
| #include <vector>
 | |
| 
 | |
| #include "fftw3.h"
 | |
| #include "comm.hpp"
 | |
| #include "fir.hpp"
 | |
| 
 | |
| namespace WDSP {
 | |
| 
 | |
| void FIR::fftcv_mults (std::vector<float>& mults, int NM, const float* c_impulse)
 | |
| {
 | |
|     mults.resize(NM * 2);
 | |
|     std::vector<float> cfft_impulse(NM * 2);
 | |
|     fftwf_plan ptmp = fftwf_plan_dft_1d(
 | |
|         NM,
 | |
|         (fftwf_complex *) cfft_impulse.data(),
 | |
|         (fftwf_complex *) mults.data(),
 | |
|         FFTW_FORWARD,
 | |
|         FFTW_PATIENT
 | |
|     );
 | |
|     std::fill(cfft_impulse.begin(), cfft_impulse.end(), 0);
 | |
|     // store complex coefs right-justified in the buffer
 | |
|     std::copy(c_impulse, c_impulse + (NM / 2 + 1) * 2, &(cfft_impulse[NM - 2]));
 | |
|     fftwf_execute (ptmp);
 | |
|     fftwf_destroy_plan (ptmp);
 | |
| }
 | |
| 
 | |
| void FIR::get_fsamp_window(std::vector<float>& window, int N, int wintype)
 | |
| {
 | |
|     double arg0;
 | |
|     double arg1;
 | |
|     window.resize(N);
 | |
|     switch (wintype)
 | |
|     {
 | |
|     case 0:
 | |
|         arg0 = 2.0 * PI / ((double)N - 1.0);
 | |
|         for (int i = 0; i < N; i++)
 | |
|         {
 | |
|             arg1 = cos(arg0 * (double)i);
 | |
|             double val =   +0.21747
 | |
|                 + arg1 *  (-0.45325
 | |
|                 + arg1 *  (+0.28256
 | |
|                 + arg1 *  (-0.04672)));
 | |
|             window[i] = (float) val;
 | |
|         }
 | |
|         break;
 | |
|     case 1:
 | |
|         arg0 = 2.0 * PI / ((double)N - 1.0);
 | |
|         for (int i = 0; i < N; ++i)
 | |
|         {
 | |
|             arg1 = cos(arg0 * (double)i);
 | |
|             double val =   +6.3964424114390378e-02
 | |
|                 + arg1 *  (-2.3993864599352804e-01
 | |
|                 + arg1 *  (+3.5015956323820469e-01
 | |
|                 + arg1 *  (-2.4774111897080783e-01
 | |
|                 + arg1 *  (+8.5438256055858031e-02
 | |
|                 + arg1 *  (-1.2320203369293225e-02
 | |
|                 + arg1 *  (+4.3778825791773474e-04))))));
 | |
|             window[i] = (float) val;
 | |
|         }
 | |
|         break;
 | |
|     default:
 | |
|         for (int i = 0; i < N; i++)
 | |
|             window[i] = 1.0;
 | |
|     }
 | |
| }
 | |
| 
 | |
| void FIR::fir_fsamp_odd (std::vector<float>& c_impulse, int N, const float* A, int rtype, double scale, int wintype)
 | |
| {
 | |
|     int mid = (N - 1) / 2;
 | |
|     double mag;
 | |
|     double phs;
 | |
|     std::vector<float> fcoef(N * 2);
 | |
|     fftwf_plan ptmp = fftwf_plan_dft_1d(
 | |
|         N,
 | |
|         (fftwf_complex *)fcoef.data(),
 | |
|         (fftwf_complex *)c_impulse.data(),
 | |
|         FFTW_BACKWARD,
 | |
|         FFTW_PATIENT
 | |
|     );
 | |
|     double local_scale = 1.0 / (double) N;
 | |
|     for (int i = 0; i <= mid; i++)
 | |
|     {
 | |
|         mag = A[i] * local_scale;
 | |
|         phs = - (double)mid * TWOPI * (double)i / (double)N;
 | |
|         fcoef[2 * i + 0] = (float) (mag * cos (phs));
 | |
|         fcoef[2 * i + 1] = (float) (mag * sin (phs));
 | |
|     }
 | |
|     for (int i = mid + 1, j = 0; i < N; i++, j++)
 | |
|     {
 | |
|         fcoef[2 * i + 0] = + fcoef[2 * (mid - j) + 0];
 | |
|         fcoef[2 * i + 1] = - fcoef[2 * (mid - j) + 1];
 | |
|     }
 | |
|     fftwf_execute (ptmp);
 | |
|     fftwf_destroy_plan (ptmp);
 | |
|     std::vector<float> window;
 | |
|     get_fsamp_window(window, N, wintype);
 | |
|     switch (rtype)
 | |
|     {
 | |
|     case 0:
 | |
|         for (int i = 0; i < N; i++)
 | |
|             c_impulse[i] = (float) (scale * c_impulse[2 * i] * window[i]);
 | |
|         break;
 | |
|     case 1:
 | |
|         for (int i = 0; i < N; i++)
 | |
|         {
 | |
|             c_impulse[2 * i + 0] *= (float) (scale * window[i]);
 | |
|             c_impulse[2 * i + 1] = 0.0;
 | |
|         }
 | |
|         break;
 | |
|     default:
 | |
|         break;
 | |
|     }
 | |
| }
 | |
| 
 | |
| void FIR::fir_fsamp (std::vector<float>& c_impulse, int N, const float* A, int rtype, double scale, int wintype)
 | |
| {
 | |
|     double sum;
 | |
| 
 | |
|     if (N & 1)
 | |
|     {
 | |
|         int M = (N - 1) / 2;
 | |
|         for (int n = 0; n < M + 1; n++)
 | |
|         {
 | |
|             sum = 0.0;
 | |
|             for (int k = 1; k < M + 1; k++)
 | |
|                 sum += 2.0 * A[k] * cos(TWOPI * (n - M) * k / N);
 | |
|             c_impulse[2 * n + 0] = (float) ((1.0 / N) * (A[0] + sum));
 | |
|             c_impulse[2 * n + 1] = 0.0;
 | |
|         }
 | |
|         for (int n = M + 1, j = 1; n < N; n++, j++)
 | |
|         {
 | |
|             c_impulse[2 * n + 0] = c_impulse[2 * (M - j) + 0];
 | |
|             c_impulse[2 * n + 1] = 0.0;
 | |
|         }
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         double M = (double)(N - 1) / 2.0;
 | |
|         for (int n = 0; n < N / 2; n++)
 | |
|         {
 | |
|             sum = 0.0;
 | |
|             for (int k = 1; k < N / 2; k++)
 | |
|                 sum += 2.0 * A[k] * cos(TWOPI * (n - M) * k / N);
 | |
|             c_impulse[2 * n + 0] = (float) ((1.0 / N) * (A[0] + sum));
 | |
|             c_impulse[2 * n + 1] = 0.0;
 | |
|         }
 | |
|         for (int n = N / 2, j = 1; n < N; n++, j++)
 | |
|         {
 | |
|             c_impulse[2 * n + 0] = c_impulse[2 * (N / 2 - j) + 0];
 | |
|             c_impulse[2 * n + 1] = 0.0;
 | |
|         }
 | |
|     }
 | |
|     std::vector<float> window;
 | |
|     get_fsamp_window (window, N, wintype);
 | |
|     switch (rtype)
 | |
|     {
 | |
|     case 0:
 | |
|         for (int i = 0; i < N; i++)
 | |
|             c_impulse[i] = (float) (scale * c_impulse[2 * i] * window[i]);
 | |
|         break;
 | |
|     case 1:
 | |
|         for (int i = 0; i < N; i++)
 | |
|             {
 | |
|                 c_impulse[2 * i + 0] *= (float) (scale * window[i]);
 | |
|                 c_impulse[2 * i + 1] = 0.0;
 | |
|             }
 | |
|         break;
 | |
|     default:
 | |
|         break;
 | |
|     }
 | |
| }
 | |
| 
 | |
| void FIR::fir_bandpass (std::vector<float>& c_impulse, int N, double f_low, double f_high, double samplerate, int wintype, int rtype, double scale)
 | |
| {
 | |
|     c_impulse.resize(N * 2);
 | |
|     double ft = (f_high - f_low) / (2.0 * samplerate);
 | |
|     double ft_rad = TWOPI * ft;
 | |
|     double w_osc = PI * (f_high + f_low) / samplerate;
 | |
|     double m = 0.5 * (double)(N - 1);
 | |
|     double delta = PI / m;
 | |
|     double cosphi;
 | |
|     double posi;
 | |
|     double posj;
 | |
|     double sinc;
 | |
|     double window;
 | |
|     double coef;
 | |
| 
 | |
|     if (N & 1)
 | |
|     {
 | |
|         switch (rtype)
 | |
|         {
 | |
|         case 0:
 | |
|             c_impulse[N >> 1] = (float) (scale * 2.0 * ft);
 | |
|             break;
 | |
|         case 1:
 | |
|             c_impulse[N - 1] = (float) (scale * 2.0 * ft);
 | |
|             c_impulse[  N  ] = 0.0;
 | |
|             break;
 | |
|         default:
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
|     for (int i = (N + 1) / 2, j = N / 2 - 1; i < N; i++, j--)
 | |
|     {
 | |
|         posi = (double)i - m;
 | |
|         posj = (double)j - m;
 | |
|         sinc = sin (ft_rad * posi) / (PI * posi);
 | |
| 
 | |
|         if (wintype == 1) // Blackman-Harris 7-term
 | |
|         {
 | |
|             cosphi = cos (delta * i);
 | |
|             window  =             + 6.3964424114390378e-02
 | |
|                     + cosphi *  ( - 2.3993864599352804e-01
 | |
|                     + cosphi *  ( + 3.5015956323820469e-01
 | |
|                     + cosphi *  ( - 2.4774111897080783e-01
 | |
|                     + cosphi *  ( + 8.5438256055858031e-02
 | |
|                     + cosphi *  ( - 1.2320203369293225e-02
 | |
|                     + cosphi *  ( + 4.3778825791773474e-04 ))))));
 | |
|         }
 | |
|         else // Blackman-Harris 4-term
 | |
|         {
 | |
|             cosphi = cos (delta * i);
 | |
|             window  =             + 0.21747
 | |
|                     + cosphi *  ( - 0.45325
 | |
|                     + cosphi *  ( + 0.28256
 | |
|                     + cosphi *  ( - 0.04672 )));
 | |
|         }
 | |
| 
 | |
|         coef = scale * sinc * window;
 | |
| 
 | |
|         switch (rtype)
 | |
|         {
 | |
|         case 0:
 | |
|             c_impulse[i] = (float) (+ coef * cos (posi * w_osc));
 | |
|             c_impulse[j] = (float) (+ coef * cos (posj * w_osc));
 | |
|             break;
 | |
|         case 1:
 | |
|             c_impulse[2 * i + 0] = (float) (+ coef * cos (posi * w_osc));
 | |
|             c_impulse[2 * i + 1] = (float) (- coef * sin (posi * w_osc));
 | |
|             c_impulse[2 * j + 0] = (float) (+ coef * cos (posj * w_osc));
 | |
|             c_impulse[2 * j + 1] = (float) (- coef * sin (posj * w_osc));
 | |
|             break;
 | |
|         default:
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| void FIR::fir_read (std::vector<float>& c_impulse, int N, const char *filename, int rtype, float scale)
 | |
|     // N = number of real or complex coefficients (see rtype)
 | |
|     // *filename = filename
 | |
|     // rtype = 0:  real coefficients
 | |
|     // rtype = 1:  complex coefficients
 | |
|     // scale = a scale factor that will be applied to the returned coefficients;
 | |
|     //      if this is not needed, set it to 1.0
 | |
|     // NOTE:  The number of values in the file must NOT exceed those implied by N and rtype
 | |
| {
 | |
|     FILE *file;
 | |
|     float I;
 | |
|     float Q;
 | |
|     c_impulse.resize(N * 2);
 | |
|     std::fill(c_impulse.begin(), c_impulse.end(), 0);
 | |
|     file = fopen (filename, "r");
 | |
| 
 | |
|     if (!file) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     for (int i = 0; i < N; i++)
 | |
|     {
 | |
|         // read in the complex impulse response
 | |
|         // NOTE:  IF the freq response is symmetrical about 0, the imag coeffs will all be zero.
 | |
|         switch (rtype)
 | |
|         {
 | |
|         case 0:
 | |
|         {
 | |
|             int r = fscanf (file, "%e", &I);
 | |
|             fprintf(stderr, "^%d parameters read\n", r);
 | |
|             c_impulse[i] = + scale * I;
 | |
|             break;
 | |
|         }
 | |
|         case 1:
 | |
|         {
 | |
|             int r = fscanf (file, "%e", &I);
 | |
|             fprintf(stderr, "%d parameters read\n", r);
 | |
|             r = fscanf (file, "%e", &Q);
 | |
|             fprintf(stderr, "%d parameters read\n", r);
 | |
|             c_impulse[2 * i + 0] = + scale * I;
 | |
|             c_impulse[2 * i + 1] = - scale * Q;
 | |
|             break;
 | |
|         }
 | |
|         default:
 | |
|             break;
 | |
|         }
 | |
|     }
 | |
|     fclose (file);
 | |
| }
 | |
| 
 | |
| void FIR::analytic (int N, float* in, float* out)
 | |
| {
 | |
|     if (N < 2) {
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     double inv_N = 1.0 / (double) N;
 | |
|     double two_inv_N = 2.0 * inv_N;
 | |
|     std::vector<float> x(N * 2);
 | |
| 
 | |
|     fftwf_plan pfor = fftwf_plan_dft_1d (
 | |
|         N,
 | |
|         (fftwf_complex *) in,
 | |
|         (fftwf_complex *) x.data(),
 | |
|         FFTW_FORWARD,
 | |
|         FFTW_PATIENT
 | |
|     );
 | |
| 
 | |
|     fftwf_plan prev = fftwf_plan_dft_1d (
 | |
|         N,
 | |
|         (fftwf_complex *) x.data(),
 | |
|         (fftwf_complex *) out,
 | |
|         FFTW_BACKWARD,
 | |
|         FFTW_PATIENT
 | |
|     );
 | |
| 
 | |
|     fftwf_execute (pfor);
 | |
|     x[0] *= (float) inv_N;
 | |
|     x[1] *= (float) inv_N;
 | |
| 
 | |
|     for (int i = 1; i < N / 2; i++)
 | |
|     {
 | |
|         x[2 * i + 0] *= (float) two_inv_N;
 | |
|         x[2 * i + 1] *= (float) two_inv_N;
 | |
|     }
 | |
| 
 | |
|     x[N + 0] *= (float) inv_N;
 | |
|     x[N + 1] *= (float) inv_N;
 | |
|     memset (&x[N + 2], 0, (N - 2) * sizeof (float));
 | |
|     fftwf_execute (prev);
 | |
|     fftwf_destroy_plan (prev);
 | |
|     fftwf_destroy_plan (pfor);
 | |
| }
 | |
| 
 | |
| void FIR::mp_imp (int N, std::vector<float>& fir, std::vector<float>& mpfir, int pfactor, int polarity)
 | |
| {
 | |
|     int i;
 | |
|     int size = N * pfactor;
 | |
|     double inv_PN = 1.0 / (double)size;
 | |
|     std::vector<float> firpad(size * 2);
 | |
|     std::vector<float> firfreq(size * 2);
 | |
|     std::vector<double> mag(size);
 | |
|     std::vector<float> ana(size * 2);
 | |
|     std::vector<float> impulse(size * 2);
 | |
|     std::vector<float> newfreq(size * 2);
 | |
|     std::copy(fir.begin(), fir.begin() + N * 2, firpad.begin());
 | |
|     fftwf_plan pfor = fftwf_plan_dft_1d (
 | |
|         size,
 | |
|         (fftwf_complex *) firpad.data(),
 | |
|         (fftwf_complex *) firfreq.data(),
 | |
|         FFTW_FORWARD,
 | |
|         FFTW_PATIENT);
 | |
|     fftwf_plan prev = fftwf_plan_dft_1d (
 | |
|         size,
 | |
|         (fftwf_complex *) newfreq.data(),
 | |
|         (fftwf_complex *) impulse.data(),
 | |
|         FFTW_BACKWARD,
 | |
|         FFTW_PATIENT
 | |
|     );
 | |
| 
 | |
|     fftwf_execute (pfor);
 | |
|     for (i = 0; i < size; i++)
 | |
|     {
 | |
|         double xr = firfreq[2 * i + 0];
 | |
|         double xi = firfreq[2 * i + 1];
 | |
|         mag[i] = sqrt (xr*xr + xi*xi) * inv_PN;
 | |
|         if (mag[i] > 0.0)
 | |
|             ana[2 * i + 0] = (float) log (mag[i]);
 | |
|         else
 | |
|             ana[2 * i + 0] = log (std::numeric_limits<float>::min());
 | |
|     }
 | |
|     analytic (size, ana.data(), ana.data());
 | |
|     for (i = 0; i < size; i++)
 | |
|     {
 | |
|         newfreq[2 * i + 0] = (float) (+ mag[i] * cos (ana[2 * i + 1]));
 | |
|         if (polarity)
 | |
|             newfreq[2 * i + 1] = (float) (+ mag[i] * sin (ana[2 * i + 1]));
 | |
|         else
 | |
|             newfreq[2 * i + 1] = (float) (- mag[i] * sin (ana[2 * i + 1]));
 | |
|     }
 | |
|     fftwf_execute (prev);
 | |
|     if (polarity)
 | |
|         std::copy(&impulse[2 * (pfactor - 1) * N], &impulse[2 * (pfactor - 1) * N] + N * 2, mpfir.begin());
 | |
|     else
 | |
|         std::copy(impulse.begin(), impulse.end(), mpfir.begin());
 | |
| 
 | |
|     fftwf_destroy_plan (prev);
 | |
|     fftwf_destroy_plan (pfor);
 | |
| }
 | |
| 
 | |
| // impulse response of a zero frequency filter comprising a cascade of two resonators,
 | |
| //    each followed by a detrending filter
 | |
| void FIR::zff_impulse(std::vector<float>& c_dresdet, int nc, float scale)
 | |
| {
 | |
|     // nc = number of coefficients (power of two)
 | |
|     int n_resdet = nc / 2 - 1;          // size of single zero-frequency resonator with detrender
 | |
|     int n_dresdet = 2 * n_resdet - 1;   // size of two cascaded units; when we convolve these we get 2 * n - 1 length
 | |
|     // allocate the single and make the values
 | |
|     std::vector<float> resdet(n_resdet); // (float*)malloc0 (n_resdet * sizeof(float));
 | |
|     for (int i = 1, j = 0, k = n_resdet - 1; i < nc / 4; i++, j++, k--)
 | |
|         resdet[j] = resdet[k] = (float)(i * (i + 1) / 2);
 | |
|     resdet[nc / 4 - 1] = (float)(nc / 4 * (nc / 4 + 1) / 2);
 | |
|     // print_impulse ("resdet", n_resdet, resdet, 0, 0);
 | |
|     // allocate the float and complex versions and make the values
 | |
|     std::vector<float> dresdet(n_dresdet);
 | |
|     auto div = (float) ((nc / 2 + 1) * (nc / 2 + 1));                 // calculate divisor
 | |
|     c_dresdet.resize(nc * 2);
 | |
|     for (int n = 0; n < n_dresdet; n++) // convolve to make the cascade
 | |
|     {
 | |
|         for (int k = 0; k < n_resdet; k++)
 | |
|             if ((n - k) >= 0 && (n - k) < n_resdet)
 | |
|                 dresdet[n] += resdet[k] * resdet[n - k];
 | |
|         dresdet[n] /= div;
 | |
|         c_dresdet[2 * n + 0] = dresdet[n] * scale;
 | |
|         c_dresdet[2 * n + 1] = 0.0;
 | |
|     }
 | |
| }
 | |
| 
 | |
| } // namespace WDSP
 |