mirror of
				https://github.com/f4exb/sdrangel.git
				synced 2025-11-03 21:20:31 -05:00 
			
		
		
		
	
		
			
				
	
	
		
			378 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			378 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
/*  lmath.c
 | 
						|
 | 
						|
This file is part of a program that implements a Software-Defined Radio.
 | 
						|
 | 
						|
Copyright (C) 2015, 2016, 2023 Warren Pratt, NR0V
 | 
						|
Copyright (C) 2024 Edouard Griffiths, F4EXB Adapted to SDRangel
 | 
						|
 | 
						|
This program is free software; you can redistribute it and/or
 | 
						|
modify it under the terms of the GNU General Public License
 | 
						|
as published by the Free Software Foundation; either version 2
 | 
						|
of the License, or (at your option) any later version.
 | 
						|
 | 
						|
This program is distributed in the hope that it will be useful,
 | 
						|
but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
						|
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
						|
GNU General Public License for more details.
 | 
						|
 | 
						|
You should have received a copy of the GNU General Public License
 | 
						|
along with this program; if not, write to the Free Software
 | 
						|
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA  02110-1301, USA.
 | 
						|
 | 
						|
The author can be reached by email at
 | 
						|
 | 
						|
warren@wpratt.com
 | 
						|
 | 
						|
*/
 | 
						|
 | 
						|
#include "comm.hpp"
 | 
						|
#include "bldr.hpp"
 | 
						|
 | 
						|
namespace WDSP {
 | 
						|
 | 
						|
BLDR::BLDR(int points, int ints)
 | 
						|
{
 | 
						|
    // for the create function, 'points' and 'ints' are the MAXIMUM values that will be encountered
 | 
						|
    catxy = new double[2 * points];
 | 
						|
    sx.resize(points);
 | 
						|
    sy.resize(points);
 | 
						|
    h .resize(ints);
 | 
						|
    p.resize(ints);
 | 
						|
    np.resize(ints);
 | 
						|
    taa.resize(ints);
 | 
						|
    tab.resize(ints);
 | 
						|
    tag.resize(ints);
 | 
						|
    tad.resize(ints);
 | 
						|
    tbb.resize(ints);
 | 
						|
    tbg.resize(ints);
 | 
						|
    tbd.resize(ints);
 | 
						|
    tgg.resize(ints);
 | 
						|
    tgd.resize(ints);
 | 
						|
    tdd.resize(ints);
 | 
						|
    int nsize = 3 * ints + 1;
 | 
						|
    int intp1 = ints + 1;
 | 
						|
    int intm1 = ints - 1;
 | 
						|
    A .resize(intp1 * intp1);
 | 
						|
    B .resize(intp1 * intp1);
 | 
						|
    C .resize(intp1 * intp1);
 | 
						|
    D .resize(intp1);
 | 
						|
    E .resize(intp1 * intp1);
 | 
						|
    F .resize(intm1 * intp1);
 | 
						|
    G .resize(intp1);
 | 
						|
    MAT.resize(nsize * nsize);
 | 
						|
    RHS.resize(nsize);
 | 
						|
    SLN.resize(nsize);
 | 
						|
    z .resize(intp1);
 | 
						|
    zp.resize(intp1);
 | 
						|
    wrk.resize(nsize);
 | 
						|
    ipiv.resize(nsize);
 | 
						|
}
 | 
						|
 | 
						|
BLDR::~BLDR()
 | 
						|
{
 | 
						|
    delete[]catxy;
 | 
						|
}
 | 
						|
 | 
						|
void BLDR::flush(int points)
 | 
						|
{
 | 
						|
    memset(catxy, 0, 2 * points * sizeof(double));
 | 
						|
    std::fill(sx.begin(),   sx.end(),   0);
 | 
						|
    std::fill(sy.begin(),   sy.end(),   0);
 | 
						|
    std::fill(h.begin(),    h.end(),    0);
 | 
						|
    std::fill(p.begin(),    p.end(),    0);
 | 
						|
    std::fill(np.begin(),   np.end(),   0);
 | 
						|
    std::fill(taa.begin(),  taa.end(),  0);
 | 
						|
    std::fill(tab.begin(),  tab.end(),  0);
 | 
						|
    std::fill(tag.begin(),  tag.end(),  0);
 | 
						|
    std::fill(tad.begin(),  tad.end(),  0);
 | 
						|
    std::fill(tbb.begin(),  tbb.end(),  0);
 | 
						|
    std::fill(tbg.begin(),  tbg.end(),  0);
 | 
						|
    std::fill(tbd.begin(),  tbd.end(),  0);
 | 
						|
    std::fill(tgg.begin(),  tgg.end(),  0);
 | 
						|
    std::fill(tgd.begin(),  tgd.end(),  0);
 | 
						|
    std::fill(tdd.begin(),  tdd.end(),  0);
 | 
						|
    std::fill(A.begin(),    A.end(),    0);
 | 
						|
    std::fill(B.begin(),    B.end(),    0);
 | 
						|
    std::fill(C.begin(),    C.end(),    0);
 | 
						|
    std::fill(D.begin(),    D.end(),    0);
 | 
						|
    std::fill(E.begin(),    E.end(),    0);
 | 
						|
    std::fill(F.begin(),    F.end(),    0);
 | 
						|
    std::fill(G.begin(),    G.end(),    0);
 | 
						|
    std::fill(MAT.begin(),  MAT.end(),  0);
 | 
						|
    std::fill(RHS.begin(),  RHS.end(),  0);
 | 
						|
    std::fill(SLN.begin(),  SLN.end(),  0);
 | 
						|
    std::fill(z.begin(),    z.end(),    0);
 | 
						|
    std::fill(zp.begin(),   zp.end(),   0);
 | 
						|
    std::fill(wrk.begin(),  wrk.end(),  0);
 | 
						|
    std::fill(ipiv.begin(), ipiv.end(), 0);
 | 
						|
}
 | 
						|
 | 
						|
int BLDR::fcompare(const void* a, const void* b)
 | 
						|
{
 | 
						|
    if (*(double*)a < *(double*)b)
 | 
						|
        return -1;
 | 
						|
    else if (*(double*)a == *(double*)b)
 | 
						|
        return 0;
 | 
						|
    else
 | 
						|
        return 1;
 | 
						|
}
 | 
						|
 | 
						|
void BLDR::decomp(int n, std::vector<double>& a, std::vector<int>& piv, int* info, std::vector<double>& wrk)
 | 
						|
{
 | 
						|
    int i;
 | 
						|
    int j;
 | 
						|
    int t_piv;
 | 
						|
    double m_row;
 | 
						|
    double mt_row;
 | 
						|
    double m_col;
 | 
						|
    double mt_col;
 | 
						|
    *info = 0;
 | 
						|
    for (i = 0; i < n; i++)
 | 
						|
    {
 | 
						|
        piv[i] = i;
 | 
						|
        m_row = 0.0;
 | 
						|
        for (j = 0; j < n; j++)
 | 
						|
        {
 | 
						|
            mt_row = a[n * i + j];
 | 
						|
            if (mt_row < 0.0)  mt_row = -mt_row;
 | 
						|
            if (mt_row > m_row)  m_row = mt_row;
 | 
						|
        }
 | 
						|
        if (m_row == 0.0)
 | 
						|
        {
 | 
						|
            *info = i;
 | 
						|
            goto cleanup;
 | 
						|
        }
 | 
						|
        wrk[i] = m_row;
 | 
						|
    }
 | 
						|
    for (int k = 0; k < n - 1; k++)
 | 
						|
    {
 | 
						|
        j = k;
 | 
						|
        m_col = a[n * piv[k] + k] / wrk[piv[k]];
 | 
						|
        if (m_col < 0)  m_col = -m_col;
 | 
						|
        for (i = k + 1; i < n; i++)
 | 
						|
        {
 | 
						|
            mt_col = a[n * piv[i] + k] / wrk[piv[k]];
 | 
						|
            if (mt_col < 0.0)  mt_col = -mt_col;
 | 
						|
            if (mt_col > m_col)
 | 
						|
            {
 | 
						|
                m_col = mt_col;
 | 
						|
                j = i;
 | 
						|
            }
 | 
						|
        }
 | 
						|
        if (m_col == 0)
 | 
						|
        {
 | 
						|
            *info = -k;
 | 
						|
            goto cleanup;
 | 
						|
        }
 | 
						|
        t_piv = piv[k];
 | 
						|
        piv[k] = piv[j];
 | 
						|
        piv[j] = t_piv;
 | 
						|
        for (i = k + 1; i < n; i++)
 | 
						|
        {
 | 
						|
            a[n * piv[i] + k] /= a[n * piv[k] + k];
 | 
						|
            for (j = k + 1; j < n; j++)
 | 
						|
                a[n * piv[i] + j] -= a[n * piv[i] + k] * a[n * piv[k] + j];
 | 
						|
        }
 | 
						|
    }
 | 
						|
    if (a[n * n - 1] == 0.0)
 | 
						|
        *info = -n;
 | 
						|
cleanup:
 | 
						|
    return;
 | 
						|
}
 | 
						|
 | 
						|
void BLDR::dsolve(int n, std::vector<double>& a, std::vector<int>& piv, std::vector<double>& b, std::vector<double>& x)
 | 
						|
{
 | 
						|
    int j;
 | 
						|
    int k;
 | 
						|
    double sum;
 | 
						|
 | 
						|
    for (k = 0; k < n; k++)
 | 
						|
    {
 | 
						|
        sum = 0.0;
 | 
						|
        for (j = 0; j < k; j++)
 | 
						|
            sum += a[n * piv[k] + j] * x[j];
 | 
						|
        x[k] = b[piv[k]] - sum;
 | 
						|
    }
 | 
						|
 | 
						|
    for (k = n - 1; k >= 0; k--)
 | 
						|
    {
 | 
						|
        sum = 0.0;
 | 
						|
        for (j = k + 1; j < n; j++)
 | 
						|
            sum += a[n * piv[k] + j] * x[j];
 | 
						|
        x[k] = (x[k] - sum) / a[n * piv[k] + k];
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void BLDR::cull(int* n, int ints, std::vector<double>& x, const double* t, double ptol)
 | 
						|
{
 | 
						|
    int k = 0;
 | 
						|
    int i = *n;
 | 
						|
    int ntopint;
 | 
						|
    int npx;
 | 
						|
 | 
						|
    while (x[i - 1] > t[ints - 1])
 | 
						|
        i--;
 | 
						|
    ntopint = *n - i;
 | 
						|
    npx = (int)(ntopint * (1.0 - ptol));
 | 
						|
    i = *n;
 | 
						|
    while ((k < npx) && (x[--i] > t[ints]))
 | 
						|
        k++;
 | 
						|
    *n -= k;
 | 
						|
}
 | 
						|
 | 
						|
void BLDR::execute(int points, const double* x, const double* y, int ints, const double* t, int* info, double* c, double ptol)
 | 
						|
{
 | 
						|
    double u;
 | 
						|
    double v;
 | 
						|
    double alpha;
 | 
						|
    double beta;
 | 
						|
    double gamma;
 | 
						|
    double delta;
 | 
						|
    int nsize = 3 * ints + 1;
 | 
						|
    int intp1 = ints + 1;
 | 
						|
    int intm1 = ints - 1;
 | 
						|
    int i;
 | 
						|
    int j;
 | 
						|
    int k;
 | 
						|
    int m;
 | 
						|
    int dinfo;
 | 
						|
    flush(points);
 | 
						|
    for (i = 0; i < points; i++)
 | 
						|
    {
 | 
						|
        catxy[2 * i + 0] = x[i];
 | 
						|
        catxy[2 * i + 1] = y[i];
 | 
						|
    }
 | 
						|
    qsort(catxy, points, 2 * sizeof(double), fcompare);
 | 
						|
    for (i = 0; i < points; i++)
 | 
						|
    {
 | 
						|
        sx[i] = catxy[2 * i + 0];
 | 
						|
        sy[i] = catxy[2 * i + 1];
 | 
						|
    }
 | 
						|
    cull(&points, ints, sx, t, ptol);
 | 
						|
    if (points <= 0 || sx[points - 1] > t[ints])
 | 
						|
    {
 | 
						|
        *info = -1000;
 | 
						|
        goto cleanup;
 | 
						|
    }
 | 
						|
    else *info = 0;
 | 
						|
 | 
						|
    for (j = 0; j < ints; j++)
 | 
						|
        h[j] = t[j + 1] - t[j];
 | 
						|
    p[0] = 0;
 | 
						|
    j = 0;
 | 
						|
    for (i = 0; i < points; i++)
 | 
						|
    {
 | 
						|
        if (sx[i] <= t[j + 1])
 | 
						|
            np[j]++;
 | 
						|
        else
 | 
						|
        {
 | 
						|
            p[++j] = i;
 | 
						|
            while (sx[i] > t[j + 1])
 | 
						|
                p[++j] = i;
 | 
						|
            np[j] = 1;
 | 
						|
        }
 | 
						|
    }
 | 
						|
    for (i = 0; i < ints; i++)
 | 
						|
        for (j = p[i]; j < p[i] + np[i]; j++)
 | 
						|
        {
 | 
						|
            u = (sx[j] - t[i]) / h[i];
 | 
						|
            v = u - 1.0;
 | 
						|
            alpha = (2.0 * u + 1.0) * v * v;
 | 
						|
            beta = u * u * (1.0 - 2.0 * v);
 | 
						|
            gamma = h[i] * u * v * v;
 | 
						|
            delta = h[i] * u * u * v;
 | 
						|
            taa[i] += alpha * alpha;
 | 
						|
            tab[i] += alpha * beta;
 | 
						|
            tag[i] += alpha * gamma;
 | 
						|
            tad[i] += alpha * delta;
 | 
						|
            tbb[i] += beta * beta;
 | 
						|
            tbg[i] += beta * gamma;
 | 
						|
            tbd[i] += beta * delta;
 | 
						|
            tgg[i] += gamma * gamma;
 | 
						|
            tgd[i] += gamma * delta;
 | 
						|
            tdd[i] += delta * delta;
 | 
						|
            D[i + 0] += 2.0 * sy[j] * alpha;
 | 
						|
            D[i + 1] += 2.0 * sy[j] * beta;
 | 
						|
            G[i + 0] += 2.0 * sy[j] * gamma;
 | 
						|
            G[i + 1] += 2.0 * sy[j] * delta;
 | 
						|
        }
 | 
						|
    for (i = 0; i < ints; i++)
 | 
						|
    {
 | 
						|
        A[(i + 0) * intp1 + (i + 0)] += 2.0 * taa[i];
 | 
						|
        A[(i + 1) * intp1 + (i + 1)] = 2.0 * tbb[i];
 | 
						|
        A[(i + 0) * intp1 + (i + 1)] = 2.0 * tab[i];
 | 
						|
        A[(i + 1) * intp1 + (i + 0)] = 2.0 * tab[i];
 | 
						|
        B[(i + 0) * intp1 + (i + 0)] += 2.0 * tag[i];
 | 
						|
        B[(i + 1) * intp1 + (i + 1)] = 2.0 * tbd[i];
 | 
						|
        B[(i + 0) * intp1 + (i + 1)] = 2.0 * tbg[i];
 | 
						|
        B[(i + 1) * intp1 + (i + 0)] = 2.0 * tad[i];
 | 
						|
        E[(i + 0) * intp1 + (i + 0)] += 2.0 * tgg[i];
 | 
						|
        E[(i + 1) * intp1 + (i + 1)] = 2.0 * tdd[i];
 | 
						|
        E[(i + 0) * intp1 + (i + 1)] = 2.0 * tgd[i];
 | 
						|
        E[(i + 1) * intp1 + (i + 0)] = 2.0 * tgd[i];
 | 
						|
    }
 | 
						|
    for (i = 0; i < intm1; i++)
 | 
						|
    {
 | 
						|
        C[i * intp1 + (i + 0)] = +3.0 * h[i + 1] / h[i];
 | 
						|
        C[i * intp1 + (i + 2)] = -3.0 * h[i] / h[i + 1];
 | 
						|
        C[i * intp1 + (i + 1)] = -C[i * intp1 + (i + 0)] - C[i * intp1 + (i + 2)];
 | 
						|
        F[i * intp1 + (i + 0)] = h[i + 1];
 | 
						|
        F[i * intp1 + (i + 1)] = 2.0 * (h[i] + h[i + 1]);
 | 
						|
        F[i * intp1 + (i + 2)] = h[i];
 | 
						|
    }
 | 
						|
    for (i = 0, k = 0; i < intp1; i++, k++)
 | 
						|
    {
 | 
						|
        for (j = 0, m = 0; j < intp1; j++, m++)
 | 
						|
            MAT[k * nsize + m] = A[i * intp1 + j];
 | 
						|
        for (j = 0, m = intp1; j < intp1; j++, m++)
 | 
						|
            MAT[k * nsize + m] = B[j * intp1 + i];
 | 
						|
        for (j = 0, m = 2 * intp1; j < intm1; j++, m++)
 | 
						|
            MAT[k * nsize + m] = C[j * intp1 + i];
 | 
						|
        RHS[k] = D[i];
 | 
						|
    }
 | 
						|
    for (i = 0, k = intp1; i < intp1; i++, k++)
 | 
						|
    {
 | 
						|
        for (j = 0, m = 0; j < intp1; j++, m++)
 | 
						|
            MAT[k * nsize + m] = B[i * intp1 + j];
 | 
						|
        for (j = 0, m = intp1; j < intp1; j++, m++)
 | 
						|
            MAT[k * nsize + m] = E[i * intp1 + j];
 | 
						|
        for (j = 0, m = 2 * intp1; j < intm1; j++, m++)
 | 
						|
            MAT[k * nsize + m] = F[j * intp1 + i];
 | 
						|
        RHS[k] = G[i];
 | 
						|
    }
 | 
						|
    for (i = 0, k = 2 * intp1; i < intm1; i++, k++)
 | 
						|
    {
 | 
						|
        for (j = 0, m = 0; j < intp1; j++, m++)
 | 
						|
            MAT[k * nsize + m] = C[i * intp1 + j];
 | 
						|
        for (j = 0, m = intp1; j < intp1; j++, m++)
 | 
						|
            MAT[k * nsize + m] = F[i * intp1 + j];
 | 
						|
        for (j = 0, m = 2 * intp1; j < intm1; j++, m++)
 | 
						|
            MAT[k * nsize + m] = 0.0;
 | 
						|
        RHS[k] = 0.0;
 | 
						|
    }
 | 
						|
    decomp(nsize, MAT, ipiv, &dinfo, wrk);
 | 
						|
    dsolve(nsize, MAT, ipiv, RHS, SLN);
 | 
						|
    if (dinfo != 0)
 | 
						|
    {
 | 
						|
        *info = dinfo;
 | 
						|
        goto cleanup;
 | 
						|
    }
 | 
						|
 | 
						|
    for (i = 0; i <= ints; i++)
 | 
						|
    {
 | 
						|
        z[i] = SLN[i];
 | 
						|
        zp[i] = SLN[i + ints + 1];
 | 
						|
    }
 | 
						|
    for (i = 0; i < ints; i++)
 | 
						|
    {
 | 
						|
        c[4 * i + 0] = z[i];
 | 
						|
        c[4 * i + 1] = zp[i];
 | 
						|
        c[4 * i + 2] = -3.0 / (h[i] * h[i]) * (z[i] - z[i + 1]) - 1.0 / h[i] * (2.0 * zp[i] + zp[i + 1]);
 | 
						|
        c[4 * i + 3] = 2.0 / (h[i] * h[i] * h[i]) * (z[i] - z[i + 1]) + 1.0 / (h[i] * h[i]) * (zp[i] + zp[i + 1]);
 | 
						|
    }
 | 
						|
cleanup:
 | 
						|
    return;
 | 
						|
}
 | 
						|
 | 
						|
} // namespace WDSP
 |