mirror of
				https://github.com/f4exb/sdrangel.git
				synced 2025-11-03 13:11:20 -05:00 
			
		
		
		
	
		
			
				
	
	
		
			727 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			727 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
/*
 | 
						|
  FILE...: mpdecode_core.c
 | 
						|
  AUTHOR.: Matthew C. Valenti, Rohit Iyer Seshadri, David Rowe
 | 
						|
  CREATED: Sep 2016
 | 
						|
 | 
						|
  C-callable core functions moved from MpDecode.c, so they can be used for
 | 
						|
  Octave and C programs.
 | 
						|
*/
 | 
						|
 | 
						|
#include <math.h>
 | 
						|
#include <stdlib.h>
 | 
						|
#include <stdint.h>
 | 
						|
#include <stdio.h>
 | 
						|
#include <assert.h>
 | 
						|
#include "mpdecode_core.h"
 | 
						|
#ifndef USE_ORIGINAL_PHI0
 | 
						|
#include "phi0.h"
 | 
						|
#endif
 | 
						|
 | 
						|
#ifdef __EMBEDDED__
 | 
						|
#include "machdep.h"
 | 
						|
#endif
 | 
						|
 | 
						|
#define QPSK_CONSTELLATION_SIZE 4
 | 
						|
#define QPSK_BITS_PER_SYMBOL    2
 | 
						|
 | 
						|
namespace FreeDV
 | 
						|
{
 | 
						|
 | 
						|
/* QPSK constellation for symbol likelihood calculations */
 | 
						|
 | 
						|
static COMP S_matrix[] = {
 | 
						|
    { 1.0f,  0.0f},
 | 
						|
    { 0.0f,  1.0f},
 | 
						|
    { 0.0f, -1.0f},
 | 
						|
    {-1.0f,  0.0f}
 | 
						|
};
 | 
						|
 | 
						|
// c_nodes will be an array of NumberParityBits of struct c_node
 | 
						|
// Each c_node contains an array of <degree> c_sub_node elements
 | 
						|
// This structure reduces the indexing caluclations in SumProduct()
 | 
						|
 | 
						|
struct c_sub_node { // Order is important here to keep total size small.
 | 
						|
  uint16_t index;   // Values from H_rows (except last 2 entries)
 | 
						|
  uint16_t socket;  // The socket number at the v_node
 | 
						|
  float    message; // modified during operation!
 | 
						|
};
 | 
						|
 | 
						|
struct c_node {
 | 
						|
  int degree;       // A count of elements in the following arrays
 | 
						|
  struct c_sub_node *subs;
 | 
						|
};
 | 
						|
 | 
						|
// v_nodes will be an array of CodeLength of struct v_node
 | 
						|
 | 
						|
struct v_sub_node {
 | 
						|
  uint16_t index;  //    the index of a c_node it is connected to
 | 
						|
                   //    Filled with values from H_cols (except last 2 entries)
 | 
						|
  uint16_t socket; //    socket number at the c_node
 | 
						|
  float message;   //    Loaded with input data
 | 
						|
                   //    modified during operation!
 | 
						|
  uint8_t sign;    //    1 if input is negative
 | 
						|
                   //    modified during operation!
 | 
						|
};
 | 
						|
 | 
						|
struct v_node {
 | 
						|
  int degree;       // A count of ???
 | 
						|
  float initial_value;
 | 
						|
  struct v_sub_node *subs;
 | 
						|
};
 | 
						|
 | 
						|
void encode(struct LDPC *ldpc, unsigned char ibits[], unsigned char pbits[]) {
 | 
						|
    unsigned int tmp, par, prev=0;
 | 
						|
    int          i, p, ind;
 | 
						|
    uint16_t     *H_rows = ldpc->H_rows;
 | 
						|
 | 
						|
    for (p=0; p<ldpc->NumberParityBits; p++) {
 | 
						|
        par = 0;
 | 
						|
 | 
						|
        for (i=0; i<ldpc->max_row_weight; i++) {
 | 
						|
            ind = H_rows[p + i*ldpc->NumberParityBits];
 | 
						|
            par = par + ibits[ind-1];
 | 
						|
        }
 | 
						|
 | 
						|
        tmp = par + prev;
 | 
						|
 | 
						|
        tmp &= 1;    // only retain the lsb
 | 
						|
        prev = tmp;
 | 
						|
        pbits[p] = tmp;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
#ifdef USE_ORIGINAL_PHI0
 | 
						|
/* Phi function */
 | 
						|
static float phi0(
 | 
						|
                  float x )
 | 
						|
{
 | 
						|
  float z;
 | 
						|
 | 
						|
  if (x>10)
 | 
						|
    return( 0 );
 | 
						|
  else if (x< 9.08e-5 )
 | 
						|
    return( 10 );
 | 
						|
  else if (x > 9)
 | 
						|
    return( 1.6881e-4 );
 | 
						|
  /* return( 1.4970e-004 ); */
 | 
						|
  else if (x > 8)
 | 
						|
    return( 4.5887e-4 );
 | 
						|
  /* return( 4.0694e-004 ); */
 | 
						|
  else if (x > 7)
 | 
						|
    return( 1.2473e-3 );
 | 
						|
  /* return( 1.1062e-003 ); */
 | 
						|
  else if (x > 6)
 | 
						|
    return( 3.3906e-3 );
 | 
						|
  /* return( 3.0069e-003 ); */
 | 
						|
  else if (x > 5)
 | 
						|
    return( 9.2168e-3 );
 | 
						|
  /* return( 8.1736e-003 ); */
 | 
						|
  else {
 | 
						|
    z = (float) exp(x);
 | 
						|
    return( (float) log( (z+1)/(z-1) ) );
 | 
						|
  }
 | 
						|
}
 | 
						|
#endif
 | 
						|
 | 
						|
 | 
						|
/* Values for linear approximation (DecoderType=5) */
 | 
						|
 | 
						|
#define AJIAN -0.24904163195436
 | 
						|
#define TJIAN 2.50681740420944
 | 
						|
 | 
						|
/* The linear-log-MAP algorithm */
 | 
						|
 | 
						|
static float max_star0(
 | 
						|
                       float delta1,
 | 
						|
                       float delta2 )
 | 
						|
{
 | 
						|
    float diff;
 | 
						|
 | 
						|
    diff = delta2 - delta1;
 | 
						|
 | 
						|
    if ( diff > TJIAN )
 | 
						|
        return( delta2 );
 | 
						|
    else if ( diff < -TJIAN )
 | 
						|
        return( delta1 );
 | 
						|
    else if ( diff > 0 )
 | 
						|
        return( delta2 + AJIAN*(diff-TJIAN) );
 | 
						|
    else
 | 
						|
        return( delta1 - AJIAN*(diff+TJIAN) );
 | 
						|
}
 | 
						|
 | 
						|
void init_c_v_nodes(struct c_node *c_nodes,
 | 
						|
                    int     shift,
 | 
						|
                    int     NumberParityBits,
 | 
						|
                    int     max_row_weight,
 | 
						|
                    uint16_t *H_rows,
 | 
						|
                    int     H1,
 | 
						|
                    int     CodeLength,
 | 
						|
                    struct v_node *v_nodes,
 | 
						|
                    int     NumberRowsHcols,
 | 
						|
                    uint16_t *H_cols,
 | 
						|
                    int     max_col_weight,
 | 
						|
                    int     dec_type,
 | 
						|
                    float  *input)
 | 
						|
{
 | 
						|
    int i, j, k, count, cnt, c_index, v_index;
 | 
						|
 | 
						|
    /* first determine the degree of each c-node */
 | 
						|
 | 
						|
    if (shift ==0){
 | 
						|
        for (i=0;i<NumberParityBits;i++) {
 | 
						|
            count = 0;
 | 
						|
            for (j=0;j<max_row_weight;j++) {
 | 
						|
                if ( H_rows[i+j*NumberParityBits] > 0 ) {
 | 
						|
                    count++;
 | 
						|
                }
 | 
						|
            }
 | 
						|
            c_nodes[i].degree = count;
 | 
						|
            if (H1){
 | 
						|
                if (i==0){
 | 
						|
                    c_nodes[i].degree=count+1;
 | 
						|
                }
 | 
						|
                else{
 | 
						|
                    c_nodes[i].degree=count+2;
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
    else{
 | 
						|
        cnt=0;
 | 
						|
        for (i=0;i<(NumberParityBits/shift);i++) {
 | 
						|
            for (k=0;k<shift;k++){
 | 
						|
                count = 0;
 | 
						|
                for (j=0;j<max_row_weight;j++) {
 | 
						|
                    if ( H_rows[cnt+j*NumberParityBits] > 0 ) {
 | 
						|
                        count++;
 | 
						|
                    }
 | 
						|
                }
 | 
						|
                c_nodes[cnt].degree = count;
 | 
						|
                if ((i==0)||(i==(NumberParityBits/shift)-1)){
 | 
						|
                    c_nodes[cnt].degree=count+1;
 | 
						|
                }
 | 
						|
                else{
 | 
						|
                    c_nodes[cnt].degree=count+2;
 | 
						|
                }
 | 
						|
                cnt++;
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    if (H1){
 | 
						|
 | 
						|
        if (shift ==0){
 | 
						|
            for (i=0;i<NumberParityBits;i++) {
 | 
						|
 | 
						|
                // Allocate sub nodes
 | 
						|
                c_nodes[i].subs = (struct c_sub_node*) calloc(c_nodes[i].degree, sizeof(struct c_sub_node));
 | 
						|
                assert(c_nodes[i].subs);
 | 
						|
 | 
						|
	        // Populate sub nodes
 | 
						|
                for (j=0;j<c_nodes[i].degree-2;j++) {
 | 
						|
                    c_nodes[i].subs[j].index = (H_rows[i+j*NumberParityBits] - 1);
 | 
						|
                }
 | 
						|
                j=c_nodes[i].degree-2;
 | 
						|
 | 
						|
                if (i==0){
 | 
						|
                    c_nodes[i].subs[j].index = (H_rows[i+j*NumberParityBits] - 1);
 | 
						|
                }
 | 
						|
                else {
 | 
						|
                    c_nodes[i].subs[j].index = (CodeLength-NumberParityBits)+i-1;
 | 
						|
                }
 | 
						|
 | 
						|
                j=c_nodes[i].degree-1;
 | 
						|
                c_nodes[i].subs[j].index = (CodeLength-NumberParityBits)+i;
 | 
						|
 | 
						|
            }
 | 
						|
        }
 | 
						|
        if (shift >0){
 | 
						|
            cnt=0;
 | 
						|
            for (i=0;i<(NumberParityBits/shift);i++){
 | 
						|
 | 
						|
                for (k =0;k<shift;k++){
 | 
						|
 | 
						|
                    // Allocate sub nodes
 | 
						|
                    c_nodes[cnt].subs = (struct c_sub_node*) calloc(c_nodes[cnt].degree, sizeof(struct c_sub_node));
 | 
						|
                    assert(c_nodes[cnt].subs);
 | 
						|
 | 
						|
	            // Populate sub nodes
 | 
						|
                    for (j=0;j<c_nodes[cnt].degree-2;j++) {
 | 
						|
                        c_nodes[cnt].subs[j].index = (H_rows[cnt+j*NumberParityBits] - 1);
 | 
						|
                    }
 | 
						|
                    j=c_nodes[cnt].degree-2;
 | 
						|
                    if ((i ==0)||(i==(NumberParityBits/shift-1))){
 | 
						|
                        c_nodes[cnt].subs[j].index = (H_rows[cnt+j*NumberParityBits] - 1);
 | 
						|
                    }
 | 
						|
                    else{
 | 
						|
                        c_nodes[cnt].subs[j].index = (CodeLength-NumberParityBits)+k+shift*(i);
 | 
						|
                    }
 | 
						|
                    j=c_nodes[cnt].degree-1;
 | 
						|
                    c_nodes[cnt].subs[j].index = (CodeLength-NumberParityBits)+k+shift*(i+1);
 | 
						|
                    if (i== (NumberParityBits/shift-1))
 | 
						|
                        {
 | 
						|
                            c_nodes[cnt].subs[j].index = (CodeLength-NumberParityBits)+k+shift*(i);
 | 
						|
                        }
 | 
						|
                    cnt++;
 | 
						|
                }
 | 
						|
            }
 | 
						|
        }
 | 
						|
 | 
						|
    } else {
 | 
						|
        for (i=0;i<NumberParityBits;i++) {
 | 
						|
            // Allocate sub nodes
 | 
						|
            c_nodes[i].subs = (struct c_sub_node*) calloc(c_nodes[i].degree, sizeof(struct c_sub_node));
 | 
						|
            assert(c_nodes[i].subs);
 | 
						|
 | 
						|
	    // Populate sub nodes
 | 
						|
            for (j=0;j<c_nodes[i].degree;j++){
 | 
						|
                c_nodes[i].subs[j].index = (H_rows[i+j*NumberParityBits] - 1);
 | 
						|
            }
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
 | 
						|
    /* determine degree of each v-node */
 | 
						|
 | 
						|
    for(i=0;i<(CodeLength-NumberParityBits+shift);i++){
 | 
						|
        count=0;
 | 
						|
        for (j=0;j<max_col_weight;j++) {
 | 
						|
            if ( H_cols[i+j*NumberRowsHcols] > 0 ) {
 | 
						|
                count++;
 | 
						|
            }
 | 
						|
        }
 | 
						|
        v_nodes[i].degree = count;
 | 
						|
    }
 | 
						|
 | 
						|
    for(i=CodeLength-NumberParityBits+shift;i<CodeLength;i++){
 | 
						|
        count=0;
 | 
						|
        if (H1){
 | 
						|
            if(i!=CodeLength-1){
 | 
						|
                v_nodes[i].degree=2;
 | 
						|
            }  else{
 | 
						|
                v_nodes[i].degree=1;
 | 
						|
            }
 | 
						|
 | 
						|
        } else{
 | 
						|
            for (j=0;j<max_col_weight;j++) {
 | 
						|
                if ( H_cols[i+j*NumberRowsHcols] > 0 ) {
 | 
						|
                    count++;
 | 
						|
                }
 | 
						|
            }
 | 
						|
            v_nodes[i].degree = count;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    if (shift>0){
 | 
						|
        v_nodes[CodeLength-1].degree =v_nodes[CodeLength-1].degree+1;
 | 
						|
    }
 | 
						|
 | 
						|
 | 
						|
    /* set up v_nodes */
 | 
						|
 | 
						|
    for (i=0;i<CodeLength;i++) {
 | 
						|
        // Allocate sub nodes
 | 
						|
        v_nodes[i].subs = (struct v_sub_node*) calloc(v_nodes[i].degree, sizeof(struct v_sub_node));
 | 
						|
        assert(v_nodes[i].subs);
 | 
						|
 | 
						|
	// Populate sub nodes
 | 
						|
 | 
						|
        /* index tells which c-nodes this v-node is connected to */
 | 
						|
        v_nodes[i].initial_value = input[i];
 | 
						|
        count=0;
 | 
						|
 | 
						|
        for (j=0;j<v_nodes[i].degree;j++) {
 | 
						|
            if ((H1)&& (i>=CodeLength-NumberParityBits+shift)){
 | 
						|
                v_nodes[i].subs[j].index=i-(CodeLength-NumberParityBits+shift)+count;
 | 
						|
                if (shift ==0){
 | 
						|
                    count=count+1;
 | 
						|
                }
 | 
						|
                else{
 | 
						|
                    count=count+shift;
 | 
						|
                }
 | 
						|
            } else  {
 | 
						|
                v_nodes[i].subs[j].index = (H_cols[i+j*NumberRowsHcols] - 1);
 | 
						|
            }
 | 
						|
 | 
						|
            /* search the connected c-node for the proper message value */
 | 
						|
            for (c_index=0;c_index<c_nodes[ v_nodes[i].subs[j].index ].degree;c_index++)
 | 
						|
                if ( c_nodes[ v_nodes[i].subs[j].index ].subs[c_index].index == i ) {
 | 
						|
                    v_nodes[i].subs[j].socket = c_index;
 | 
						|
                    break;
 | 
						|
                }
 | 
						|
            /* initialize v-node with received LLR */
 | 
						|
            if ( dec_type == 1)
 | 
						|
                v_nodes[i].subs[j].message = fabs(input[i]);
 | 
						|
            else
 | 
						|
                v_nodes[i].subs[j].message = phi0( fabs(input[i]) );
 | 
						|
 | 
						|
            if (input[i] < 0)
 | 
						|
                v_nodes[i].subs[j].sign = 1;
 | 
						|
        }
 | 
						|
 | 
						|
    }
 | 
						|
 | 
						|
 | 
						|
 | 
						|
    /* now finish setting up the c_nodes */
 | 
						|
    for (i=0;i<NumberParityBits;i++) {
 | 
						|
        /* index tells which v-nodes this c-node is connected to */
 | 
						|
        for (j=0;j<c_nodes[i].degree;j++) {
 | 
						|
            /* search the connected v-node for the proper message value */
 | 
						|
            for (v_index=0;v_index<v_nodes[ c_nodes[i].subs[j].index ].degree;v_index++)
 | 
						|
                if (v_nodes[ c_nodes[i].subs[j].index ].subs[v_index].index == i ) {
 | 
						|
                    c_nodes[i].subs[j].socket = v_index;
 | 
						|
                    break;
 | 
						|
                }
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
///////////////////////////////////////
 | 
						|
/* function for doing the MP decoding */
 | 
						|
// Returns the iteration count
 | 
						|
int SumProduct( int       *parityCheckCount,
 | 
						|
                char     DecodedBits[],
 | 
						|
                struct c_node c_nodes[],
 | 
						|
                struct v_node v_nodes[],
 | 
						|
                int       CodeLength,
 | 
						|
                int       NumberParityBits,
 | 
						|
                int       max_iter,
 | 
						|
                float    r_scale_factor,
 | 
						|
                float    q_scale_factor,
 | 
						|
                int      data[] )
 | 
						|
{
 | 
						|
    (void) r_scale_factor;
 | 
						|
    (void) q_scale_factor;
 | 
						|
    int result;
 | 
						|
    int bitErrors;
 | 
						|
    int i,j, iter;
 | 
						|
    float phi_sum;
 | 
						|
    int sign;
 | 
						|
    float temp_sum;
 | 
						|
    float Qi;
 | 
						|
    int   ssum;
 | 
						|
 | 
						|
 | 
						|
  result = max_iter;
 | 
						|
  for (iter=0;iter<max_iter;iter++) {
 | 
						|
 | 
						|
    for(i=0; i<CodeLength; i++) DecodedBits[i] = 0; // Clear each pass!
 | 
						|
    bitErrors = 0;
 | 
						|
 | 
						|
    /* update r */
 | 
						|
    ssum = 0;
 | 
						|
    for (j=0;j<NumberParityBits;j++) {
 | 
						|
      sign = v_nodes[ c_nodes[j].subs[0].index ].subs[ c_nodes[j].subs[0].socket ].sign;
 | 
						|
      phi_sum = v_nodes[ c_nodes[j].subs[0].index ].subs[ c_nodes[j].subs[0].socket ].message;
 | 
						|
 | 
						|
      for (i=1;i<c_nodes[j].degree;i++) {
 | 
						|
        // Compiler should optomize this but write the best we can to start from.
 | 
						|
        struct c_sub_node *cp = &c_nodes[j].subs[i];
 | 
						|
        struct v_sub_node *vp = &v_nodes[ cp->index ].subs[ cp->socket ];
 | 
						|
	    phi_sum += vp->message;
 | 
						|
	    sign ^= vp->sign;
 | 
						|
      }
 | 
						|
 | 
						|
      if (sign==0) ssum++;
 | 
						|
 | 
						|
      for (i=0;i<c_nodes[j].degree;i++) {
 | 
						|
        struct c_sub_node *cp = &c_nodes[j].subs[i];
 | 
						|
        struct v_sub_node *vp = &v_nodes[ cp->index ].subs[ cp->socket ];
 | 
						|
	    if ( sign ^ vp->sign ) {
 | 
						|
	      cp->message = -phi0( phi_sum - vp->message ); // *r_scale_factor;
 | 
						|
        } else
 | 
						|
	      cp->message =  phi0( phi_sum - vp->message ); // *r_scale_factor;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    /* update q */
 | 
						|
    for (i=0;i<CodeLength;i++) {
 | 
						|
 | 
						|
      /* first compute the LLR */
 | 
						|
      Qi = v_nodes[i].initial_value;
 | 
						|
      for (j=0;j<v_nodes[i].degree;j++) {
 | 
						|
        struct v_sub_node *vp = &v_nodes[i].subs[j];
 | 
						|
	    Qi += c_nodes[ vp->index ].subs[ vp->socket ].message;
 | 
						|
      }
 | 
						|
 | 
						|
      /* make hard decision */
 | 
						|
      if (Qi < 0) {
 | 
						|
            DecodedBits[i] = 1;
 | 
						|
      }
 | 
						|
 | 
						|
      /* now subtract to get the extrinsic information */
 | 
						|
      for (j=0;j<v_nodes[i].degree;j++) {
 | 
						|
        struct v_sub_node *vp = &v_nodes[i].subs[j];
 | 
						|
	    temp_sum = Qi - c_nodes[ vp->index ].subs[ vp->socket ].message;
 | 
						|
 | 
						|
	    vp->message = phi0( fabs( temp_sum ) ); // *q_scale_factor;
 | 
						|
        if (temp_sum > 0)
 | 
						|
	      vp->sign = 0;
 | 
						|
        else
 | 
						|
	      vp->sign = 1;
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
    /* count data bit errors, assuming that it is systematic */
 | 
						|
    for (i=0;i<CodeLength-NumberParityBits;i++)
 | 
						|
      if ( DecodedBits[i] != data[i] )
 | 
						|
            bitErrors++;
 | 
						|
 | 
						|
 | 
						|
    /* Halt if zero errors */
 | 
						|
    if (bitErrors == 0) {
 | 
						|
      result = iter + 1;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
    // count the number of PC satisfied and exit if all OK
 | 
						|
    *parityCheckCount = ssum;
 | 
						|
    if (ssum==NumberParityBits)  {
 | 
						|
      result = iter + 1;
 | 
						|
      break;
 | 
						|
    }
 | 
						|
 | 
						|
 | 
						|
  }
 | 
						|
 | 
						|
return(result);
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/* Convenience function to call LDPC decoder from C programs */
 | 
						|
 | 
						|
int run_ldpc_decoder(struct LDPC *ldpc, uint8_t out_char[], float input[], int *parityCheckCount) {
 | 
						|
    int         max_iter, dec_type;
 | 
						|
    float       q_scale_factor, r_scale_factor;
 | 
						|
    int         max_row_weight, max_col_weight;
 | 
						|
    int         CodeLength, NumberParityBits, NumberRowsHcols, shift, H1;
 | 
						|
    int         i;
 | 
						|
    struct c_node *c_nodes;
 | 
						|
    struct v_node *v_nodes;
 | 
						|
 | 
						|
    /* default values */
 | 
						|
 | 
						|
    max_iter  = ldpc->max_iter;
 | 
						|
    dec_type  = ldpc->dec_type;
 | 
						|
    q_scale_factor = ldpc->q_scale_factor;
 | 
						|
    r_scale_factor = ldpc->r_scale_factor;
 | 
						|
 | 
						|
    CodeLength = ldpc->CodeLength;                    /* length of entire codeword */
 | 
						|
    NumberParityBits = ldpc->NumberParityBits;
 | 
						|
    NumberRowsHcols = ldpc->NumberRowsHcols;
 | 
						|
 | 
						|
    char *DecodedBits = (char*) calloc( CodeLength, sizeof( char ) );
 | 
						|
    assert(DecodedBits);
 | 
						|
 | 
						|
    /* derive some parameters */
 | 
						|
 | 
						|
    shift = (NumberParityBits + NumberRowsHcols) - CodeLength;
 | 
						|
    if (NumberRowsHcols == CodeLength) {
 | 
						|
        H1=0;
 | 
						|
        shift=0;
 | 
						|
    } else {
 | 
						|
        H1=1;
 | 
						|
    }
 | 
						|
 | 
						|
    max_row_weight = ldpc->max_row_weight;
 | 
						|
    max_col_weight = ldpc->max_col_weight;
 | 
						|
 | 
						|
    /* initialize c-node and v-node structures */
 | 
						|
 | 
						|
    c_nodes = (struct c_node*) calloc( NumberParityBits, sizeof( struct c_node ) );
 | 
						|
    assert(c_nodes);
 | 
						|
    v_nodes = (struct v_node*) calloc( CodeLength, sizeof( struct v_node));
 | 
						|
    assert(v_nodes);
 | 
						|
 | 
						|
    init_c_v_nodes(c_nodes, shift, NumberParityBits, max_row_weight, ldpc->H_rows, H1, CodeLength,
 | 
						|
                   v_nodes, NumberRowsHcols, ldpc->H_cols, max_col_weight, dec_type, input);
 | 
						|
 | 
						|
    int DataLength = CodeLength - NumberParityBits;
 | 
						|
    int *data_int = (int*) calloc( DataLength, sizeof(int) );
 | 
						|
 | 
						|
    /* need to clear these on each call */
 | 
						|
 | 
						|
    for(i=0; i<CodeLength; i++) DecodedBits[i] = 0;
 | 
						|
 | 
						|
    /* Call function to do the actual decoding */
 | 
						|
    int iter = SumProduct( parityCheckCount, DecodedBits, c_nodes, v_nodes,
 | 
						|
                           CodeLength, NumberParityBits, max_iter,
 | 
						|
                           r_scale_factor, q_scale_factor, data_int );
 | 
						|
 | 
						|
    for (i=0; i<CodeLength; i++) out_char[i] = DecodedBits[i];
 | 
						|
 | 
						|
    /* Clean up memory */
 | 
						|
 | 
						|
    free(DecodedBits);
 | 
						|
    free( data_int );
 | 
						|
 | 
						|
    for (i=0;i<NumberParityBits;i++) {
 | 
						|
        free( c_nodes[i].subs );
 | 
						|
    }
 | 
						|
 | 
						|
    free( c_nodes );
 | 
						|
 | 
						|
    for (i=0;i<CodeLength;i++) {
 | 
						|
        free( v_nodes[i].subs);
 | 
						|
    }
 | 
						|
 | 
						|
    free( v_nodes );
 | 
						|
 | 
						|
    return iter;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void sd_to_llr(float llr[], double sd[], int n) {
 | 
						|
    double sum, mean, sign, sumsq, estvar, estEsN0, x;
 | 
						|
    int i;
 | 
						|
 | 
						|
    /* convert SD samples to LLRs -------------------------------*/
 | 
						|
 | 
						|
    sum = 0.0;
 | 
						|
    for(i=0; i<n; i++)
 | 
						|
        sum += fabs(sd[i]);
 | 
						|
    mean = sum/n;
 | 
						|
 | 
						|
    /* find variance from +/-1 symbol position */
 | 
						|
 | 
						|
    sum = sumsq = 0.0;
 | 
						|
    for(i=0; i<n; i++) {
 | 
						|
        sign = (sd[i] > 0.0L) - (sd[i] < 0.0L);
 | 
						|
        x = (sd[i]/mean - sign);
 | 
						|
        sum += x;
 | 
						|
        sumsq += x*x;
 | 
						|
    }
 | 
						|
    estvar = (n * sumsq - sum * sum) / (n * (n - 1));
 | 
						|
    //fprintf(stderr, "mean: %f var: %f\n", mean, estvar);
 | 
						|
 | 
						|
    estEsN0 = 1.0/(2.0L * estvar + 1E-3);
 | 
						|
    for(i=0; i<n; i++)
 | 
						|
        llr[i] = 4.0L * estEsN0 * sd[i];
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
   Determine symbol likelihood from received QPSK symbols.
 | 
						|
 | 
						|
   Notes:
 | 
						|
 | 
						|
   1) We assume fading[] is real, it is also possible to compute
 | 
						|
      with complex fading, see CML library Demod2D.c source code.
 | 
						|
   2) Using floats instead of doubles, for stm32.
 | 
						|
      Testing shows good BERs with floats.
 | 
						|
*/
 | 
						|
 | 
						|
void Demod2D(float   symbol_likelihood[],       /* output, M*number_symbols              */
 | 
						|
             COMP    r[],                       /* received QPSK symbols, number_symbols */
 | 
						|
             COMP    S_matrix[],                /* constellation of size M               */
 | 
						|
             float   EsNo,
 | 
						|
             float   fading[],                  /* real fading values, number_symbols    */
 | 
						|
             float   mean_amp,
 | 
						|
             int     number_symbols)
 | 
						|
{
 | 
						|
    int     M=QPSK_CONSTELLATION_SIZE;
 | 
						|
    int     i,j;
 | 
						|
    float  tempsr, tempsi, Er, Ei;
 | 
						|
 | 
						|
    /* determine output */
 | 
						|
 | 
						|
    for (i=0;i<number_symbols;i++) {                /* go through each received symbol */
 | 
						|
        for (j=0;j<M;j++) {                         /* each postulated symbol          */
 | 
						|
            tempsr = fading[i]*S_matrix[j].real/mean_amp;
 | 
						|
            tempsi = fading[i]*S_matrix[j].imag/mean_amp;
 | 
						|
            Er = r[i].real/mean_amp - tempsr;
 | 
						|
            Ei = r[i].imag/mean_amp - tempsi;
 | 
						|
            symbol_likelihood[i*M+j] = -EsNo*(Er*Er+Ei*Ei);
 | 
						|
            //printf("symbol_likelihood[%d][%d] = %f\n", i,j,symbol_likelihood[i*M+j]);
 | 
						|
        }
 | 
						|
        //exit(0);
 | 
						|
    }
 | 
						|
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void Somap(float  bit_likelihood[],      /* number_bits, bps*number_symbols */
 | 
						|
           float  symbol_likelihood[],   /* M*number_symbols                */
 | 
						|
           int     number_symbols)
 | 
						|
{
 | 
						|
    int    M=QPSK_CONSTELLATION_SIZE, bps = QPSK_BITS_PER_SYMBOL;
 | 
						|
    int    n,i,j,k,mask;
 | 
						|
    float *num = new float[bps];
 | 
						|
    float *den = new float[bps];
 | 
						|
    float metric;
 | 
						|
 | 
						|
    for (n=0; n<number_symbols; n++) { /* loop over symbols */
 | 
						|
        for (k=0;k<bps;k++) {
 | 
						|
            /* initialize */
 | 
						|
            num[k] = -1000000;
 | 
						|
            den[k] = -1000000;
 | 
						|
        }
 | 
						|
 | 
						|
        for (i=0;i<M;i++) {
 | 
						|
            metric =  symbol_likelihood[n*M+i]; /* channel metric for this symbol */
 | 
						|
 | 
						|
            mask = 1 << (bps - 1);
 | 
						|
            for (j=0;j<bps;j++) {
 | 
						|
                mask = mask >> 1;
 | 
						|
            }
 | 
						|
            mask = 1 << (bps - 1);
 | 
						|
 | 
						|
            for (k=0;k<bps;k++) {       /* loop over bits */
 | 
						|
                if (mask&i) {
 | 
						|
                    /* this bit is a one */
 | 
						|
                    num[k] = max_star0( num[k], metric );
 | 
						|
                } else {
 | 
						|
                    /* this bit is a zero */
 | 
						|
                    den[k] = max_star0( den[k], metric );
 | 
						|
                }
 | 
						|
                mask = mask >> 1;
 | 
						|
            }
 | 
						|
        }
 | 
						|
        for (k=0;k<bps;k++) {
 | 
						|
            bit_likelihood[bps*n+k] = num[k] - den[k];
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    delete[] den;
 | 
						|
    delete[] num;
 | 
						|
}
 | 
						|
 | 
						|
 | 
						|
void symbols_to_llrs(float llr[], COMP rx_qpsk_symbols[], float rx_amps[], float EsNo, float mean_amp, int nsyms) {
 | 
						|
    int i;
 | 
						|
 | 
						|
    float *symbol_likelihood = new float[nsyms*QPSK_CONSTELLATION_SIZE];
 | 
						|
    float *bit_likelihood = new float[nsyms*QPSK_BITS_PER_SYMBOL];
 | 
						|
 | 
						|
    Demod2D(symbol_likelihood, rx_qpsk_symbols, S_matrix, EsNo, rx_amps, mean_amp, nsyms);
 | 
						|
    Somap(bit_likelihood, symbol_likelihood, nsyms);
 | 
						|
    for(i=0; i<nsyms*QPSK_BITS_PER_SYMBOL; i++) {
 | 
						|
        llr[i] = -bit_likelihood[i];
 | 
						|
    }
 | 
						|
 | 
						|
    delete[] bit_likelihood;
 | 
						|
    delete[] symbol_likelihood;
 | 
						|
}
 | 
						|
 | 
						|
void ldpc_print_info(struct LDPC *ldpc) {
 | 
						|
fprintf(stderr, "ldpc->max_iter = %d\n", ldpc->max_iter);
 | 
						|
fprintf(stderr, "ldpc->dec_type = %d\n", ldpc->dec_type);
 | 
						|
fprintf(stderr, "ldpc->q_scale_factor = %d\n", ldpc->q_scale_factor);
 | 
						|
fprintf(stderr, "ldpc->r_scale_factor = %d\n", ldpc->r_scale_factor);
 | 
						|
fprintf(stderr, "ldpc->CodeLength = %d\n", ldpc->CodeLength);
 | 
						|
fprintf(stderr, "ldpc->NumberParityBits = %d\n", ldpc->NumberParityBits);
 | 
						|
fprintf(stderr, "ldpc->NumberRowsHcols = %d\n", ldpc->NumberRowsHcols);
 | 
						|
fprintf(stderr, "ldpc->max_row_weight = %d\n", ldpc->max_row_weight);
 | 
						|
fprintf(stderr, "ldpc->max_col_weight = %d\n", ldpc->max_col_weight);
 | 
						|
fprintf(stderr, "ldpc->data_bits_per_frame = %d\n", ldpc->data_bits_per_frame);
 | 
						|
fprintf(stderr, "ldpc->coded_bits_per_frame = %d\n", ldpc->coded_bits_per_frame);
 | 
						|
fprintf(stderr, "ldpc->coded_syms_per_frame = %d\n", ldpc->coded_syms_per_frame);
 | 
						|
}
 | 
						|
 | 
						|
} // FreeDV
 | 
						|
 | 
						|
/* vi:set ts=4 et sts=4: */
 |