mirror of
				https://github.com/f4exb/sdrangel.git
				synced 2025-11-03 13:11:20 -05:00 
			
		
		
		
	
		
			
				
	
	
		
			141 lines
		
	
	
		
			5.4 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			141 lines
		
	
	
		
			5.4 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
///////////////////////////////////////////////////////////////////////////////////
 | 
						|
// Copyright (C) 2015 Edouard Griffiths, F4EXB                                   //
 | 
						|
// Copyright (C) 2020 Jon Beniston, M7RCE                                        //
 | 
						|
//                                                                               //
 | 
						|
// This program is free software; you can redistribute it and/or modify          //
 | 
						|
// it under the terms of the GNU General Public License as published by          //
 | 
						|
// the Free Software Foundation as version 3 of the License, or                  //
 | 
						|
// (at your option) any later version.                                           //
 | 
						|
//                                                                               //
 | 
						|
// This program is distributed in the hope that it will be useful,               //
 | 
						|
// but WITHOUT ANY WARRANTY; without even the implied warranty of                //
 | 
						|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the                  //
 | 
						|
// GNU General Public License V3 for more details.                               //
 | 
						|
//                                                                               //
 | 
						|
// You should have received a copy of the GNU General Public License             //
 | 
						|
// along with this program. If not, see <http://www.gnu.org/licenses/>.          //
 | 
						|
///////////////////////////////////////////////////////////////////////////////////
 | 
						|
 | 
						|
#ifndef INCLUDE_RAISEDCOSINE_H
 | 
						|
#define INCLUDE_RAISEDCOSINE_H
 | 
						|
 | 
						|
#include <cmath>
 | 
						|
#include "dsp/dsptypes.h"
 | 
						|
 | 
						|
// Raised-cosine low-pass filter for pulse shaping, without intersymbol interference (ISI)
 | 
						|
// https://en.wikipedia.org/wiki/Raised-cosine_filter
 | 
						|
// This could be optimised in to a polyphase filter, as samplesPerSymbol-1 inputs
 | 
						|
// to filter() should be zero, as the data is upsampled to the sample rate
 | 
						|
template <class Type> class RaisedCosine {
 | 
						|
public:
 | 
						|
    RaisedCosine() : m_ptr(0) { }
 | 
						|
 | 
						|
    // beta - roll-off factor
 | 
						|
    // symbolSpan - number of symbols over which the filter is spread
 | 
						|
    // samplesPerSymbol - number of samples per symbol
 | 
						|
    // normaliseUpsampledAmplitude - when true, scale the filter such that an upsampled
 | 
						|
    // (by samplesPerSymbol) bipolar sequence (E.g. [1 0 0 -1 0 0..]) has maximum
 | 
						|
    // output values close to (1,-1)
 | 
						|
    void create(double beta, int symbolSpan, int samplesPerSymbol, bool normaliseUpsampledAmplitude = false)
 | 
						|
    {
 | 
						|
        int nTaps = symbolSpan * samplesPerSymbol + 1;
 | 
						|
        int i, j;
 | 
						|
 | 
						|
        // check constraints
 | 
						|
        if(!(nTaps & 1)) {
 | 
						|
            qDebug("Raised cosine filter has to have an odd number of taps");
 | 
						|
            nTaps++;
 | 
						|
        }
 | 
						|
 | 
						|
        // make room
 | 
						|
        m_samples.resize(nTaps);
 | 
						|
        for(int i = 0; i < nTaps; i++)
 | 
						|
            m_samples[i] = 0;
 | 
						|
        m_ptr = 0;
 | 
						|
        m_taps.resize(nTaps / 2 + 1);
 | 
						|
 | 
						|
        // calculate filter taps
 | 
						|
        for(i = 0; i < nTaps / 2 + 1; i++)
 | 
						|
        {
 | 
						|
            double t = (i - (nTaps / 2)) / (double)samplesPerSymbol;
 | 
						|
            double denominator = 1.0 - std::pow(2.0 * beta * t, 2.0);
 | 
						|
            double sinc;
 | 
						|
 | 
						|
            if (denominator != 0.0)
 | 
						|
            {
 | 
						|
                if (t == 0)
 | 
						|
                    sinc = 1.0;
 | 
						|
                else
 | 
						|
                    sinc = sin(M_PI*t)/(M_PI*t);
 | 
						|
                m_taps[i] = sinc * (cos(M_PI*beta*t) / denominator) / (double)samplesPerSymbol;
 | 
						|
            }
 | 
						|
            else
 | 
						|
                m_taps[i] = beta * sin(M_PI/(2.0*beta)) / (2.0*samplesPerSymbol);
 | 
						|
        }
 | 
						|
 | 
						|
        // normalize
 | 
						|
        if (!normaliseUpsampledAmplitude)
 | 
						|
        {
 | 
						|
            // normalize energy
 | 
						|
            double sum = 0;
 | 
						|
            for(i = 0; i < (int)m_taps.size() - 1; i++)
 | 
						|
                sum += std::pow(m_taps[i], 2.0) * 2;
 | 
						|
            sum += std::pow(m_taps[i], 2.0);
 | 
						|
            sum = std::sqrt(sum);
 | 
						|
            for(i = 0; i < (int)m_taps.size(); i++)
 | 
						|
                m_taps[i] /= sum;
 | 
						|
        }
 | 
						|
        else
 | 
						|
        {
 | 
						|
            // Calculate maximum output of filter, assuming upsampled bipolar input E.g. [1 0 0 -1 0 0..]
 | 
						|
            // This doesn't necessarily include the centre tap, so we try each offset
 | 
						|
            double maxGain = 0.0;
 | 
						|
            for (i = 0; i < samplesPerSymbol; i++)
 | 
						|
            {
 | 
						|
                double g = 0.0;
 | 
						|
                for (j = 0; j < (int)m_taps.size() - 1; j += samplesPerSymbol)
 | 
						|
                    g += std::fabs(2.0 * m_taps[j]);
 | 
						|
                if ((i & 1) == 0)
 | 
						|
                    g += std::fabs(m_taps[j]);
 | 
						|
                if (g > maxGain)
 | 
						|
                    maxGain = g;
 | 
						|
            }
 | 
						|
            // Scale up so maximum out is 1
 | 
						|
            for(i = 0; i < (int)m_taps.size(); i++)
 | 
						|
                m_taps[i] /= maxGain;
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    Type filter(Type sample)
 | 
						|
    {
 | 
						|
        Type acc = 0;
 | 
						|
        unsigned int n_samples = m_samples.size();
 | 
						|
        unsigned int n_taps = m_taps.size() - 1;
 | 
						|
        unsigned int a = m_ptr;
 | 
						|
        unsigned int b = a == n_samples - 1 ? 0 : a + 1;
 | 
						|
 | 
						|
        m_samples[m_ptr] = sample;
 | 
						|
 | 
						|
        for (unsigned int i = 0; i < n_taps; ++i)
 | 
						|
        {
 | 
						|
            acc += (m_samples[a] + m_samples[b]) * m_taps[i];
 | 
						|
 | 
						|
            a = (a == 0)             ? n_samples - 1 : a - 1;
 | 
						|
            b = (b == n_samples - 1) ? 0             : b + 1;
 | 
						|
        }
 | 
						|
 | 
						|
        acc += m_samples[a] * m_taps[n_taps];
 | 
						|
 | 
						|
        m_ptr = (m_ptr == n_samples - 1) ? 0 : m_ptr + 1;
 | 
						|
 | 
						|
        return acc;
 | 
						|
    }
 | 
						|
 | 
						|
private:
 | 
						|
    std::vector<Real> m_taps;
 | 
						|
    std::vector<Type> m_samples;
 | 
						|
    unsigned int m_ptr;
 | 
						|
};
 | 
						|
 | 
						|
#endif // INCLUDE_RAISEDCOSINE_H
 |