mirror of
				https://github.com/f4exb/sdrangel.git
				synced 2025-10-26 02:20:26 -04:00 
			
		
		
		
	
		
			
				
	
	
		
			401 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			401 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| ///////////////////////////////////////////////////////////////////////////////////////
 | |
| // Copyright (C) 2017 Edouard Griffiths, F4EXB <f4exb06@gmail.com>                   //
 | |
| // Copyright (C) 2020 Kacper Michajłow <kasper93@gmail.com>                          //
 | |
| //                                                                                   //
 | |
| // This program is free software; you can redistribute it and/or modify              //
 | |
| // it under the terms of the GNU General Public License as published by              //
 | |
| // the Free Software Foundation as version 3 of the License, or                      //
 | |
| // (at your option) any later version.                                               //
 | |
| //                                                                                   //
 | |
| // This program is distributed in the hope that it will be useful,                   //
 | |
| // but WITHOUT ANY WARRANTY; without even the implied warranty of                    //
 | |
| // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the                      //
 | |
| // GNU General Public License V3 for more details.                                   //
 | |
| //                                                                                   //
 | |
| // You should have received a copy of the GNU General Public License                 //
 | |
| // along with this program. If not, see <http://www.gnu.org/licenses/>.              //
 | |
| ///////////////////////////////////////////////////////////////////////////////////////
 | |
| /*
 | |
|  July 15, 2015
 | |
|  Iowa Hills Software LLC
 | |
|  http://www.iowahills.com
 | |
|  */
 | |
| 
 | |
| #include <cmath>
 | |
| #include <new>
 | |
| #include <iostream>
 | |
| 
 | |
| #include "wfir.h"
 | |
| 
 | |
| #define M_2PI  (2*M_PI)
 | |
| 
 | |
| // This first calculates the impulse response for a rectangular window.
 | |
| // It then applies the windowing function of choice to the impulse response.
 | |
| void WFIR::BasicFIR(double *FirCoeff, int NumTaps, TPassTypeName PassType,
 | |
|         double OmegaC, double BW, TWindowType WindowType, double WinBeta)
 | |
| {
 | |
|     int j;
 | |
|     double Arg, OmegaLow, OmegaHigh;
 | |
| 
 | |
|     switch (PassType)
 | |
|     {
 | |
|     case LPF:
 | |
|         for (j = 0; j < NumTaps; j++)
 | |
|         {
 | |
|             Arg = (double) j - (double) (NumTaps - 1) / 2.0;
 | |
|             FirCoeff[j] = OmegaC * Sinc(OmegaC * Arg * M_PI);
 | |
|         }
 | |
|         break;
 | |
| 
 | |
|     case HPF:
 | |
|         if (NumTaps % 2 == 1) // Odd tap counts
 | |
|         {
 | |
|             for (j = 0; j < NumTaps; j++)
 | |
|             {
 | |
|                 Arg = (double) j - (double) (NumTaps - 1) / 2.0;
 | |
|                 FirCoeff[j] = Sinc(Arg * M_PI)
 | |
|                         - OmegaC * Sinc(OmegaC * Arg * M_PI);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         else  // Even tap counts
 | |
|         {
 | |
|             for (j = 0; j < NumTaps; j++)
 | |
|             {
 | |
|                 Arg = (double) j - (double) (NumTaps - 1) / 2.0;
 | |
|                 if (Arg == 0.0)
 | |
|                     FirCoeff[j] = 0.0;
 | |
|                 else
 | |
|                     FirCoeff[j] = cos(OmegaC * Arg * M_PI) / M_PI / Arg
 | |
|                             + cos(Arg * M_PI);
 | |
|             }
 | |
|         }
 | |
|         break;
 | |
| 
 | |
|     case BPF:
 | |
|         OmegaLow = OmegaC - BW / 2.0;
 | |
|         OmegaHigh = OmegaC + BW / 2.0;
 | |
|         for (j = 0; j < NumTaps; j++)
 | |
|         {
 | |
|             Arg = (double) j - (double) (NumTaps - 1) / 2.0;
 | |
|             if (Arg == 0.0)
 | |
|                 FirCoeff[j] = 0.0;
 | |
|             else
 | |
|                 FirCoeff[j] = (cos(OmegaLow * Arg * M_PI)
 | |
|                         - cos(OmegaHigh * Arg * M_PI)) / M_PI / Arg;
 | |
|         }
 | |
|         break;
 | |
| 
 | |
|     case NOTCH: // If NumTaps is even for Notch filters, the response at Pi is attenuated.
 | |
|         OmegaLow = OmegaC - BW / 2.0;
 | |
|         OmegaHigh = OmegaC + BW / 2.0;
 | |
|         for (j = 0; j < NumTaps; j++)
 | |
|         {
 | |
|             Arg = (double) j - (double) (NumTaps - 1) / 2.0;
 | |
|             FirCoeff[j] = Sinc(Arg * M_PI)
 | |
|                     - OmegaHigh * Sinc(OmegaHigh * Arg * M_PI)
 | |
|                     - OmegaLow * Sinc(OmegaLow * Arg * M_PI);
 | |
|         }
 | |
|         break;
 | |
|     }
 | |
| 
 | |
|     // WindowData can be used to window data before an FFT. When used for FIR filters we set
 | |
|     // Alpha = 0.0 to prevent a flat top on the window and
 | |
|     // set UnityGain = false to prevent the window gain from getting set to unity.
 | |
|     WindowData(FirCoeff, NumTaps, WindowType, 0.0, WinBeta, false);
 | |
| 
 | |
| }
 | |
| 
 | |
| //---------------------------------------------------------------------------
 | |
| 
 | |
| // This gets used with the Kaiser window.
 | |
| double WFIR::Bessel(double x)
 | |
| {
 | |
|     double Sum = 0.0, XtoIpower;
 | |
|     int i, j, Factorial;
 | |
|     for (i = 1; i < 10; i++)
 | |
|     {
 | |
|         XtoIpower = pow(x / 2.0, (double) i);
 | |
|         Factorial = 1;
 | |
|         for (j = 1; j <= i; j++)
 | |
|             Factorial *= j;
 | |
|         Sum += pow(XtoIpower / (double) Factorial, 2.0);
 | |
|     }
 | |
|     return (1.0 + Sum);
 | |
| }
 | |
| 
 | |
| //-----------------------------------------------------------------------------
 | |
| 
 | |
| // This gets used with the Sinc window and various places in the BasicFIR function.
 | |
| double WFIR::Sinc(double x)
 | |
| {
 | |
|     if (x > -1.0E-5 && x < 1.0E-5)
 | |
|         return (1.0);
 | |
|     return (sin(x) / x);
 | |
| }
 | |
| 
 | |
| //---------------------------------------------------------------------------
 | |
| 
 | |
| // These are the various windows definitions. These windows can be used for either
 | |
| // FIR filter design or with an FFT for spectral analysis.
 | |
| // Sourced verbatim from: ~MyDocs\Code\Common\FFTFunctions.cpp
 | |
| // For definitions, see this article:  http://en.wikipedia.org/wiki/Window_function
 | |
| 
 | |
| // This function has 6 inputs
 | |
| // Data is the array, of length N, containing the data to to be windowed.
 | |
| // This data is either a FIR filter sinc pulse, or the data to be analyzed by an fft.
 | |
| 
 | |
| // WindowType is an enum defined in the header file, which is at the bottom of this file.
 | |
| // e.g. wtKAISER, wtSINC, wtHANNING, wtHAMMING, wtBLACKMAN, ...
 | |
| 
 | |
| // Alpha sets the width of the flat top.
 | |
| // Windows such as the Tukey and Trapezoid are defined to have a variably wide flat top.
 | |
| // As can be seen by its definition, the Tukey is just a Hanning window with a flat top.
 | |
| // Alpha can be used to give any of these windows a partial flat top, except the Flattop and Kaiser.
 | |
| // Alpha = 0 gives the original window. (i.e. no flat top)
 | |
| // To generate a Tukey window, use a Hanning with 0 < Alpha < 1
 | |
| // To generate a Bartlett window (triangular), use a Trapezoid window with Alpha = 0.
 | |
| // Alpha = 1 generates a rectangular window in all cases. (except the Flattop and Kaiser)
 | |
| 
 | |
| // Beta is used with the Kaiser, Sinc, and Sine windows only.
 | |
| // These three windows are primarily used for FIR filter design, not spectral analysis.
 | |
| // In FIR filter design, Beta controls the filter's transition bandwidth and the sidelobe levels.
 | |
| // The code ignores Beta except in the Kaiser, Sinc, and Sine window cases.
 | |
| 
 | |
| // UnityGain controls whether the gain of these windows is set to unity.
 | |
| // Only the Flattop window has unity gain by design. The Hanning window, for example, has a gain
 | |
| // of 1/2.  UnityGain = true will set the gain of all these windows to 1.
 | |
| // Then, when the window is applied to a signal, the signal's energy content is preserved.
 | |
| // Don't use this with FIR filter design however. Since most of the enegy in an FIR sinc pulse
 | |
| // is in the middle of the window, the window needs a peak amplitude of one, not unity gain.
 | |
| // Setting UnityGain = true will simply cause the resulting FIR filter to have excess gain.
 | |
| 
 | |
| // If using these windows for FIR filters, start with the Kaiser, Sinc, or Sine windows and
 | |
| // adjust Beta for the desired transition BW and sidelobe levels (set Alpha = 0).
 | |
| // While the FlatTop is an excellent window for spectral analysis, don't use it for FIR filter design.
 | |
| // It has a peak amplitude of ~ 4.7 which causes the resulting FIR filter to have about this much gain.
 | |
| // It works poorly for FIR filters even if you adjust its peak amplitude.
 | |
| // The Trapezoid also works poorly for FIR filter design.
 | |
| 
 | |
| // If using these windows with an fft for spectral analysis, start with the Hanning, Gauss, or Flattop.
 | |
| // When choosing a window for spectral analysis, you must trade off between resolution and amplitude accuracy.
 | |
| // The Hanning has the best resolution while the Flatop has the best amplitude accuracy.
 | |
| // The Gauss is midway between these two for both accuracy and resolution.
 | |
| // These three were the only windows available in the HP 89410A Vector Signal Analyzer. Which is to say,
 | |
| // unless you have specific windowing requirements, use one of these 3 for general purpose signal analysis.
 | |
| // Set UnityGain = true when using any of these windows for spectral analysis to preserve the signal's enegy level.
 | |
| 
 | |
| void WFIR::WindowData(double *Data, int N, TWindowType WindowType, double Alpha,
 | |
|         double Beta, bool UnityGain)
 | |
| {
 | |
|     if (WindowType == wtNONE)
 | |
|         return;
 | |
| 
 | |
|     int j, M, TopWidth;
 | |
|     double dM, *WinCoeff;
 | |
| 
 | |
|     if (WindowType == wtKAISER || WindowType == wtFLATTOP)
 | |
|         Alpha = 0.0;
 | |
| 
 | |
|     if (Alpha < 0.0)
 | |
|         Alpha = 0.0;
 | |
|     if (Alpha > 1.0)
 | |
|         Alpha = 1.0;
 | |
| 
 | |
|     if (Beta < 0.0)
 | |
|         Beta = 0.0;
 | |
|     if (Beta > 10.0)
 | |
|         Beta = 10.0;
 | |
| 
 | |
|     WinCoeff = new (std::nothrow) double[N + 2];
 | |
|     if (WinCoeff == 0)
 | |
|     {
 | |
|         std::cerr
 | |
|                 << "Failed to allocate memory in FFTFunctions::WindowFFTData() "
 | |
|                 << std::endl;
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     TopWidth = (int) (Alpha * (double) N);
 | |
|     if (TopWidth % 2 != 0)
 | |
|         TopWidth++;
 | |
|     if (TopWidth > N)
 | |
|         TopWidth = N;
 | |
|     M = N - TopWidth;
 | |
|     dM = M + 1;
 | |
| 
 | |
|     // Calculate the window for N/2 points, then fold the window over (at the bottom).
 | |
|     // TopWidth points will be set to 1.
 | |
|     if (WindowType == wtKAISER)
 | |
|     {
 | |
|         double Arg;
 | |
|         for (j = 0; j < M; j++)
 | |
|         {
 | |
|             Arg = Beta * sqrt(1.0 - pow(((double) (2 * j + 2) - dM) / dM, 2.0));
 | |
|             WinCoeff[j] = Bessel(Arg) / Bessel(Beta);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     else if (WindowType == wtSINC)  // Lanczos
 | |
|     {
 | |
|         for (j = 0; j < M; j++)
 | |
|             WinCoeff[j] = Sinc((double) (2 * j + 1 - M) / dM * M_PI);
 | |
|         for (j = 0; j < M; j++)
 | |
|             WinCoeff[j] = pow(WinCoeff[j], Beta);
 | |
|     }
 | |
| 
 | |
|     else if (WindowType == wtSINE)  // Hanning if Beta = 2
 | |
|     {
 | |
|         for (j = 0; j < M / 2; j++)
 | |
|             WinCoeff[j] = sin((double) (j + 1) * M_PI / dM);
 | |
|         for (j = 0; j < M / 2; j++)
 | |
|             WinCoeff[j] = pow(WinCoeff[j], Beta);
 | |
|     }
 | |
| 
 | |
|     else if (WindowType == wtHANNING)
 | |
|     {
 | |
|         for (j = 0; j < M / 2; j++)
 | |
|             WinCoeff[j] = 0.5 - 0.5 * cos((double) (j + 1) * M_2PI / dM);
 | |
|     }
 | |
| 
 | |
|     else if (WindowType == wtHAMMING)
 | |
|     {
 | |
|         for (j = 0; j < M / 2; j++)
 | |
|             WinCoeff[j] = 0.54 - 0.46 * cos((double) (j + 1) * M_2PI / dM);
 | |
|     }
 | |
| 
 | |
|     else if (WindowType == wtBLACKMAN)
 | |
|     {
 | |
|         for (j = 0; j < M / 2; j++)
 | |
|         {
 | |
|             WinCoeff[j] = 0.42 - 0.50 * cos((double) (j + 1) * M_2PI / dM)
 | |
|                     + 0.08 * cos((double) (j + 1) * M_2PI * 2.0 / dM);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // See: http://www.bth.se/fou/forskinfo.nsf/0/130c0940c5e7ffcdc1256f7f0065ac60/$file/ICOTA_2004_ttr_icl_mdh.pdf
 | |
|     else if (WindowType == wtFLATTOP)
 | |
|     {
 | |
|         for (j = 0; j <= M / 2; j++)
 | |
|         {
 | |
|             WinCoeff[j] = 1.0
 | |
|                     - 1.93293488969227 * cos((double) (j + 1) * M_2PI / dM)
 | |
|                     + 1.28349769674027
 | |
|                             * cos((double) (j + 1) * M_2PI * 2.0 / dM)
 | |
|                     - 0.38130801681619
 | |
|                             * cos((double) (j + 1) * M_2PI * 3.0 / dM)
 | |
|                     + 0.02929730258511
 | |
|                             * cos((double) (j + 1) * M_2PI * 4.0 / dM);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     else if (WindowType == wtBLACKMAN_HARRIS)
 | |
|     {
 | |
|         for (j = 0; j < M / 2; j++)
 | |
|         {
 | |
|             WinCoeff[j] = 0.35875 - 0.48829 * cos((double) (j + 1) * M_2PI / dM)
 | |
|                     + 0.14128 * cos((double) (j + 1) * M_2PI * 2.0 / dM)
 | |
|                     - 0.01168 * cos((double) (j + 1) * M_2PI * 3.0 / dM);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     else if (WindowType == wtBLACKMAN_NUTTALL)
 | |
|     {
 | |
|         for (j = 0; j < M / 2; j++)
 | |
|         {
 | |
|             WinCoeff[j] = 0.3535819
 | |
|                     - 0.4891775 * cos((double) (j + 1) * M_2PI / dM)
 | |
|                     + 0.1365995 * cos((double) (j + 1) * M_2PI * 2.0 / dM)
 | |
|                     - 0.0106411 * cos((double) (j + 1) * M_2PI * 3.0 / dM);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     else if (WindowType == wtNUTTALL)
 | |
|     {
 | |
|         for (j = 0; j < M / 2; j++)
 | |
|         {
 | |
|             WinCoeff[j] = 0.355768
 | |
|                     - 0.487396 * cos((double) (j + 1) * M_2PI / dM)
 | |
|                     + 0.144232 * cos((double) (j + 1) * M_2PI * 2.0 / dM)
 | |
|                     - 0.012604 * cos((double) (j + 1) * M_2PI * 3.0 / dM);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     else if (WindowType == wtKAISER_BESSEL)
 | |
|     {
 | |
|         for (j = 0; j <= M / 2; j++)
 | |
|         {
 | |
|             WinCoeff[j] = 0.402 - 0.498 * cos(M_2PI * (double) (j + 1) / dM)
 | |
|                     + 0.098 * cos(2.0 * M_2PI * (double) (j + 1) / dM)
 | |
|                     + 0.001 * cos(3.0 * M_2PI * (double) (j + 1) / dM);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     else if (WindowType == wtTRAPEZOID) // Rectangle for Alpha = 1  Triangle for Alpha = 0
 | |
|     {
 | |
|         int K = M / 2;
 | |
|         if (M % 2)
 | |
|             K++;
 | |
|         for (j = 0; j < K; j++)
 | |
|             WinCoeff[j] = (double) (j + 1) / (double) K;
 | |
|     }
 | |
| 
 | |
|     // This definition is from http://en.wikipedia.org/wiki/Window_function (Gauss Generalized normal window)
 | |
|     // We set their p = 2, and use Alpha in the numerator, instead of Sigma in the denominator, as most others do.
 | |
|     // Alpha = 2.718 puts the Gauss window response midway between the Hanning and the Flattop (basically what we want).
 | |
|     // It also gives the same BW as the Gauss window used in the HP 89410A Vector Signal Analyzer.
 | |
|     // Alpha = 1.8 puts it quite close to the Hanning.
 | |
|     else if (WindowType == wtGAUSS)
 | |
|     {
 | |
|         for (j = 0; j < M / 2; j++)
 | |
|         {
 | |
|             WinCoeff[j] = ((double) (j + 1) - dM / 2.0) / (dM / 2.0) * 2.7183;
 | |
|             WinCoeff[j] *= WinCoeff[j];
 | |
|             WinCoeff[j] = exp(-WinCoeff[j]);
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     else // Error.
 | |
|     {
 | |
|         std::cerr << "Incorrect window type in WindowFFTData" << std::endl;
 | |
|         delete[] WinCoeff;
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     // Fold the coefficients over.
 | |
|     for (j = 0; j < M / 2; j++)
 | |
|         WinCoeff[N - j - 1] = WinCoeff[j];
 | |
| 
 | |
|     // This is the flat top if Alpha > 0. Cannot be applied to a Kaiser or Flat Top.
 | |
|     if (WindowType != wtKAISER && WindowType != wtFLATTOP)
 | |
|     {
 | |
|         for (j = M / 2; j < N - M / 2; j++)
 | |
|         {
 | |
|             if (j >= N + 2) {
 | |
|                 break;
 | |
|             }
 | |
| 
 | |
|             WinCoeff[j] = 1.0;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     // This will set the gain of the window to 1. Only the Flattop window has unity gain by design.
 | |
|     if (UnityGain)
 | |
|     {
 | |
|         double Sum = 0.0;
 | |
|         for (j = 0; j < N; j++)
 | |
|             Sum += WinCoeff[j];
 | |
|         Sum /= (double) N;
 | |
|         if (Sum != 0.0)
 | |
|             for (j = 0; j < N; j++)
 | |
|                 WinCoeff[j] /= Sum;
 | |
|     }
 | |
| 
 | |
|     // Apply the window to the data.
 | |
|     for (j = 0; j < N; j++)
 | |
|         Data[j] *= WinCoeff[j];
 | |
| 
 | |
|     delete[] WinCoeff;
 | |
| 
 | |
| }
 |