mirror of
				https://github.com/f4exb/sdrangel.git
				synced 2025-11-03 21:20:31 -05:00 
			
		
		
		
	
		
			
				
	
	
		
			672 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			672 lines
		
	
	
		
			20 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
///////////////////////////////////////////////////////////////////////////////////
 | 
						|
// Copyright (C) 2019-2020 Edouard Griffiths, F4EXB <f4exb06@gmail.com>          //
 | 
						|
//                                                                               //
 | 
						|
// This program is free software; you can redistribute it and/or modify          //
 | 
						|
// it under the terms of the GNU General Public License as published by          //
 | 
						|
// the Free Software Foundation as version 3 of the License, or                  //
 | 
						|
// (at your option) any later version.                                           //
 | 
						|
//                                                                               //
 | 
						|
// This program is distributed in the hope that it will be useful,               //
 | 
						|
// but WITHOUT ANY WARRANTY; without even the implied warranty of                //
 | 
						|
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the                  //
 | 
						|
// GNU General Public License V3 for more details.                               //
 | 
						|
//                                                                               //
 | 
						|
// You should have received a copy of the GNU General Public License             //
 | 
						|
// along with this program. If not, see <http://www.gnu.org/licenses/>.          //
 | 
						|
///////////////////////////////////////////////////////////////////////////////////
 | 
						|
 | 
						|
#include <algorithm>
 | 
						|
#include <functional>
 | 
						|
 | 
						|
#include "dsp/dspengine.h"
 | 
						|
#include "dsp/fftfactory.h"
 | 
						|
#include "dsp/fftengine.h"
 | 
						|
#include "util/db.h"
 | 
						|
 | 
						|
#include "interferometercorr.h"
 | 
						|
 | 
						|
std::complex<float> s2c(const Sample& s)
 | 
						|
{
 | 
						|
    return std::complex<float>{s.real() / SDR_RX_SCALEF, s.imag() / SDR_RX_SCALEF};
 | 
						|
}
 | 
						|
 | 
						|
std::complex<float> s2cNorm(const Sample& s)
 | 
						|
{
 | 
						|
    float x = s.real() / SDR_RX_SCALEF;
 | 
						|
    float y = s.imag() / SDR_RX_SCALEF;
 | 
						|
    float m = sqrt(x*x + y*y);
 | 
						|
    return std::complex<float>{x/m, y/m};
 | 
						|
}
 | 
						|
 | 
						|
Sample sFirst(const Sample& a, const Sample& b) {
 | 
						|
    (void) b;
 | 
						|
    return a;
 | 
						|
}
 | 
						|
 | 
						|
Sample sSecond(const Sample& a, const Sample& b) {
 | 
						|
    (void) a;
 | 
						|
    return b;
 | 
						|
}
 | 
						|
 | 
						|
Sample sSecondInv(const Sample& a, const Sample& b) {
 | 
						|
    (void) a;
 | 
						|
    return Sample{-b.real(), -b.imag()};
 | 
						|
}
 | 
						|
 | 
						|
Sample sAdd(const Sample& a, const Sample& b) { //!< Sample addition
 | 
						|
    return Sample{(a.real()+b.real())/2, (a.imag()+b.imag())/2};
 | 
						|
}
 | 
						|
 | 
						|
Sample sAddInv(const Sample& a, const Sample& b) { //!< Sample addition
 | 
						|
    return Sample{(a.real()-b.real())/2, (a.imag()+b.imag())/2};
 | 
						|
}
 | 
						|
 | 
						|
Sample sMulConj(const Sample& a, const Sample& b) { //!< Sample multiply with conjugate
 | 
						|
    Sample s;
 | 
						|
    // Integer processing
 | 
						|
    int64_t ax = a.real();
 | 
						|
    int64_t ay = a.imag();
 | 
						|
    int64_t bx = b.real();
 | 
						|
    int64_t by = b.imag();
 | 
						|
    int64_t x = ax*bx + ay*by;
 | 
						|
    int64_t y = ay*bx - ax*by;
 | 
						|
    s.setReal(x>>(SDR_RX_SAMP_SZ-1));
 | 
						|
    s.setImag(y>>(SDR_RX_SAMP_SZ-1));
 | 
						|
    // Floating point processing (in practice there is no significant performance difference)
 | 
						|
    // float ax = a.real() / SDR_RX_SCALEF;
 | 
						|
    // float ay = a.imag() / SDR_RX_SCALEF;
 | 
						|
    // float bx = b.real() / SDR_RX_SCALEF;
 | 
						|
    // float by = b.imag() / SDR_RX_SCALEF;
 | 
						|
    // float x = ax*bx + ay*by;
 | 
						|
    // float y = ay*bx - ax*by;
 | 
						|
    // s.setReal(x*SDR_RX_SCALEF);
 | 
						|
    // s.setImag(y*SDR_RX_SCALEF);
 | 
						|
    return s;
 | 
						|
}
 | 
						|
 | 
						|
Sample sMulConjInv(const Sample& a, const Sample& b) { //!< Sample multiply with conjugate
 | 
						|
    Sample s;
 | 
						|
    // Integer processing
 | 
						|
    int64_t ax = a.real();
 | 
						|
    int64_t ay = a.imag();
 | 
						|
    int64_t bx = -b.real();
 | 
						|
    int64_t by = -b.imag();
 | 
						|
    int64_t x = ax*bx + ay*by;
 | 
						|
    int64_t y = ay*bx - ax*by;
 | 
						|
    s.setReal(x>>(SDR_RX_SAMP_SZ-1));
 | 
						|
    s.setImag(y>>(SDR_RX_SAMP_SZ-1));
 | 
						|
    return s;
 | 
						|
}
 | 
						|
 | 
						|
Sample invfft2s(const std::complex<float>& a) { //!< Complex float to Sample for 1 side time correlation
 | 
						|
    Sample s;
 | 
						|
    s.setReal(a.real()/2.0f);
 | 
						|
    s.setImag(a.imag()/2.0f);
 | 
						|
    return s;
 | 
						|
}
 | 
						|
 | 
						|
Sample invfft2s2(const std::complex<float>& a) { //!< Complex float to Sample for 2 sides time correlation
 | 
						|
    Sample s;
 | 
						|
    s.setReal(a.real());
 | 
						|
    s.setImag(a.imag());
 | 
						|
    return s;
 | 
						|
}
 | 
						|
 | 
						|
Sample invfft2star(const std::complex<float>& a) { //!< Complex float to Sample for 1 side time correlation
 | 
						|
    Sample s;
 | 
						|
    s.setReal(a.real()/2.82842712475f); // 2*sqrt(2)
 | 
						|
    s.setImag(a.imag()/2.82842712475f);
 | 
						|
    return s;
 | 
						|
}
 | 
						|
 | 
						|
InterferometerCorrelator::InterferometerCorrelator(int fftSize) :
 | 
						|
    m_corrType(InterferometerSettings::CorrelationAdd),
 | 
						|
    m_fftSize(fftSize)
 | 
						|
{
 | 
						|
    setPhase(0);
 | 
						|
    setGain(0);
 | 
						|
    FFTFactory *fftFactory = DSPEngine::instance()->getFFTFactory();
 | 
						|
    m_window.create(FFTWindow::Function::Hanning, fftSize);
 | 
						|
    m_data0w.resize(m_fftSize);
 | 
						|
    m_data1w.resize(m_fftSize);
 | 
						|
 | 
						|
    for (int i = 0; i < 2; i++)
 | 
						|
    {
 | 
						|
        m_fftSequences[i] = fftFactory->getEngine(2*fftSize, false, &m_fft[i]); // internally twice the data FFT size
 | 
						|
        m_fft2Sequences[i] = fftFactory->getEngine(fftSize, false, &m_fft2[i]);
 | 
						|
    }
 | 
						|
 | 
						|
    m_invFFTSequence = fftFactory->getEngine(2*fftSize, true, &m_invFFT);
 | 
						|
    m_invFFT2Sequence = fftFactory->getEngine(fftSize, true, &m_invFFT2);
 | 
						|
 | 
						|
    m_dataj = new std::complex<float>[2*fftSize]; // receives actual FFT result hence twice the data FFT size
 | 
						|
    m_scorr.resize(fftSize);
 | 
						|
    m_tcorr.resize(fftSize);
 | 
						|
    m_scorrSize = fftSize;
 | 
						|
    m_tcorrSize = fftSize;
 | 
						|
}
 | 
						|
 | 
						|
InterferometerCorrelator::~InterferometerCorrelator()
 | 
						|
{
 | 
						|
    FFTFactory *fftFactory = DSPEngine::instance()->getFFTFactory();
 | 
						|
    fftFactory->releaseEngine(2*m_fftSize, true, m_invFFTSequence);
 | 
						|
    fftFactory->releaseEngine(m_fftSize, true, m_invFFT2Sequence);
 | 
						|
    delete[] m_dataj;
 | 
						|
 | 
						|
    for (int i = 0; i < 2; i++)
 | 
						|
    {
 | 
						|
        fftFactory->releaseEngine(2*m_fftSize, false, m_fftSequences[i]);
 | 
						|
        fftFactory->releaseEngine(m_fftSize, false, m_fft2Sequences[i]);
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
bool InterferometerCorrelator::performCorr(
 | 
						|
    const SampleVector& data0,
 | 
						|
    unsigned int size0,
 | 
						|
    const SampleVector& data1,
 | 
						|
    unsigned int size1
 | 
						|
)
 | 
						|
{
 | 
						|
    bool results = false;
 | 
						|
    const SampleVector *pdata1 = &data1;
 | 
						|
 | 
						|
    if ((m_gain != 0) || (m_phase != 0))
 | 
						|
    {
 | 
						|
        if (size1 > m_data1p.size()) {
 | 
						|
            m_data1p.resize(size1);
 | 
						|
        }
 | 
						|
 | 
						|
        pdata1 = &m_data1p;
 | 
						|
 | 
						|
        if (m_phase == 0)
 | 
						|
        {
 | 
						|
            std::transform(
 | 
						|
                data1.begin(),
 | 
						|
                data1.begin() + size1,
 | 
						|
                m_data1p.begin(),
 | 
						|
                [this](const Sample& s) -> Sample
 | 
						|
                {
 | 
						|
                    FixReal sx = s.real()*m_gain;
 | 
						|
                    FixReal sy = s.imag()*m_gain;
 | 
						|
                    return Sample{sx, sy};
 | 
						|
                }
 | 
						|
            );
 | 
						|
        }
 | 
						|
        else
 | 
						|
        {
 | 
						|
            std::transform(
 | 
						|
                data1.begin(),
 | 
						|
                data1.begin() + size1,
 | 
						|
                m_data1p.begin(),
 | 
						|
                [this](const Sample& s) -> Sample {
 | 
						|
                    Sample t;
 | 
						|
                    int64_t sx = s.real()*m_gain;
 | 
						|
                    int64_t sy = s.imag()*m_gain;
 | 
						|
                    int64_t x = sx*m_cos + sy*m_sin;
 | 
						|
                    int64_t y = sy*m_cos - sx*m_sin;
 | 
						|
                    t.setReal(x>>(SDR_RX_SAMP_SZ-1));
 | 
						|
                    t.setImag(y>>(SDR_RX_SAMP_SZ-1));
 | 
						|
                    return t;
 | 
						|
                }
 | 
						|
            );
 | 
						|
        }
 | 
						|
    }
 | 
						|
 | 
						|
    switch (m_corrType)
 | 
						|
    {
 | 
						|
        case InterferometerSettings::Correlation0:
 | 
						|
            results = performOpCorr(data0, size0, pdata1, size1, sFirst);
 | 
						|
            break;
 | 
						|
        case InterferometerSettings::Correlation1:
 | 
						|
            results = performOpCorr(data0, size0, pdata1, size1, sSecond);
 | 
						|
            break;
 | 
						|
        case InterferometerSettings::CorrelationAdd:
 | 
						|
            results = performOpCorr(data0, size0, pdata1, size1, sAdd);
 | 
						|
            break;
 | 
						|
        case InterferometerSettings::CorrelationMultiply:
 | 
						|
            results = performOpCorr(data0, size0, pdata1, size1, sMulConj);
 | 
						|
            break;
 | 
						|
        case InterferometerSettings::CorrelationIFFT:
 | 
						|
            results = performIFFTCorr(data0, size0, pdata1, size1);
 | 
						|
            break;
 | 
						|
        case InterferometerSettings::CorrelationIFFTStar:
 | 
						|
            results = performIFFTCorr(data0, size0, pdata1, size1, true);
 | 
						|
            break;
 | 
						|
        case InterferometerSettings::CorrelationFFT:
 | 
						|
            results = performFFTProd(data0, size0, pdata1, size1);
 | 
						|
            break;
 | 
						|
        case InterferometerSettings::CorrelationIFFT2:
 | 
						|
            results = performIFFT2Corr(data0, size0, pdata1, size1);
 | 
						|
            break;
 | 
						|
        default:
 | 
						|
            break;
 | 
						|
    }
 | 
						|
 | 
						|
    return results;
 | 
						|
}
 | 
						|
 | 
						|
bool InterferometerCorrelator::performOpCorr(
 | 
						|
    const SampleVector& data0,
 | 
						|
    unsigned int size0,
 | 
						|
    const SampleVector* data1,
 | 
						|
    unsigned int size1,
 | 
						|
    Sample sampleOp(const Sample& a, const Sample& b)
 | 
						|
)
 | 
						|
{
 | 
						|
    unsigned int size = std::min(size0, size1);
 | 
						|
    adjustTCorrSize(size);
 | 
						|
 | 
						|
    std::transform(
 | 
						|
        data0.begin(),
 | 
						|
        data0.begin() + size,
 | 
						|
        data1->begin(),
 | 
						|
        m_tcorr.begin(),
 | 
						|
        sampleOp
 | 
						|
    );
 | 
						|
 | 
						|
    m_processed = size;
 | 
						|
    m_remaining[0] = size0 - size;
 | 
						|
    m_remaining[1] = size1 - size;
 | 
						|
    return true;
 | 
						|
}
 | 
						|
 | 
						|
bool InterferometerCorrelator::performIFFTCorr(
 | 
						|
    const SampleVector& data0,
 | 
						|
    unsigned int size0,
 | 
						|
    const SampleVector* data1,
 | 
						|
    unsigned int size1,
 | 
						|
    bool star
 | 
						|
)
 | 
						|
{
 | 
						|
    unsigned int size = std::min(size0, size1);
 | 
						|
    int nfft = 0;
 | 
						|
    SampleVector::const_iterator begin0 = data0.begin();
 | 
						|
    SampleVector::const_iterator begin1 = data1->begin();
 | 
						|
    adjustSCorrSize(size);
 | 
						|
    adjustTCorrSize(size);
 | 
						|
 | 
						|
    while (size >= m_fftSize)
 | 
						|
    {
 | 
						|
        // FFT[0]
 | 
						|
        std::transform(
 | 
						|
            begin0,
 | 
						|
            begin0 + m_fftSize,
 | 
						|
            m_fft[0]->in(),
 | 
						|
            s2c
 | 
						|
        );
 | 
						|
        m_window.apply(m_fft[0]->in());
 | 
						|
        std::fill(m_fft[0]->in() + m_fftSize, m_fft[0]->in() + 2*m_fftSize, std::complex<float>{0, 0});
 | 
						|
        m_fft[0]->transform();
 | 
						|
 | 
						|
        // FFT[1]
 | 
						|
        std::transform(
 | 
						|
            begin1,
 | 
						|
            begin1 + m_fftSize,
 | 
						|
            m_fft[1]->in(),
 | 
						|
            s2c
 | 
						|
        );
 | 
						|
        m_window.apply(m_fft[1]->in());
 | 
						|
        std::fill(m_fft[1]->in() + m_fftSize, m_fft[1]->in() + 2*m_fftSize, std::complex<float>{0, 0});
 | 
						|
        m_fft[1]->transform();
 | 
						|
 | 
						|
        // conjugate FFT[1]
 | 
						|
        std::transform(
 | 
						|
            m_fft[1]->out(),
 | 
						|
            m_fft[1]->out() + 2*m_fftSize,
 | 
						|
            m_dataj,
 | 
						|
            [](const std::complex<float>& c) -> std::complex<float> {
 | 
						|
                return std::conj(c);
 | 
						|
            }
 | 
						|
        );
 | 
						|
 | 
						|
        // product of FFT[1]* with FFT[0] and store in inverse FFT input
 | 
						|
        std::transform(
 | 
						|
            m_fft[0]->out(),
 | 
						|
            m_fft[0]->out() + 2*m_fftSize,
 | 
						|
            m_dataj,
 | 
						|
            m_invFFT->in(),
 | 
						|
            [](std::complex<float>& a, const std::complex<float>& b) -> std::complex<float> {
 | 
						|
                return (a*b);
 | 
						|
            }
 | 
						|
        );
 | 
						|
 | 
						|
        // copy product to correlation spectrum - convert and scale to FFT size and Hanning window
 | 
						|
        std::transform(
 | 
						|
            m_invFFT->in(),
 | 
						|
            m_invFFT->in() + m_fftSize,
 | 
						|
            m_scorr.begin() + nfft*m_fftSize,
 | 
						|
            [this](const std::complex<float>& a) -> Sample {
 | 
						|
                Sample s;
 | 
						|
                s.setReal(a.real()*(SDR_RX_SCALEF/m_fftSize));
 | 
						|
                s.setImag(a.imag()*(SDR_RX_SCALEF/m_fftSize));
 | 
						|
                return s;
 | 
						|
            }
 | 
						|
        );
 | 
						|
 | 
						|
        // do the inverse FFT to get time correlation
 | 
						|
        m_invFFT->transform();
 | 
						|
 | 
						|
        if (star)
 | 
						|
        {
 | 
						|
            // sum first half with the reversed second half as one is the conjugate of the other this should yield constant phase
 | 
						|
            *m_tcorr.begin() = invfft2star(m_invFFT->out()[0]); // t = 0
 | 
						|
            std::reverse(m_invFFT->out() + m_fftSize, m_invFFT->out() + 2*m_fftSize);
 | 
						|
            std::transform(
 | 
						|
                m_invFFT->out() + 1,
 | 
						|
                m_invFFT->out() + m_fftSize,
 | 
						|
                m_invFFT->out() + m_fftSize,
 | 
						|
                m_tcorr.begin() + nfft*m_fftSize,
 | 
						|
                [](const std::complex<float>& a, const std::complex<float>& b) -> Sample {
 | 
						|
                    Sample s;
 | 
						|
                    std::complex<float> sum = a + b;
 | 
						|
                    s.setReal(sum.real()/12.0f);
 | 
						|
                    s.setImag(sum.imag()/12.0f);
 | 
						|
                    return s;
 | 
						|
                }
 | 
						|
            );
 | 
						|
        }
 | 
						|
        else
 | 
						|
        {
 | 
						|
            std::transform(
 | 
						|
                m_invFFT->out(),
 | 
						|
                m_invFFT->out() + m_fftSize,
 | 
						|
                m_tcorr.begin() + nfft*m_fftSize,
 | 
						|
                [](const std::complex<float>& a) -> Sample {
 | 
						|
                    Sample s;
 | 
						|
                    s.setReal(a.real()/6.0f);
 | 
						|
                    s.setImag(a.imag()/6.0f);
 | 
						|
                    return s;
 | 
						|
                }
 | 
						|
            );
 | 
						|
        }
 | 
						|
 | 
						|
        size -= m_fftSize;
 | 
						|
        begin0 += m_fftSize;
 | 
						|
        begin1 += m_fftSize;
 | 
						|
        nfft++;
 | 
						|
    }
 | 
						|
 | 
						|
    // update the samples counters
 | 
						|
    m_processed = nfft*m_fftSize;
 | 
						|
    m_remaining[0] = size0 - nfft*m_fftSize;
 | 
						|
    m_remaining[1] = size1 - nfft*m_fftSize;
 | 
						|
 | 
						|
    return nfft > 0;
 | 
						|
}
 | 
						|
 | 
						|
bool InterferometerCorrelator::performIFFT2Corr(
 | 
						|
    const SampleVector& data0,
 | 
						|
    unsigned int size0,
 | 
						|
    const SampleVector* data1,
 | 
						|
    unsigned int size1
 | 
						|
)
 | 
						|
{
 | 
						|
    unsigned int size = std::min(size0, size1);
 | 
						|
    int nfft = 0;
 | 
						|
    SampleVector::const_iterator begin0 = data0.begin();
 | 
						|
    SampleVector::const_iterator begin1 = data1->begin();
 | 
						|
    adjustSCorrSize(size);
 | 
						|
    adjustTCorrSize(size);
 | 
						|
 | 
						|
    while (size >= m_fftSize)
 | 
						|
    {
 | 
						|
        // FFT[0]
 | 
						|
        std::transform(
 | 
						|
            begin0,
 | 
						|
            begin0 + m_fftSize,
 | 
						|
            m_fft2[0]->in(),
 | 
						|
            s2c
 | 
						|
        );
 | 
						|
        m_window.apply(m_fft2[0]->in());
 | 
						|
        m_fft2[0]->transform();
 | 
						|
 | 
						|
        // FFT[1]
 | 
						|
        std::transform(
 | 
						|
            begin1,
 | 
						|
            begin1 + m_fftSize,
 | 
						|
            m_fft2[1]->in(),
 | 
						|
            s2c
 | 
						|
        );
 | 
						|
        m_window.apply(m_fft2[1]->in());
 | 
						|
        m_fft2[1]->transform();
 | 
						|
 | 
						|
        // conjugate FFT[1]
 | 
						|
        std::transform(
 | 
						|
            m_fft2[1]->out(),
 | 
						|
            m_fft2[1]->out() + m_fftSize,
 | 
						|
            m_dataj,
 | 
						|
            [](const std::complex<float>& c) -> std::complex<float> {
 | 
						|
                return std::conj(c);
 | 
						|
            }
 | 
						|
        );
 | 
						|
 | 
						|
        // product of FFT[1]* with FFT[0] and store in inverse FFT input
 | 
						|
        std::transform(
 | 
						|
            m_fft2[0]->out(),
 | 
						|
            m_fft2[0]->out() + m_fftSize,
 | 
						|
            m_dataj,
 | 
						|
            m_invFFT2->in(),
 | 
						|
            [](std::complex<float>& a, const std::complex<float>& b) -> std::complex<float> {
 | 
						|
                return (a*b);
 | 
						|
            }
 | 
						|
        );
 | 
						|
 | 
						|
        // copy product to correlation spectrum - convert and scale to FFT size
 | 
						|
        std::transform(
 | 
						|
            m_invFFT2->in(),
 | 
						|
            m_invFFT2->in() + m_fftSize,
 | 
						|
            m_scorr.begin() + nfft*m_fftSize,
 | 
						|
            [this](const std::complex<float>& a) -> Sample {
 | 
						|
                Sample s;
 | 
						|
                s.setReal(a.real()*(SDR_RX_SCALEF/m_fftSize));
 | 
						|
                s.setImag(a.imag()*(SDR_RX_SCALEF/m_fftSize));
 | 
						|
                return s;
 | 
						|
            }
 | 
						|
        );
 | 
						|
 | 
						|
        // do the inverse FFT to get time correlation
 | 
						|
        m_invFFT2->transform();
 | 
						|
        std::transform(
 | 
						|
            m_invFFT2->out() + m_fftSize/2,
 | 
						|
            m_invFFT2->out() + m_fftSize,
 | 
						|
            m_tcorr.begin() + nfft*m_fftSize,
 | 
						|
            [](const std::complex<float>& a) -> Sample {
 | 
						|
                Sample s;
 | 
						|
                s.setReal(a.real()/3.0f);
 | 
						|
                s.setImag(a.imag()/3.0f);
 | 
						|
                return s;
 | 
						|
            }
 | 
						|
        );
 | 
						|
        std::transform(
 | 
						|
            m_invFFT2->out(),
 | 
						|
            m_invFFT2->out() + m_fftSize/2,
 | 
						|
            m_tcorr.begin() + nfft*m_fftSize + m_fftSize/2,
 | 
						|
            [](const std::complex<float>& a) -> Sample {
 | 
						|
                Sample s;
 | 
						|
                s.setReal(a.real()/3.0f);
 | 
						|
                s.setImag(a.imag()/3.0f);
 | 
						|
                return s;
 | 
						|
            }
 | 
						|
        );
 | 
						|
 | 
						|
        size -= m_fftSize;
 | 
						|
        begin0 += m_fftSize;
 | 
						|
        begin1 += m_fftSize;
 | 
						|
        nfft++;
 | 
						|
    }
 | 
						|
 | 
						|
    // update the samples counters
 | 
						|
    m_processed = nfft*m_fftSize;
 | 
						|
    m_remaining[0] = size0 - nfft*m_fftSize;
 | 
						|
    m_remaining[1] = size1 - nfft*m_fftSize;
 | 
						|
 | 
						|
    return nfft > 0;
 | 
						|
}
 | 
						|
 | 
						|
bool InterferometerCorrelator::performFFTProd(
 | 
						|
    const SampleVector& data0,
 | 
						|
    unsigned int size0,
 | 
						|
    const SampleVector* data1,
 | 
						|
    unsigned int size1
 | 
						|
)
 | 
						|
{
 | 
						|
    unsigned int size = std::min(size0, size1);
 | 
						|
    int nfft = 0;
 | 
						|
    SampleVector::const_iterator begin0 = data0.begin();
 | 
						|
    SampleVector::const_iterator begin1 = data1->begin();
 | 
						|
    adjustSCorrSize(size);
 | 
						|
    adjustTCorrSize(size);
 | 
						|
 | 
						|
    while (size >= m_fftSize)
 | 
						|
    {
 | 
						|
        // FFT[0]
 | 
						|
        std::transform(
 | 
						|
            begin0,
 | 
						|
            begin0 + m_fftSize,
 | 
						|
            m_fft2[0]->in(),
 | 
						|
            s2cNorm
 | 
						|
        );
 | 
						|
        m_window.apply(m_fft2[0]->in());
 | 
						|
        m_fft2[0]->transform();
 | 
						|
 | 
						|
        // FFT[1]
 | 
						|
        std::transform(
 | 
						|
            begin1,
 | 
						|
            begin1 + m_fftSize,
 | 
						|
            m_fft2[1]->in(),
 | 
						|
            s2cNorm
 | 
						|
        );
 | 
						|
        m_window.apply(m_fft2[1]->in());
 | 
						|
        m_fft2[1]->transform();
 | 
						|
 | 
						|
        // conjugate FFT[1]
 | 
						|
        std::transform(
 | 
						|
            m_fft2[1]->out(),
 | 
						|
            m_fft2[1]->out() + m_fftSize,
 | 
						|
            m_dataj,
 | 
						|
            [](const std::complex<float>& c) -> std::complex<float> {
 | 
						|
                return std::conj(c);
 | 
						|
            }
 | 
						|
        );
 | 
						|
 | 
						|
        // product of FFT[1]* with FFT[0] and store in both results
 | 
						|
        std::transform(
 | 
						|
            m_fft2[0]->out(),
 | 
						|
            m_fft2[0]->out() + m_fftSize,
 | 
						|
            m_dataj,
 | 
						|
            m_invFFT2->in(),
 | 
						|
            [](std::complex<float>& a, const std::complex<float>& b) -> std::complex<float> {
 | 
						|
                return (a*b);
 | 
						|
            }
 | 
						|
        );
 | 
						|
 | 
						|
        // copy product to time domain - re-order, convert and scale to FFT size
 | 
						|
        std::transform(
 | 
						|
            m_invFFT2->in(),
 | 
						|
            m_invFFT2->in() + m_fftSize/2,
 | 
						|
            m_tcorr.begin() + nfft*m_fftSize + m_fftSize/2,
 | 
						|
            [](const std::complex<float>& a) -> Sample {
 | 
						|
                Sample s;
 | 
						|
                s.setReal(a.real()/2.0f);
 | 
						|
                s.setImag(a.imag()/2.0f);
 | 
						|
                return s;
 | 
						|
            }
 | 
						|
        );
 | 
						|
        std::transform(
 | 
						|
            m_invFFT2->in() + m_fftSize/2,
 | 
						|
            m_invFFT2->in() + m_fftSize,
 | 
						|
            m_tcorr.begin() + nfft*m_fftSize,
 | 
						|
            [](const std::complex<float>& a) -> Sample {
 | 
						|
                Sample s;
 | 
						|
                s.setReal(a.real()/2.0f);
 | 
						|
                s.setImag(a.imag()/2.0f);
 | 
						|
                return s;
 | 
						|
            }
 | 
						|
        );
 | 
						|
 | 
						|
        // feed spectrum with the sum
 | 
						|
        std::transform(
 | 
						|
            begin0,
 | 
						|
            begin0 + m_fftSize,
 | 
						|
            begin1,
 | 
						|
            m_scorr.begin() + nfft*m_fftSize,
 | 
						|
            sAdd
 | 
						|
        );
 | 
						|
 | 
						|
        size -= m_fftSize;
 | 
						|
        begin0 += m_fftSize;
 | 
						|
        begin1 += m_fftSize;
 | 
						|
        nfft++;
 | 
						|
    }
 | 
						|
 | 
						|
    // update the samples counters
 | 
						|
    m_processed = nfft*m_fftSize;
 | 
						|
    m_remaining[0] = size0 - nfft*m_fftSize;
 | 
						|
    m_remaining[1] = size1 - nfft*m_fftSize;
 | 
						|
 | 
						|
    return nfft > 0;
 | 
						|
}
 | 
						|
 | 
						|
void InterferometerCorrelator::adjustSCorrSize(int size)
 | 
						|
{
 | 
						|
    int nFFTSize = (size/m_fftSize)*m_fftSize;
 | 
						|
 | 
						|
    if (nFFTSize > m_scorrSize)
 | 
						|
    {
 | 
						|
        m_scorr.resize(nFFTSize);
 | 
						|
        m_scorrSize = nFFTSize;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void InterferometerCorrelator::adjustTCorrSize(int size)
 | 
						|
{
 | 
						|
    int nFFTSize = (size/m_fftSize)*m_fftSize;
 | 
						|
 | 
						|
    if (nFFTSize > m_tcorrSize)
 | 
						|
    {
 | 
						|
        m_tcorr.resize(nFFTSize);
 | 
						|
        m_tcorrSize = nFFTSize;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void InterferometerCorrelator::setPhase(int phase)
 | 
						|
{
 | 
						|
    m_phase = phase;
 | 
						|
 | 
						|
    if (phase == 0)
 | 
						|
    {
 | 
						|
        m_sin = 0;
 | 
						|
        m_cos = 1<<(SDR_RX_SAMP_SZ-1);
 | 
						|
    }
 | 
						|
    else if (phase == 90)
 | 
						|
    {
 | 
						|
        m_sin = 1<<(SDR_RX_SAMP_SZ-1);
 | 
						|
        m_cos = 0;
 | 
						|
    }
 | 
						|
    else if (phase == -90)
 | 
						|
    {
 | 
						|
        m_sin = -(1<<(SDR_RX_SAMP_SZ-1));
 | 
						|
        m_cos = 0;
 | 
						|
    }
 | 
						|
    else if ((phase == -180) || (phase == 180))
 | 
						|
    {
 | 
						|
        m_sin = 0;
 | 
						|
        m_cos = -(1<<(SDR_RX_SAMP_SZ-1));
 | 
						|
    }
 | 
						|
    else
 | 
						|
    {
 | 
						|
        m_phase = phase % 180;
 | 
						|
        double d_sin = sin(M_PI*(m_phase/180.0)) * (1<<(SDR_RX_SAMP_SZ-1));
 | 
						|
        double d_cos = cos(M_PI*(m_phase/180.0)) * (1<<(SDR_RX_SAMP_SZ-1));
 | 
						|
        m_sin = d_sin;
 | 
						|
        m_cos = d_cos;
 | 
						|
    }
 | 
						|
}
 | 
						|
 | 
						|
void InterferometerCorrelator::setGain(int gainCB)
 | 
						|
{
 | 
						|
    double db = gainCB / 10.0;
 | 
						|
    m_gainCB = gainCB;
 | 
						|
    m_gain = CalcDb::powerFromdB(db);
 | 
						|
}
 |