mirror of
				https://github.com/f4exb/sdrangel.git
				synced 2025-10-30 20:40:20 -04:00 
			
		
		
		
	
		
			
				
	
	
		
			445 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			445 lines
		
	
	
		
			16 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| ///////////////////////////////////////////////////////////////////////////////////
 | |
| // Copyright (C) 2019 Edouard Griffiths, F4EXB                                   //
 | |
| //                                                                               //
 | |
| // This program is free software; you can redistribute it and/or modify          //
 | |
| // it under the terms of the GNU General Public License as published by          //
 | |
| // the Free Software Foundation as version 3 of the License, or                  //
 | |
| // (at your option) any later version.                                           //
 | |
| //                                                                               //
 | |
| // This program is distributed in the hope that it will be useful,               //
 | |
| // but WITHOUT ANY WARRANTY; without even the implied warranty of                //
 | |
| // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the                  //
 | |
| // GNU General Public License V3 for more details.                               //
 | |
| //                                                                               //
 | |
| // You should have received a copy of the GNU General Public License             //
 | |
| // along with this program. If not, see <http://www.gnu.org/licenses/>.          //
 | |
| ///////////////////////////////////////////////////////////////////////////////////
 | |
| 
 | |
| #include <stdio.h>
 | |
| 
 | |
| #include <QTime>
 | |
| #include <QDebug>
 | |
| 
 | |
| #include "audio/audiooutputdevice.h"
 | |
| #include "dsp/dspengine.h"
 | |
| #include "dsp/dspcommands.h"
 | |
| #include "dsp/devicesamplemimo.h"
 | |
| #include "dsp/basebandsamplesink.h"
 | |
| #include "dsp/datafifo.h"
 | |
| #include "device/deviceapi.h"
 | |
| #include "util/db.h"
 | |
| #include "util/messagequeue.h"
 | |
| #include "maincore.h"
 | |
| 
 | |
| #include "ssbdemodsink.h"
 | |
| 
 | |
| const int SSBDemodSink::m_ssbFftLen = 1024;
 | |
| const int SSBDemodSink::m_agcTarget = 3276; // 32768/10 -10 dB amplitude => -20 dB power: center of normal signal
 | |
| 
 | |
| SSBDemodSink::SSBDemodSink() :
 | |
|         m_audioBinaual(false),
 | |
|         m_audioFlipChannels(false),
 | |
|         m_dsb(false),
 | |
|         m_audioMute(false),
 | |
|         m_agc(12000, m_agcTarget, 1e-2),
 | |
|         m_agcActive(false),
 | |
|         m_agcClamping(false),
 | |
|         m_agcNbSamples(12000),
 | |
|         m_agcPowerThreshold(1e-2),
 | |
|         m_agcThresholdGate(0),
 | |
|         m_squelchDelayLine(2*48000),
 | |
|         m_audioActive(false),
 | |
|         m_spectrumSink(nullptr),
 | |
|         m_audioFifo(24000),
 | |
|         m_audioSampleRate(48000)
 | |
| {
 | |
| 	m_Bandwidth = 5000;
 | |
| 	m_LowCutoff = 300;
 | |
| 	m_volume = 2.0;
 | |
| 	m_spanLog2 = 3;
 | |
| 	m_channelSampleRate = 48000;
 | |
| 	m_channelFrequencyOffset = 0;
 | |
| 
 | |
| 	m_audioBuffer.resize(1<<14);
 | |
| 	m_audioBufferFill = 0;
 | |
| 	m_undersampleCount = 0;
 | |
| 	m_sum = 0;
 | |
| 
 | |
|     m_demodBuffer.resize(1<<12);
 | |
|     m_demodBufferFill = 0;
 | |
| 
 | |
| 	m_usb = true;
 | |
| 	m_magsq = 0.0f;
 | |
| 	m_magsqSum = 0.0f;
 | |
| 	m_magsqPeak = 0.0f;
 | |
| 	m_magsqCount = 0;
 | |
| 
 | |
| 	m_agc.setClampMax(SDR_RX_SCALED/100.0);
 | |
| 	m_agc.setClamping(m_agcClamping);
 | |
| 
 | |
| 	SSBFilter = new fftfilt(m_LowCutoff / m_audioSampleRate, m_Bandwidth / m_audioSampleRate, m_ssbFftLen);
 | |
| 	DSBFilter = new fftfilt((2.0f * m_Bandwidth) / m_audioSampleRate, 2 * m_ssbFftLen);
 | |
| 
 | |
|     applyChannelSettings(m_channelSampleRate, m_channelFrequencyOffset, true);
 | |
| 	applySettings(m_settings, true);
 | |
| }
 | |
| 
 | |
| SSBDemodSink::~SSBDemodSink()
 | |
| {
 | |
|     delete SSBFilter;
 | |
|     delete DSBFilter;
 | |
| }
 | |
| 
 | |
| void SSBDemodSink::feed(const SampleVector::const_iterator& begin, const SampleVector::const_iterator& end)
 | |
| {
 | |
|     Complex ci;
 | |
| 
 | |
| 	for(SampleVector::const_iterator it = begin; it < end; ++it)
 | |
| 	{
 | |
| 		Complex c(it->real(), it->imag());
 | |
| 		c *= m_nco.nextIQ();
 | |
| 
 | |
|         if (m_interpolatorDistance < 1.0f) // interpolate
 | |
|         {
 | |
|             while (!m_interpolator.interpolate(&m_interpolatorDistanceRemain, c, &ci))
 | |
|             {
 | |
|                 processOneSample(ci);
 | |
|                 m_interpolatorDistanceRemain += m_interpolatorDistance;
 | |
|             }
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|             if (m_interpolator.decimate(&m_interpolatorDistanceRemain, c, &ci))
 | |
|             {
 | |
|                 processOneSample(ci);
 | |
|                 m_interpolatorDistanceRemain += m_interpolatorDistance;
 | |
|             }
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| void SSBDemodSink::processOneSample(Complex &ci)
 | |
| {
 | |
| 	fftfilt::cmplx *sideband;
 | |
| 	int n_out = 0;
 | |
| 	int decim = 1<<(m_spanLog2 - 1);
 | |
| 	unsigned char decim_mask = decim - 1; // counter LSB bit mask for decimation by 2^(m_scaleLog2 - 1)
 | |
| 
 | |
|     if (m_dsb) {
 | |
|         n_out = DSBFilter->runDSB(ci, &sideband);
 | |
|     } else {
 | |
|         n_out = SSBFilter->runSSB(ci, &sideband, m_usb);
 | |
|     }
 | |
| 
 | |
|     for (int i = 0; i < n_out; i++)
 | |
|     {
 | |
|         // Downsample by 2^(m_scaleLog2 - 1) for SSB band spectrum display
 | |
|         // smart decimation with bit gain using float arithmetic (23 bits significand)
 | |
| 
 | |
|         m_sum += sideband[i];
 | |
| 
 | |
|         if (!(m_undersampleCount++ & decim_mask))
 | |
|         {
 | |
|             Real avgr = m_sum.real() / decim;
 | |
|             Real avgi = m_sum.imag() / decim;
 | |
|             m_magsq = (avgr * avgr + avgi * avgi) / (SDR_RX_SCALED*SDR_RX_SCALED);
 | |
| 
 | |
|             m_magsqSum += m_magsq;
 | |
| 
 | |
|             if (m_magsq > m_magsqPeak)
 | |
|             {
 | |
|                 m_magsqPeak = m_magsq;
 | |
|             }
 | |
| 
 | |
|             m_magsqCount++;
 | |
| 
 | |
|             if (!m_dsb & !m_usb)
 | |
|             { // invert spectrum for LSB
 | |
|                 m_sampleBuffer.push_back(Sample(avgi, avgr));
 | |
|             }
 | |
|             else
 | |
|             {
 | |
|                 m_sampleBuffer.push_back(Sample(avgr, avgi));
 | |
|             }
 | |
| 
 | |
|             m_sum.real(0.0);
 | |
|             m_sum.imag(0.0);
 | |
|         }
 | |
| 
 | |
|         float agcVal = m_agcActive ? m_agc.feedAndGetValue(sideband[i]) : 0.1;
 | |
|         fftfilt::cmplx& delayedSample = m_squelchDelayLine.readBack(m_agc.getStepDownDelay());
 | |
|         m_audioActive = delayedSample.real() != 0.0;
 | |
|         m_squelchDelayLine.write(sideband[i]*agcVal);
 | |
| 
 | |
|         if (m_audioMute)
 | |
|         {
 | |
|             m_audioBuffer[m_audioBufferFill].r = 0;
 | |
|             m_audioBuffer[m_audioBufferFill].l = 0;
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|             fftfilt::cmplx z = m_agcActive ? delayedSample * m_agc.getStepValue() : delayedSample;
 | |
| 
 | |
|             if (m_audioBinaual)
 | |
|             {
 | |
|                 if (m_audioFlipChannels)
 | |
|                 {
 | |
|                     m_audioBuffer[m_audioBufferFill].r = (qint16)(z.imag() * m_volume);
 | |
|                     m_audioBuffer[m_audioBufferFill].l = (qint16)(z.real() * m_volume);
 | |
|                 }
 | |
|                 else
 | |
|                 {
 | |
|                     m_audioBuffer[m_audioBufferFill].r = (qint16)(z.real() * m_volume);
 | |
|                     m_audioBuffer[m_audioBufferFill].l = (qint16)(z.imag() * m_volume);
 | |
|                 }
 | |
| 
 | |
|                 m_demodBuffer[m_demodBufferFill++] = z.real();
 | |
|                 m_demodBuffer[m_demodBufferFill++] = z.imag();
 | |
|             }
 | |
|             else
 | |
|             {
 | |
|                 Real demod = (z.real() + z.imag()) * 0.7;
 | |
|                 qint16 sample = (qint16)(demod * m_volume);
 | |
|                 m_audioBuffer[m_audioBufferFill].l = sample;
 | |
|                 m_audioBuffer[m_audioBufferFill].r = sample;
 | |
|                 m_demodBuffer[m_demodBufferFill++] = (z.real() + z.imag()) * 0.7;
 | |
|             }
 | |
| 
 | |
|             if (m_demodBufferFill >= m_demodBuffer.size())
 | |
|             {
 | |
|                 QList<DataFifo*> *dataFifos = MainCore::instance()->getDataPipes().getFifos(m_channel, "demod");
 | |
| 
 | |
|                 if (dataFifos)
 | |
|                 {
 | |
|                     QList<DataFifo*>::iterator it = dataFifos->begin();
 | |
| 
 | |
|                     for (; it != dataFifos->end(); ++it)
 | |
|                     {
 | |
|                         (*it)->write(
 | |
|                             (quint8*) &m_demodBuffer[0],
 | |
|                             m_demodBuffer.size() * sizeof(qint16),
 | |
|                             m_audioBinaual ? DataFifo::DataTypeCI16 : DataFifo::DataTypeI16
 | |
|                         );
 | |
|                     }
 | |
|                 }
 | |
| 
 | |
|                 m_demodBufferFill = 0;
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         ++m_audioBufferFill;
 | |
| 
 | |
|         if (m_audioBufferFill >= m_audioBuffer.size())
 | |
|         {
 | |
|             uint res = m_audioFifo.write((const quint8*)&m_audioBuffer[0], m_audioBufferFill);
 | |
| 
 | |
|             if (res != m_audioBufferFill) {
 | |
|                 qDebug("SSBDemodSink::feed: %u/%u samples written", res, m_audioBufferFill);
 | |
|             }
 | |
| 
 | |
|             m_audioBufferFill = 0;
 | |
|         }
 | |
|     }
 | |
| 
 | |
| 	uint res = m_audioFifo.write((const quint8*)&m_audioBuffer[0], m_audioBufferFill);
 | |
| 
 | |
| 	if (res != m_audioBufferFill) {
 | |
|         qDebug("SSBDemodSink::feed: %u/%u tail samples written", res, m_audioBufferFill);
 | |
| 	}
 | |
| 
 | |
| 	m_audioBufferFill = 0;
 | |
| 
 | |
| 	if (m_spectrumSink != 0) {
 | |
| 		m_spectrumSink->feed(m_sampleBuffer.begin(), m_sampleBuffer.end(), !m_dsb);
 | |
| 	}
 | |
| 
 | |
| 	m_sampleBuffer.clear();
 | |
| }
 | |
| 
 | |
| void SSBDemodSink::applyChannelSettings(int channelSampleRate, int channelFrequencyOffset, bool force)
 | |
| {
 | |
|     qDebug() << "SSBDemodSink::applyChannelSettings:"
 | |
|             << " channelSampleRate: " << channelSampleRate
 | |
|             << " channelFrequencyOffset: " << channelFrequencyOffset;
 | |
| 
 | |
|     if ((m_channelFrequencyOffset != channelFrequencyOffset) ||
 | |
|         (m_channelSampleRate != channelSampleRate) || force)
 | |
|     {
 | |
|         m_nco.setFreq(-channelFrequencyOffset, channelSampleRate);
 | |
|     }
 | |
| 
 | |
|     if ((m_channelSampleRate != channelSampleRate) || force)
 | |
|     {
 | |
|         Real interpolatorBandwidth = (m_Bandwidth * 1.5f) > channelSampleRate ? channelSampleRate : (m_Bandwidth * 1.5f);
 | |
|         m_interpolator.create(16, channelSampleRate, interpolatorBandwidth, 2.0f);
 | |
|         m_interpolatorDistanceRemain = 0;
 | |
|         m_interpolatorDistance = (Real) channelSampleRate / (Real) m_audioSampleRate;
 | |
|     }
 | |
| 
 | |
|     m_channelSampleRate = channelSampleRate;
 | |
|     m_channelFrequencyOffset = channelFrequencyOffset;
 | |
| }
 | |
| 
 | |
| void SSBDemodSink::applyAudioSampleRate(int sampleRate)
 | |
| {
 | |
|     qDebug("SSBDemodSink::applyAudioSampleRate: %d", sampleRate);
 | |
| 
 | |
|     Real interpolatorBandwidth = (m_Bandwidth * 1.5f) > m_channelSampleRate ? m_channelSampleRate : (m_Bandwidth * 1.5f);
 | |
|     m_interpolator.create(16, m_channelSampleRate, interpolatorBandwidth, 2.0f);
 | |
|     m_interpolatorDistanceRemain = 0;
 | |
|     m_interpolatorDistance = (Real) m_channelSampleRate / (Real) sampleRate;
 | |
| 
 | |
|     SSBFilter->create_filter(m_LowCutoff / (float) sampleRate, m_Bandwidth / (float) sampleRate);
 | |
|     DSBFilter->create_dsb_filter((2.0f * m_Bandwidth) / (float) sampleRate);
 | |
| 
 | |
|     int agcNbSamples = (sampleRate / 1000) * (1<<m_settings.m_agcTimeLog2);
 | |
|     int agcThresholdGate = (sampleRate / 1000) * m_settings.m_agcThresholdGate; // ms
 | |
| 
 | |
|     if (m_agcNbSamples != agcNbSamples)
 | |
|     {
 | |
|         m_agc.resize(agcNbSamples, agcNbSamples/2, m_agcTarget);
 | |
|         m_agc.setStepDownDelay(agcNbSamples);
 | |
|         m_agcNbSamples = agcNbSamples;
 | |
|     }
 | |
| 
 | |
|     if (m_agcThresholdGate != agcThresholdGate)
 | |
|     {
 | |
|         m_agc.setGate(agcThresholdGate);
 | |
|         m_agcThresholdGate = agcThresholdGate;
 | |
|     }
 | |
| 
 | |
|     m_audioFifo.setSize(sampleRate);
 | |
|     m_audioSampleRate = sampleRate;
 | |
| 
 | |
|     QList<MessageQueue*> *messageQueues = MainCore::instance()->getMessagePipes().getMessageQueues(m_channel, "reportdemod");
 | |
| 
 | |
|     if (messageQueues)
 | |
|     {
 | |
|         QList<MessageQueue*>::iterator it = messageQueues->begin();
 | |
| 
 | |
|         for (; it != messageQueues->end(); ++it)
 | |
|         {
 | |
|             MainCore::MsgChannelDemodReport *msg = MainCore::MsgChannelDemodReport::create(m_channel, sampleRate);
 | |
|             (*it)->push(msg);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| void SSBDemodSink::applySettings(const SSBDemodSettings& settings, bool force)
 | |
| {
 | |
|     qDebug() << "SSBDemodSink::applySettings:"
 | |
|             << " m_inputFrequencyOffset: " << settings.m_inputFrequencyOffset
 | |
|             << " m_rfBandwidth: " << settings.m_rfBandwidth
 | |
|             << " m_lowCutoff: " << settings.m_lowCutoff
 | |
|             << " m_volume: " << settings.m_volume
 | |
|             << " m_spanLog2: " << settings.m_spanLog2
 | |
|             << " m_audioBinaual: " << settings.m_audioBinaural
 | |
|             << " m_audioFlipChannels: " << settings.m_audioFlipChannels
 | |
|             << " m_dsb: " << settings.m_dsb
 | |
|             << " m_audioMute: " << settings.m_audioMute
 | |
|             << " m_agcActive: " << settings.m_agc
 | |
|             << " m_agcClamping: " << settings.m_agcClamping
 | |
|             << " m_agcTimeLog2: " << settings.m_agcTimeLog2
 | |
|             << " agcPowerThreshold: " << settings.m_agcPowerThreshold
 | |
|             << " agcThresholdGate: " << settings.m_agcThresholdGate
 | |
|             << " m_audioDeviceName: " << settings.m_audioDeviceName
 | |
|             << " m_streamIndex: " << settings.m_streamIndex
 | |
|             << " m_useReverseAPI: " << settings.m_useReverseAPI
 | |
|             << " m_reverseAPIAddress: " << settings.m_reverseAPIAddress
 | |
|             << " m_reverseAPIPort: " << settings.m_reverseAPIPort
 | |
|             << " m_reverseAPIDeviceIndex: " << settings.m_reverseAPIDeviceIndex
 | |
|             << " m_reverseAPIChannelIndex: " << settings.m_reverseAPIChannelIndex
 | |
|             << " force: " << force;
 | |
| 
 | |
|     if((m_settings.m_rfBandwidth != settings.m_rfBandwidth) ||
 | |
|         (m_settings.m_lowCutoff != settings.m_lowCutoff) || force)
 | |
|     {
 | |
|         float band, lowCutoff;
 | |
| 
 | |
|         band = settings.m_rfBandwidth;
 | |
|         lowCutoff = settings.m_lowCutoff;
 | |
| 
 | |
|         if (band < 0) {
 | |
|             band = -band;
 | |
|             lowCutoff = -lowCutoff;
 | |
|             m_usb = false;
 | |
|         } else {
 | |
|             m_usb = true;
 | |
|         }
 | |
| 
 | |
|         if (band < 100.0f)
 | |
|         {
 | |
|             band = 100.0f;
 | |
|             lowCutoff = 0;
 | |
|         }
 | |
| 
 | |
|         m_Bandwidth = band;
 | |
|         m_LowCutoff = lowCutoff;
 | |
| 
 | |
|         Real interpolatorBandwidth = (m_Bandwidth * 1.5f) > m_channelSampleRate ? m_channelSampleRate : (m_Bandwidth * 1.5f);
 | |
|         m_interpolator.create(16, m_channelSampleRate, interpolatorBandwidth, 2.0f);
 | |
|         m_interpolatorDistanceRemain = 0;
 | |
|         m_interpolatorDistance = (Real) m_channelSampleRate / (Real) m_audioSampleRate;
 | |
|         SSBFilter->create_filter(m_LowCutoff / (float) m_audioSampleRate, m_Bandwidth / (float) m_audioSampleRate);
 | |
|         DSBFilter->create_dsb_filter((2.0f * m_Bandwidth) / (float) m_audioSampleRate);
 | |
|     }
 | |
| 
 | |
|     if ((m_settings.m_volume != settings.m_volume) || force)
 | |
|     {
 | |
|         m_volume = settings.m_volume;
 | |
|         m_volume /= 4.0; // for 3276.8
 | |
|     }
 | |
| 
 | |
|     if ((m_settings.m_agcTimeLog2 != settings.m_agcTimeLog2) ||
 | |
|         (m_settings.m_agcPowerThreshold != settings.m_agcPowerThreshold) ||
 | |
|         (m_settings.m_agcThresholdGate != settings.m_agcThresholdGate) ||
 | |
|         (m_settings.m_agcClamping != settings.m_agcClamping) || force)
 | |
|     {
 | |
|         int agcNbSamples = (m_audioSampleRate / 1000) * (1<<settings.m_agcTimeLog2);
 | |
|         m_agc.setThresholdEnable(settings.m_agcPowerThreshold != -SSBDemodSettings::m_minPowerThresholdDB);
 | |
|         double agcPowerThreshold = CalcDb::powerFromdB(settings.m_agcPowerThreshold) * (SDR_RX_SCALED*SDR_RX_SCALED);
 | |
|         int agcThresholdGate = (m_audioSampleRate / 1000) * settings.m_agcThresholdGate; // ms
 | |
|         bool agcClamping = settings.m_agcClamping;
 | |
| 
 | |
|         if (m_agcNbSamples != agcNbSamples)
 | |
|         {
 | |
|             m_agc.resize(agcNbSamples, agcNbSamples/2, m_agcTarget);
 | |
|             m_agc.setStepDownDelay(agcNbSamples);
 | |
|             m_agcNbSamples = agcNbSamples;
 | |
|         }
 | |
| 
 | |
|         if (m_agcPowerThreshold != agcPowerThreshold)
 | |
|         {
 | |
|             m_agc.setThreshold(agcPowerThreshold);
 | |
|             m_agcPowerThreshold = agcPowerThreshold;
 | |
|         }
 | |
| 
 | |
|         if (m_agcThresholdGate != agcThresholdGate)
 | |
|         {
 | |
|             m_agc.setGate(agcThresholdGate);
 | |
|             m_agcThresholdGate = agcThresholdGate;
 | |
|         }
 | |
| 
 | |
|         if (m_agcClamping != agcClamping)
 | |
|         {
 | |
|             m_agc.setClamping(agcClamping);
 | |
|             m_agcClamping = agcClamping;
 | |
|         }
 | |
| 
 | |
|         qDebug() << "SBDemodSink::applySettings: AGC:"
 | |
|             << " agcNbSamples: " << agcNbSamples
 | |
|             << " agcPowerThreshold: " << agcPowerThreshold
 | |
|             << " agcThresholdGate: " << agcThresholdGate
 | |
|             << " agcClamping: " << agcClamping;
 | |
|     }
 | |
| 
 | |
|     m_spanLog2 = settings.m_spanLog2;
 | |
|     m_audioBinaual = settings.m_audioBinaural;
 | |
|     m_audioFlipChannels = settings.m_audioFlipChannels;
 | |
|     m_dsb = settings.m_dsb;
 | |
|     m_audioMute = settings.m_audioMute;
 | |
|     m_agcActive = settings.m_agc;
 | |
|     m_settings = settings;
 | |
| }
 | |
| 
 |