mirror of
				https://github.com/f4exb/sdrangel.git
				synced 2025-10-30 20:40:20 -04:00 
			
		
		
		
	
		
			
				
	
	
		
			151 lines
		
	
	
		
			5.8 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			151 lines
		
	
	
		
			5.8 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| ///////////////////////////////////////////////////////////////////////////////////
 | |
| // Copyright (C) 2020 Jon Beniston, M7RCE                                        //
 | |
| //                                                                               //
 | |
| // This program is free software; you can redistribute it and/or modify          //
 | |
| // it under the terms of the GNU General Public License as published by          //
 | |
| // the Free Software Foundation as version 3 of the License, or                  //
 | |
| // (at your option) any later version.                                           //
 | |
| //                                                                               //
 | |
| // This program is distributed in the hope that it will be useful,               //
 | |
| // but WITHOUT ANY WARRANTY; without even the implied warranty of                //
 | |
| // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the                  //
 | |
| // GNU General Public License V3 for more details.                               //
 | |
| //                                                                               //
 | |
| // You should have received a copy of the GNU General Public License             //
 | |
| // along with this program. If not, see <http://www.gnu.org/licenses/>.          //
 | |
| ///////////////////////////////////////////////////////////////////////////////////
 | |
| 
 | |
| #include "azel.h"
 | |
| 
 | |
| #include <cmath>
 | |
| 
 | |
| // Calculate cartesian distance between two points
 | |
| double AzEl::cartDistance(const AzElPoint& a, const AzElPoint& b)
 | |
| {
 | |
|     double dx = b.m_cart.m_x - a.m_cart.m_x;
 | |
|     double dy = b.m_cart.m_y - a.m_cart.m_y;
 | |
|     double dz = b.m_cart.m_z - a.m_cart.m_z;
 | |
|     return std::sqrt(dx*dx + dy*dy + dz*dz);
 | |
| }
 | |
| 
 | |
| // Calculate vector difference then normalise the result
 | |
| bool AzEl::normVectorDiff(const AzElCartesian& a, const AzElCartesian& b, AzElCartesian& n)
 | |
| {
 | |
|     n.m_x = b.m_x - a.m_x;
 | |
|     n.m_y = b.m_y - a.m_y;
 | |
|     n.m_z = b.m_z - a.m_z;
 | |
|     double distance = std::sqrt(n.m_x*n.m_x + n.m_y*n.m_y + n.m_z*n.m_z);
 | |
|     if (distance > 0.0f)
 | |
|     {
 | |
|         n.m_x = n.m_x / distance;
 | |
|         n.m_y = n.m_y / distance;
 | |
|         n.m_z = n.m_z / distance;
 | |
|         return true;
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         return false;
 | |
|     }
 | |
| }
 | |
| 
 | |
| // Convert geodetic latitude (as given by GPS) to geocentric latitude (angle from centre of Earth between the point and equator)
 | |
| // Both in radians.
 | |
| // https://en.wikipedia.org/wiki/Latitude#Geocentric_latitude
 | |
| double AzEl::geocentricLatitude(double latRad) const
 | |
| {
 | |
|     double e2 = 0.00669437999014;
 | |
|     return std::atan((1.0 - e2) * std::tan(latRad));
 | |
| }
 | |
| 
 | |
| // Earth radius for a given latitude, as it's not quite spherical
 | |
| // http://en.wikipedia.org/wiki/Earth_radius
 | |
| double AzEl::earthRadiusInMetres(double geodeticLatRad) const
 | |
| {
 | |
|    double equatorialRadius = 6378137.0;
 | |
|    double polarRadius = 6356752.3;
 | |
|    double cosLat = std::cos(geodeticLatRad);
 | |
|    double sinLat = std::sin(geodeticLatRad);
 | |
|    double t1 = equatorialRadius * equatorialRadius * cosLat;
 | |
|    double t2 = polarRadius * polarRadius * sinLat;
 | |
|    double t3 = equatorialRadius * cosLat;
 | |
|    double t4 = polarRadius * sinLat;
 | |
|    return std::sqrt((t1*t1 + t2*t2)/(t3*t3 + t4*t4));
 | |
| }
 | |
| 
 | |
| // Convert spherical coordinate to cartesian. Also calculates radius and a normal vector
 | |
| void AzEl::sphericalToCartesian(AzElPoint& point)
 | |
| {
 | |
|     // First calculate cartesian coords for point on Earth's surface
 | |
|     double latRad = point.m_spherical.m_latitude * M_PI/180.0;
 | |
|     double longRad = point.m_spherical.m_longitude * M_PI/180.0;
 | |
|     point.m_radius = earthRadiusInMetres(latRad);
 | |
|     double clat = geocentricLatitude(latRad);
 | |
|     double cosLong = cos(longRad);
 | |
|     double sinLong = sin(longRad);
 | |
|     double cosLat = cos(clat);
 | |
|     double sinLat = sin(clat);
 | |
| 
 | |
|     point.m_cart.m_x = point.m_radius * cosLong * cosLat;
 | |
|     point.m_cart.m_y = point.m_radius * sinLong * cosLat;
 | |
|     point.m_cart.m_z = point.m_radius * sinLat;
 | |
| 
 | |
|     // Calculate normal vector at surface
 | |
|     double cosGLat = std::cos(latRad);
 | |
|     double sinGLat = std::sin(latRad);
 | |
| 
 | |
|     point.m_norm.m_x = cosGLat * cosLong;
 | |
|     point.m_norm.m_y = cosGLat * sinLong;
 | |
|     point.m_norm.m_z = sinGLat;
 | |
| 
 | |
|     // Add altitude along normal vector
 | |
|     point.m_cart.m_x += point.m_spherical.m_altitude * point.m_norm.m_x;
 | |
|     point.m_cart.m_y += point.m_spherical.m_altitude * point.m_norm.m_y;
 | |
|     point.m_cart.m_z += point.m_spherical.m_altitude * point.m_norm.m_z;
 | |
| }
 | |
| 
 | |
| // Calculate azimuth of target from location
 | |
| void AzEl::calcAzimuth()
 | |
| {
 | |
|     AzElPoint bRot;
 | |
| 
 | |
|     // Rotate so location is at lat=0, long=0
 | |
|     bRot.m_spherical.m_latitude = m_target.m_spherical.m_latitude;
 | |
|     bRot.m_spherical.m_longitude = m_target.m_spherical.m_longitude - m_location.m_spherical.m_longitude;
 | |
|     bRot.m_spherical.m_altitude = m_target.m_spherical.m_altitude;
 | |
|     sphericalToCartesian(bRot);
 | |
| 
 | |
|     double aLat = geocentricLatitude(-m_location.m_spherical.m_latitude * M_PI / 180.0);
 | |
|     double aCos = std::cos(aLat);
 | |
|     double aSin = std::sin(aLat);
 | |
| 
 | |
|     //double bx = (bRot.m_cart.m_x * aCos) - (bRot.m_cart.m_z * aSin);
 | |
|     double by = bRot.m_cart.m_y;
 | |
|     double bz = (bRot.m_cart.m_x * aSin) + (bRot.m_cart.m_z * aCos);
 | |
| 
 | |
|     if (bz*bz + by*by > 1e-6)
 | |
|     {
 | |
|         double theta = std::atan2(bz, by) * 180.0 / M_PI;
 | |
|         m_azimuth = 90.0 - theta;
 | |
|         if (m_azimuth < 0.0)
 | |
|             m_azimuth += 360.0;
 | |
|         else if (m_azimuth > 360.0)
 | |
|             m_azimuth -= 360.0;
 | |
|     }
 | |
|     else
 | |
|         m_azimuth = 0.0;
 | |
| }
 | |
| 
 | |
| // Calculate elevation of target from location
 | |
| void AzEl::calcElevation()
 | |
| {
 | |
|     AzElCartesian bma;
 | |
|     if (normVectorDiff(m_location.m_cart, m_target.m_cart, bma))
 | |
|     {
 | |
|         m_elevation = 90.0 - (180.0/M_PI) * std::acos(bma.m_x * m_location.m_norm.m_x
 | |
|                                                     + bma.m_y * m_location.m_norm.m_y
 | |
|                                                     + bma.m_z * m_location.m_norm.m_z);
 | |
|     }
 | |
|     else
 | |
|         m_elevation = 0.0;
 | |
| }
 |