mirror of
				https://github.com/f4exb/sdrangel.git
				synced 2025-10-30 20:40:20 -04:00 
			
		
		
		
	
		
			
				
	
	
		
			776 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			776 lines
		
	
	
		
			24 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| ///////////////////////////////////////////////////////////////////////////////////
 | |
| // Copyright (C) 2019-2022 Edouard Griffiths, F4EXB <f4exb06@gmail.com>          //
 | |
| // Copyright (C) 2022 Jiří Pinkava <jiri.pinkava@rossum.ai>                      //
 | |
| //                                                                               //
 | |
| // This program is free software; you can redistribute it and/or modify          //
 | |
| // it under the terms of the GNU General Public License as published by          //
 | |
| // the Free Software Foundation as version 3 of the License, or                  //
 | |
| // (at your option) any later version.                                           //
 | |
| //                                                                               //
 | |
| // This program is distributed in the hope that it will be useful,               //
 | |
| // but WITHOUT ANY WARRANTY; without even the implied warranty of                //
 | |
| // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the                  //
 | |
| // GNU General Public License V3 for more details.                               //
 | |
| //                                                                               //
 | |
| // You should have received a copy of the GNU General Public License             //
 | |
| // along with this program. If not, see <http://www.gnu.org/licenses/>.          //
 | |
| ///////////////////////////////////////////////////////////////////////////////////
 | |
| 
 | |
| #include <QDebug>
 | |
| 
 | |
| #include "dsp/spectrumvis.h"
 | |
| #include "dsp/misc.h"
 | |
| #include "dsp/datafifo.h"
 | |
| #include "util/messagequeue.h"
 | |
| #include "maincore.h"
 | |
| 
 | |
| #include "ssbmodsource.h"
 | |
| 
 | |
| const int SSBModSource::m_ssbFftLen = 1024;
 | |
| const int SSBModSource::m_levelNbSamples = 480; // every 10ms
 | |
| 
 | |
| SSBModSource::SSBModSource() :
 | |
|     m_channelSampleRate(48000),
 | |
|     m_channelFrequencyOffset(0),
 | |
|     m_spectrumSink(nullptr),
 | |
|     m_audioSampleRate(48000),
 | |
|     m_audioFifo(12000),
 | |
|     m_feedbackAudioFifo(12000),
 | |
| 	m_levelCalcCount(0),
 | |
| 	m_peakLevel(0.0f),
 | |
| 	m_levelSum(0.0f),
 | |
|     m_ifstream(nullptr)
 | |
| {
 | |
|     m_audioFifo.setLabel("SSBModSource.m_audioFifo");
 | |
|     m_feedbackAudioFifo.setLabel("SSBModSource.m_feedbackAudioFifo");
 | |
|     m_SSBFilter = new fftfilt(m_settings.m_lowCutoff / m_audioSampleRate, m_settings.m_bandwidth / m_audioSampleRate, m_ssbFftLen);
 | |
|     m_DSBFilter = new fftfilt((2.0f * m_settings.m_bandwidth) / m_audioSampleRate, 2 * m_ssbFftLen);
 | |
|     m_SSBFilterBuffer = new Complex[m_ssbFftLen>>1]; // filter returns data exactly half of its size
 | |
|     m_DSBFilterBuffer = new Complex[m_ssbFftLen];
 | |
|     std::fill(m_SSBFilterBuffer, m_SSBFilterBuffer+(m_ssbFftLen>>1), Complex{0,0});
 | |
|     std::fill(m_DSBFilterBuffer, m_DSBFilterBuffer+m_ssbFftLen, Complex{0,0});
 | |
| 
 | |
| 	m_audioBuffer.resize(24000);
 | |
| 	m_audioBufferFill = 0;
 | |
| 	m_audioReadBuffer.resize(24000);
 | |
| 	m_audioReadBufferFill = 0;
 | |
| 
 | |
| 	m_feedbackAudioBuffer.resize(4800);
 | |
| 	m_feedbackAudioBufferFill = 0;
 | |
| 
 | |
|     m_demodBuffer.resize(1<<12);
 | |
|     m_demodBufferFill = 0;
 | |
| 
 | |
|     m_sum.real(0.0f);
 | |
|     m_sum.imag(0.0f);
 | |
|     m_undersampleCount = 0;
 | |
|     m_sumCount = 0;
 | |
| 
 | |
| 	m_magsq = 0.0;
 | |
| 	m_toneNco.setFreq(1000.0, m_audioSampleRate);
 | |
| 
 | |
| 	m_cwKeyer.setSampleRate(m_audioSampleRate);
 | |
|     m_cwKeyer.reset();
 | |
| 
 | |
|     m_audioCompressor.initSimple(
 | |
|         m_audioSampleRate,
 | |
|         m_settings.m_cmpPreGainDB,   // pregain (dB)
 | |
|         m_settings.m_cmpThresholdDB, // threshold (dB)
 | |
|         20,    // knee (dB)
 | |
|         12,    // ratio (dB)
 | |
|         0.003, // attack (s)
 | |
|         0.25   // release (s)
 | |
|     );
 | |
| 
 | |
|     applySettings(m_settings, true);
 | |
|     applyChannelSettings(m_channelSampleRate, m_channelFrequencyOffset, true);
 | |
| }
 | |
| 
 | |
| SSBModSource::~SSBModSource()
 | |
| {
 | |
|     delete m_SSBFilter;
 | |
|     delete m_DSBFilter;
 | |
|     delete[] m_SSBFilterBuffer;
 | |
|     delete[] m_DSBFilterBuffer;
 | |
| }
 | |
| 
 | |
| void SSBModSource::pull(SampleVector::iterator begin, unsigned int nbSamples)
 | |
| {
 | |
|     std::for_each(
 | |
|         begin,
 | |
|         begin + nbSamples,
 | |
|         [this](Sample& s) {
 | |
|             pullOne(s);
 | |
|         }
 | |
|     );
 | |
| }
 | |
| 
 | |
| void SSBModSource::pullOne(Sample& sample)
 | |
| {
 | |
| 	Complex ci;
 | |
| 
 | |
|     if (m_interpolatorDistance > 1.0f) // decimate
 | |
|     {
 | |
|     	modulateSample();
 | |
| 
 | |
|         while (!m_interpolator.decimate(&m_interpolatorDistanceRemain, m_modSample, &ci))
 | |
|         {
 | |
|         	modulateSample();
 | |
|         }
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         if (m_interpolator.interpolate(&m_interpolatorDistanceRemain, m_modSample, &ci))
 | |
|         {
 | |
|         	modulateSample();
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     m_interpolatorDistanceRemain += m_interpolatorDistance;
 | |
| 
 | |
|     ci *= m_carrierNco.nextIQ(); // shift to carrier frequency
 | |
|     ci *= 0.891235351562f * SDR_TX_SCALEF; //scaling at -1 dB to account for possible filter overshoot
 | |
| 
 | |
|     double magsq = ci.real() * ci.real() + ci.imag() * ci.imag();
 | |
| 	magsq /= (SDR_TX_SCALED*SDR_TX_SCALED);
 | |
| 	m_movingAverage(magsq);
 | |
| 	m_magsq = m_movingAverage.asDouble();
 | |
| 
 | |
| 	sample.m_real = (FixReal) ci.real();
 | |
| 	sample.m_imag = (FixReal) ci.imag();
 | |
| }
 | |
| 
 | |
| void SSBModSource::prefetch(unsigned int nbSamples)
 | |
| {
 | |
|     unsigned int nbSamplesAudio = nbSamples * ((Real) m_audioSampleRate / (Real) m_channelSampleRate);
 | |
|     pullAudio(nbSamplesAudio);
 | |
| }
 | |
| 
 | |
| void SSBModSource::pullAudio(unsigned int nbSamplesAudio)
 | |
| {
 | |
|     QMutexLocker mlock(&m_mutex);
 | |
| 
 | |
|     if (nbSamplesAudio > m_audioBuffer.size()) {
 | |
|         m_audioBuffer.resize(nbSamplesAudio);
 | |
|     }
 | |
| 
 | |
|     std::copy(&m_audioReadBuffer[0], &m_audioReadBuffer[nbSamplesAudio], &m_audioBuffer[0]);
 | |
|     m_audioBufferFill = 0;
 | |
| 
 | |
|     if (m_audioReadBufferFill > nbSamplesAudio) // copy back remaining samples at the start of the read buffer
 | |
|     {
 | |
|         std::copy(&m_audioReadBuffer[nbSamplesAudio], &m_audioReadBuffer[m_audioReadBufferFill], &m_audioReadBuffer[0]);
 | |
|         m_audioReadBufferFill = m_audioReadBufferFill - nbSamplesAudio; // adjust current read buffer fill pointer
 | |
|     }
 | |
| }
 | |
| 
 | |
| void SSBModSource::modulateSample()
 | |
| {
 | |
|     pullAF(m_modSample);
 | |
| 
 | |
|     if (m_settings.m_feedbackAudioEnable) {
 | |
|         pushFeedback(m_modSample * m_settings.m_feedbackVolumeFactor * 16384.0f);
 | |
|     }
 | |
| 
 | |
|     calculateLevel(m_modSample);
 | |
| 
 | |
|     if (m_settings.m_audioBinaural)
 | |
|     {
 | |
|         m_demodBuffer[m_demodBufferFill++] = m_modSample.real() * std::numeric_limits<int16_t>::max();
 | |
|         m_demodBuffer[m_demodBufferFill++] = m_modSample.imag() * std::numeric_limits<int16_t>::max();
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         // take projection on real axis
 | |
|         m_demodBuffer[m_demodBufferFill++] = m_modSample.real() * std::numeric_limits<int16_t>::max();
 | |
|     }
 | |
| 
 | |
|     if (m_demodBufferFill >= m_demodBuffer.size())
 | |
|     {
 | |
|         QList<ObjectPipe*> dataPipes;
 | |
|         MainCore::instance()->getDataPipes().getDataPipes(m_channel, "demod", dataPipes);
 | |
| 
 | |
|         if (dataPipes.size() > 0)
 | |
|         {
 | |
|             QList<ObjectPipe*>::iterator it = dataPipes.begin();
 | |
| 
 | |
|             for (; it != dataPipes.end(); ++it)
 | |
|             {
 | |
|                 DataFifo *fifo = qobject_cast<DataFifo*>((*it)->m_element);
 | |
| 
 | |
|                 if (fifo)
 | |
|                 {
 | |
|                     fifo->write(
 | |
|                         (quint8*) &m_demodBuffer[0],
 | |
|                         m_demodBuffer.size() * sizeof(qint16),
 | |
|                         m_settings.m_audioBinaural ? DataFifo::DataTypeCI16 : DataFifo::DataTypeI16
 | |
|                     );
 | |
|                 }
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         m_demodBufferFill = 0;
 | |
|     }
 | |
| }
 | |
| 
 | |
| void SSBModSource::pullAF(Complex& sample)
 | |
| {
 | |
| 	if (m_settings.m_audioMute)
 | |
| 	{
 | |
|         sample.real(0.0f);
 | |
|         sample.imag(0.0f);
 | |
|         return;
 | |
| 	}
 | |
| 
 | |
|     Complex ci;
 | |
|     fftfilt::cmplx *filtered;
 | |
|     int n_out = 0;
 | |
| 
 | |
|     int decim = 1<<(m_settings.m_spanLog2 - 1);
 | |
|     unsigned char decim_mask = decim - 1; // counter LSB bit mask for decimation by 2^(m_scaleLog2 - 1)
 | |
| 
 | |
|     switch (m_settings.m_modAFInput)
 | |
|     {
 | |
|     case SSBModSettings::SSBModInputTone:
 | |
|     	if (m_settings.m_dsb)
 | |
|     	{
 | |
|     		Real t = m_toneNco.next()/1.25;
 | |
|     		sample.real(t);
 | |
|     		sample.imag(t);
 | |
|     	}
 | |
|     	else
 | |
|     	{
 | |
|     		if (m_settings.m_usb) {
 | |
|     			sample = m_toneNco.nextIQ();
 | |
|     		} else {
 | |
|     			sample = m_toneNco.nextQI();
 | |
|     		}
 | |
|     	}
 | |
|         break;
 | |
|     case SSBModSettings::SSBModInputFile:
 | |
|     	// Monaural (mono):
 | |
|         // sox f4exb_call.wav --encoding float --endian little f4exb_call.raw
 | |
|         // ffplay -f f32le -ar 48k -ac 1 f4exb_call.raw
 | |
|     	// Binaural (stereo):
 | |
|         // sox f4exb_call.wav --encoding float --endian little f4exb_call.raw
 | |
|         // ffplay -f f32le -ar 48k -ac 2 f4exb_call.raw
 | |
|         if (m_ifstream && m_ifstream->is_open())
 | |
|         {
 | |
|             if (m_ifstream->eof())
 | |
|             {
 | |
|             	if (m_settings.m_playLoop)
 | |
|             	{
 | |
|                     m_ifstream->clear();
 | |
|                     m_ifstream->seekg(0, std::ios::beg);
 | |
|             	}
 | |
|             }
 | |
| 
 | |
|             if (m_ifstream->eof())
 | |
|             {
 | |
|                 ci.real(0.0f);
 | |
|                 ci.imag(0.0f);
 | |
|             }
 | |
|             else
 | |
|             {
 | |
|             	if (m_settings.m_audioBinaural)
 | |
|             	{
 | |
|             		Complex c;
 | |
|                 	m_ifstream->read(reinterpret_cast<char*>(&c), sizeof(Complex));
 | |
| 
 | |
|                 	if (m_settings.m_audioFlipChannels)
 | |
|                 	{
 | |
|                         ci.real(c.imag() * m_settings.m_volumeFactor);
 | |
|                         ci.imag(c.real() * m_settings.m_volumeFactor);
 | |
|                 	}
 | |
|                 	else
 | |
|                 	{
 | |
|                     	ci = c * m_settings.m_volumeFactor;
 | |
|                 	}
 | |
|             	}
 | |
|             	else
 | |
|             	{
 | |
|                     Real real;
 | |
|                 	m_ifstream->read(reinterpret_cast<char*>(&real), sizeof(Real));
 | |
| 
 | |
|                 	if (m_settings.m_agc)
 | |
|                 	{
 | |
|                         ci.real(clamp<float>(m_audioCompressor.compress(real), -1.0f, 1.0f));
 | |
|                         ci.imag(0.0f);
 | |
|                         ci *= m_settings.m_volumeFactor;
 | |
|                 	}
 | |
|                 	else
 | |
|                 	{
 | |
|                         ci.real(real * m_settings.m_volumeFactor);
 | |
|                         ci.imag(0.0f);
 | |
|                 	}
 | |
|             	}
 | |
|             }
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|             ci.real(0.0f);
 | |
|             ci.imag(0.0f);
 | |
|         }
 | |
|         break;
 | |
|     case SSBModSettings::SSBModInputAudio:
 | |
|         if (m_settings.m_audioBinaural)
 | |
|     	{
 | |
|         	if (m_settings.m_audioFlipChannels)
 | |
|         	{
 | |
|                 ci.real((m_audioBuffer[m_audioBufferFill].r / SDR_TX_SCALEF) * m_settings.m_volumeFactor);
 | |
|                 ci.imag((m_audioBuffer[m_audioBufferFill].l / SDR_TX_SCALEF) * m_settings.m_volumeFactor);
 | |
|         	}
 | |
|         	else
 | |
|         	{
 | |
|                 ci.real((m_audioBuffer[m_audioBufferFill].l / SDR_TX_SCALEF) * m_settings.m_volumeFactor);
 | |
|                 ci.imag((m_audioBuffer[m_audioBufferFill].r / SDR_TX_SCALEF) * m_settings.m_volumeFactor);
 | |
|         	}
 | |
|     	}
 | |
|         else
 | |
|         {
 | |
|             if (m_settings.m_agc)
 | |
|             {
 | |
|                 float sample = (m_audioBuffer[m_audioBufferFill].l + m_audioBuffer[m_audioBufferFill].r)  / 65536.0f;
 | |
|                 ci.real(clamp<float>(m_audioCompressor.compress(sample), -1.0f, 1.0f));
 | |
|                 ci.imag(0.0f);
 | |
|                 ci *= m_settings.m_volumeFactor;
 | |
|             }
 | |
|             else
 | |
|             {
 | |
|                 ci.real(((m_audioBuffer[m_audioBufferFill].l + m_audioBuffer[m_audioBufferFill].r)  / 65536.0f) * m_settings.m_volumeFactor);
 | |
|                 ci.imag(0.0f);
 | |
|             }
 | |
|         }
 | |
| 
 | |
|         if (m_audioBufferFill < m_audioBuffer.size() - 1)
 | |
|         {
 | |
|             m_audioBufferFill++;
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|             qDebug("SSBModSource::pullAF: starve audio samples: size: %lu", m_audioBuffer.size());
 | |
|             m_audioBufferFill = m_audioBuffer.size() - 1;
 | |
|         }
 | |
| 
 | |
|         break;
 | |
|     case SSBModSettings::SSBModInputCWTone:
 | |
|     	Real fadeFactor;
 | |
| 
 | |
|         if (m_cwKeyer.getSample())
 | |
|         {
 | |
|             m_cwKeyer.getCWSmoother().getFadeSample(true, fadeFactor);
 | |
| 
 | |
|         	if (m_settings.m_dsb)
 | |
|         	{
 | |
|         		Real t = m_toneNco.next() * fadeFactor;
 | |
|         		sample.real(t);
 | |
|         		sample.imag(t);
 | |
|         	}
 | |
|         	else
 | |
|         	{
 | |
|         		if (m_settings.m_usb) {
 | |
|         			sample = m_toneNco.nextIQ() * fadeFactor;
 | |
|         		} else {
 | |
|         			sample = m_toneNco.nextQI() * fadeFactor;
 | |
|         		}
 | |
|         	}
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|         	if (m_cwKeyer.getCWSmoother().getFadeSample(false, fadeFactor))
 | |
|         	{
 | |
|             	if (m_settings.m_dsb)
 | |
|             	{
 | |
|             		Real t = (m_toneNco.next() * fadeFactor)/1.25;
 | |
|             		sample.real(t);
 | |
|             		sample.imag(t);
 | |
|             	}
 | |
|             	else
 | |
|             	{
 | |
|             		if (m_settings.m_usb) {
 | |
|             			sample = m_toneNco.nextIQ() * fadeFactor;
 | |
|             		} else {
 | |
|             			sample = m_toneNco.nextQI() * fadeFactor;
 | |
|             		}
 | |
|             	}
 | |
|         	}
 | |
|         	else
 | |
|         	{
 | |
|                 sample.real(0.0f);
 | |
|                 sample.imag(0.0f);
 | |
|                 m_toneNco.setPhase(0);
 | |
|         	}
 | |
|         }
 | |
| 
 | |
|         break;
 | |
|     case SSBModSettings::SSBModInputNone:
 | |
|     default:
 | |
|         sample.real(0.0f);
 | |
|         sample.imag(0.0f);
 | |
|         break;
 | |
|     }
 | |
| 
 | |
|     if ((m_settings.m_modAFInput == SSBModSettings::SSBModInputFile)
 | |
|        || (m_settings.m_modAFInput == SSBModSettings::SSBModInputAudio)) // real audio
 | |
|     {
 | |
|     	if (m_settings.m_dsb)
 | |
|     	{
 | |
|     		n_out = m_DSBFilter->runDSB(ci, &filtered);
 | |
| 
 | |
|     		if (n_out > 0)
 | |
|     		{
 | |
|     			memcpy((void *) m_DSBFilterBuffer, (const void *) filtered, n_out*sizeof(Complex));
 | |
|     			m_DSBFilterBufferIndex = 0;
 | |
|     		}
 | |
| 
 | |
|     		sample = m_DSBFilterBuffer[m_DSBFilterBufferIndex];
 | |
|     		m_DSBFilterBufferIndex++;
 | |
|     	}
 | |
|     	else
 | |
|     	{
 | |
|     		n_out = m_SSBFilter->runSSB(ci, &filtered, m_settings.m_usb);
 | |
| 
 | |
|     		if (n_out > 0)
 | |
|     		{
 | |
|     			memcpy((void *) m_SSBFilterBuffer, (const void *) filtered, n_out*sizeof(Complex));
 | |
|     			m_SSBFilterBufferIndex = 0;
 | |
|     		}
 | |
| 
 | |
|     		sample = m_SSBFilterBuffer[m_SSBFilterBufferIndex];
 | |
|     		m_SSBFilterBufferIndex++;
 | |
|     	}
 | |
| 
 | |
|     	if (n_out > 0)
 | |
|     	{
 | |
|             for (int i = 0; i < n_out; i++)
 | |
|             {
 | |
|                 // Downsample by 2^(m_scaleLog2 - 1) for SSB band spectrum display
 | |
|                 // smart decimation with bit gain using float arithmetic (23 bits significand)
 | |
| 
 | |
|                 m_sum += filtered[i];
 | |
| 
 | |
|                 if (!(m_undersampleCount++ & decim_mask))
 | |
|                 {
 | |
|                     Real avgr = (m_sum.real() / decim) * 0.891235351562f * SDR_TX_SCALEF; //scaling at -1 dB to account for possible filter overshoot
 | |
|                     Real avgi = (m_sum.imag() / decim) * 0.891235351562f * SDR_TX_SCALEF;
 | |
| 
 | |
|                     if (!m_settings.m_dsb & !m_settings.m_usb)
 | |
|                     { // invert spectrum for LSB
 | |
|                         m_sampleBuffer.push_back(Sample(avgi, avgr));
 | |
|                     }
 | |
|                     else
 | |
|                     {
 | |
|                         m_sampleBuffer.push_back(Sample(avgr, avgi));
 | |
|                     }
 | |
| 
 | |
|                     m_sum.real(0.0);
 | |
|                     m_sum.imag(0.0);
 | |
|                 }
 | |
|             }
 | |
|     	}
 | |
|     } // Real audio
 | |
|     else if ((m_settings.m_modAFInput == SSBModSettings::SSBModInputTone)
 | |
|           || (m_settings.m_modAFInput == SSBModSettings::SSBModInputCWTone)) // tone
 | |
|     {
 | |
|         m_sum += sample;
 | |
| 
 | |
|         if (!(m_undersampleCount++ & decim_mask))
 | |
|         {
 | |
|             Real avgr = (m_sum.real() / decim) * 0.891235351562f * SDR_TX_SCALEF; //scaling at -1 dB to account for possible filter overshoot
 | |
|             Real avgi = (m_sum.imag() / decim) * 0.891235351562f * SDR_TX_SCALEF;
 | |
| 
 | |
|             if (!m_settings.m_dsb & !m_settings.m_usb)
 | |
|             { // invert spectrum for LSB
 | |
|                 m_sampleBuffer.push_back(Sample(avgi, avgr));
 | |
|             }
 | |
|             else
 | |
|             {
 | |
|                 m_sampleBuffer.push_back(Sample(avgr, avgi));
 | |
|             }
 | |
| 
 | |
|             m_sum.real(0.0);
 | |
|             m_sum.imag(0.0);
 | |
|         }
 | |
| 
 | |
|         if (m_sumCount < (m_settings.m_dsb ? m_ssbFftLen : m_ssbFftLen>>1))
 | |
|         {
 | |
|             n_out = 0;
 | |
|             m_sumCount++;
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|             n_out = m_sumCount;
 | |
|             m_sumCount = 0;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if (n_out > 0)
 | |
|     {
 | |
|         if (m_spectrumSink) {
 | |
|             m_spectrumSink->feed(m_sampleBuffer.begin(), m_sampleBuffer.end(), !m_settings.m_dsb);
 | |
|         }
 | |
| 
 | |
|         m_sampleBuffer.clear();
 | |
|     }
 | |
| }
 | |
| 
 | |
| void SSBModSource::pushFeedback(Complex c)
 | |
| {
 | |
|     Complex ci;
 | |
| 
 | |
|     if (m_feedbackInterpolatorDistance < 1.0f) // interpolate
 | |
|     {
 | |
|         while (!m_feedbackInterpolator.interpolate(&m_feedbackInterpolatorDistanceRemain, c, &ci))
 | |
|         {
 | |
|             processOneSample(ci);
 | |
|             m_feedbackInterpolatorDistanceRemain += m_feedbackInterpolatorDistance;
 | |
|         }
 | |
|     }
 | |
|     else // decimate
 | |
|     {
 | |
|         if (m_feedbackInterpolator.decimate(&m_feedbackInterpolatorDistanceRemain, c, &ci))
 | |
|         {
 | |
|             processOneSample(ci);
 | |
|             m_feedbackInterpolatorDistanceRemain += m_feedbackInterpolatorDistance;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| void SSBModSource::processOneSample(Complex& ci)
 | |
| {
 | |
|     if (m_settings.m_modAFInput == SSBModSettings::SSBModInputCWTone) // minimize latency for CW
 | |
|     {
 | |
|         m_feedbackAudioBuffer[0].l = ci.real();
 | |
|         m_feedbackAudioBuffer[0].r = ci.imag();
 | |
|         m_feedbackAudioFifo.writeOne((const quint8*) &m_feedbackAudioBuffer[0]);
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         m_feedbackAudioBuffer[m_feedbackAudioBufferFill].l = ci.real();
 | |
|         m_feedbackAudioBuffer[m_feedbackAudioBufferFill].r = ci.imag();
 | |
|         ++m_feedbackAudioBufferFill;
 | |
| 
 | |
|         if (m_feedbackAudioBufferFill >= m_feedbackAudioBuffer.size())
 | |
|         {
 | |
|             uint res = m_feedbackAudioFifo.write((const quint8*)&m_feedbackAudioBuffer[0], m_feedbackAudioBufferFill);
 | |
| 
 | |
|             if (res != m_feedbackAudioBufferFill)
 | |
|             {
 | |
|                 qDebug("SSBModSource::pushFeedback: %u/%u audio samples written m_feedbackInterpolatorDistance: %f",
 | |
|                     res, m_feedbackAudioBufferFill, m_feedbackInterpolatorDistance);
 | |
|                 m_feedbackAudioFifo.clear();
 | |
|             }
 | |
| 
 | |
|             m_feedbackAudioBufferFill = 0;
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| void SSBModSource::calculateLevel(Complex& sample)
 | |
| {
 | |
|     Real t = sample.real(); // TODO: possibly adjust depending on sample type
 | |
| 
 | |
|     if (m_levelCalcCount < m_levelNbSamples)
 | |
|     {
 | |
|         m_peakLevel = std::max(std::fabs(m_peakLevel), t);
 | |
|         m_levelSum += t * t;
 | |
|         m_levelCalcCount++;
 | |
|     }
 | |
|     else
 | |
|     {
 | |
|         m_rmsLevel = sqrt(m_levelSum / m_levelNbSamples);
 | |
|         m_peakLevelOut = m_peakLevel;
 | |
|         m_peakLevel = 0.0f;
 | |
|         m_levelSum = 0.0f;
 | |
|         m_levelCalcCount = 0;
 | |
|     }
 | |
| }
 | |
| 
 | |
| void SSBModSource::applyAudioSampleRate(int sampleRate)
 | |
| {
 | |
|     if (sampleRate < 0)
 | |
|     {
 | |
|         qWarning("SSBModSource::applyAudioSampleRate: invalid sample rate %d", sampleRate);
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     qDebug("SSBModSource::applyAudioSampleRate: %d", sampleRate);
 | |
| 
 | |
|     m_interpolatorDistanceRemain = 0;
 | |
|     m_interpolatorConsumed = false;
 | |
|     m_interpolatorDistance = (Real) sampleRate / (Real) m_channelSampleRate;
 | |
|     m_interpolator.create(48, sampleRate, m_settings.m_bandwidth, 3.0);
 | |
| 
 | |
|     float band = m_settings.m_bandwidth;
 | |
|     float lowCutoff = m_settings.m_lowCutoff;
 | |
|     bool usb = m_settings.m_usb;
 | |
| 
 | |
|     if (band < 100.0f) // at least 100 Hz
 | |
|     {
 | |
|         band = 100.0f;
 | |
|         lowCutoff = 0;
 | |
|     }
 | |
| 
 | |
|     if (band - lowCutoff < 100.0f) {
 | |
|         lowCutoff = band - 100.0f;
 | |
|     }
 | |
| 
 | |
|     m_SSBFilter->create_filter(lowCutoff / sampleRate, band / sampleRate);
 | |
|     m_DSBFilter->create_dsb_filter((2.0f * band) / sampleRate);
 | |
| 
 | |
|     m_settings.m_bandwidth = band;
 | |
|     m_settings.m_lowCutoff = lowCutoff;
 | |
|     m_settings.m_usb = usb;
 | |
| 
 | |
|     m_toneNco.setFreq(m_settings.m_toneFrequency, sampleRate);
 | |
|     m_cwKeyer.setSampleRate(sampleRate);
 | |
|     m_cwKeyer.reset();
 | |
| 
 | |
|     m_audioCompressor.m_rate = sampleRate;
 | |
|     m_audioCompressor.initState();
 | |
|     m_audioSampleRate = sampleRate;
 | |
| 
 | |
|     applyFeedbackAudioSampleRate(m_feedbackAudioSampleRate);
 | |
| 
 | |
|     QList<ObjectPipe*> pipes;
 | |
|     MainCore::instance()->getMessagePipes().getMessagePipes(m_channel, "reportdemod", pipes);
 | |
| 
 | |
|     if (pipes.size() > 0)
 | |
|     {
 | |
|         for (const auto& pipe : pipes)
 | |
|         {
 | |
|             MessageQueue* messageQueue = qobject_cast<MessageQueue*>(pipe->m_element);
 | |
|             MainCore::MsgChannelDemodReport *msg = MainCore::MsgChannelDemodReport::create(m_channel, sampleRate);
 | |
|             messageQueue->push(msg);
 | |
|         }
 | |
|     }
 | |
| }
 | |
| 
 | |
| void SSBModSource::applyFeedbackAudioSampleRate(int sampleRate)
 | |
| {
 | |
|     if (sampleRate < 0)
 | |
|     {
 | |
|         qWarning("SSBModSource::applyFeedbackAudioSampleRate: invalid sample rate %d", sampleRate);
 | |
|         return;
 | |
|     }
 | |
| 
 | |
|     qDebug("SSBModSource::applyFeedbackAudioSampleRate: %d", sampleRate);
 | |
| 
 | |
|     m_feedbackInterpolatorDistanceRemain = 0;
 | |
|     m_feedbackInterpolatorConsumed = false;
 | |
|     m_feedbackInterpolatorDistance = (Real) sampleRate / (Real) m_audioSampleRate;
 | |
|     Real cutoff = std::min(sampleRate, m_audioSampleRate) / 2.2f;
 | |
|     m_feedbackInterpolator.create(48, sampleRate, cutoff, 3.0);
 | |
|     m_feedbackAudioSampleRate = sampleRate;
 | |
| }
 | |
| 
 | |
| void SSBModSource::applySettings(const SSBModSettings& settings, bool force)
 | |
| {
 | |
|     float band = settings.m_bandwidth;
 | |
|     float lowCutoff = settings.m_lowCutoff;
 | |
|     bool usb = settings.m_usb;
 | |
| 
 | |
|     if ((settings.m_bandwidth != m_settings.m_bandwidth) ||
 | |
|         (settings.m_lowCutoff != m_settings.m_lowCutoff) || force)
 | |
|     {
 | |
|         if (band < 100.0f) // at least 100 Hz
 | |
|         {
 | |
|             band = 100.0f;
 | |
|             lowCutoff = 0;
 | |
|         }
 | |
| 
 | |
|         if (band - lowCutoff < 100.0f) {
 | |
|             lowCutoff = band - 100.0f;
 | |
|         }
 | |
| 
 | |
|         m_interpolatorDistanceRemain = 0;
 | |
|         m_interpolatorConsumed = false;
 | |
|         m_interpolatorDistance = (Real) m_audioSampleRate / (Real) m_channelSampleRate;
 | |
|         m_interpolator.create(48, m_audioSampleRate, band, 3.0);
 | |
|         m_SSBFilter->create_filter(lowCutoff / m_audioSampleRate, band / m_audioSampleRate);
 | |
|         m_DSBFilter->create_dsb_filter((2.0f * band) / m_audioSampleRate);
 | |
|     }
 | |
| 
 | |
|     if ((settings.m_toneFrequency != m_settings.m_toneFrequency) || force) {
 | |
|         m_toneNco.setFreq(settings.m_toneFrequency, m_audioSampleRate);
 | |
|     }
 | |
| 
 | |
|     if ((settings.m_dsb != m_settings.m_dsb) || force)
 | |
|     {
 | |
|         if (settings.m_dsb)
 | |
|         {
 | |
|             std::fill(m_DSBFilterBuffer, m_DSBFilterBuffer+m_ssbFftLen, Complex{0,0});
 | |
|             m_DSBFilterBufferIndex = 0;
 | |
|         }
 | |
|         else
 | |
|         {
 | |
|             std::fill(m_SSBFilterBuffer, m_SSBFilterBuffer+(m_ssbFftLen>>1), Complex{0,0});
 | |
|             m_SSBFilterBufferIndex = 0;
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if ((settings.m_modAFInput != m_settings.m_modAFInput) || force)
 | |
|     {
 | |
|         if (settings.m_modAFInput == SSBModSettings::SSBModInputAudio) {
 | |
|             connect(&m_audioFifo, SIGNAL(dataReady()), this, SLOT(handleAudio()));
 | |
|         } else {
 | |
|             disconnect(&m_audioFifo, SIGNAL(dataReady()), this, SLOT(handleAudio()));
 | |
|         }
 | |
|     }
 | |
| 
 | |
|     if ((settings.m_cmpThresholdDB != m_settings.m_cmpThresholdDB) ||
 | |
|         (settings.m_cmpPreGainDB != m_settings.m_cmpPreGainDB) || force)
 | |
|     {
 | |
|         m_audioCompressor.initSimple(
 | |
|             m_audioSampleRate,
 | |
|             settings.m_cmpPreGainDB,   // pregain (dB)
 | |
|             settings.m_cmpThresholdDB, // threshold (dB)
 | |
|             20,    // knee (dB)
 | |
|             12,    // ratio (dB)
 | |
|             0.003, // attack (s)
 | |
|             0.25   // release (s)
 | |
|         );
 | |
|     }
 | |
| 
 | |
|     m_settings = settings;
 | |
|     m_settings.m_bandwidth = band;
 | |
|     m_settings.m_lowCutoff = lowCutoff;
 | |
|     m_settings.m_usb = usb;
 | |
| }
 | |
| 
 | |
| void SSBModSource::applyChannelSettings(int channelSampleRate, int channelFrequencyOffset, bool force)
 | |
| {
 | |
|     qDebug() << "SSBModSource::applyChannelSettings:"
 | |
|             << " channelSampleRate: " << channelSampleRate
 | |
|             << " channelFrequencyOffset: " << channelFrequencyOffset;
 | |
| 
 | |
|     if ((channelFrequencyOffset != m_channelFrequencyOffset)
 | |
|      || (channelSampleRate != m_channelSampleRate) || force) {
 | |
|         m_carrierNco.setFreq(channelFrequencyOffset, channelSampleRate);
 | |
|     }
 | |
| 
 | |
|     if ((channelSampleRate != m_channelSampleRate) || force)
 | |
|     {
 | |
|         m_interpolatorDistanceRemain = 0;
 | |
|         m_interpolatorConsumed = false;
 | |
|         m_interpolatorDistance = (Real) m_audioSampleRate / (Real) channelSampleRate;
 | |
|         m_interpolator.create(48, m_audioSampleRate, m_settings.m_bandwidth, 3.0);
 | |
|     }
 | |
| 
 | |
|     m_channelSampleRate = channelSampleRate;
 | |
|     m_channelFrequencyOffset = channelFrequencyOffset;
 | |
| }
 | |
| 
 | |
| void SSBModSource::handleAudio()
 | |
| {
 | |
|     QMutexLocker mlock(&m_mutex);
 | |
|     unsigned int nbRead;
 | |
| 
 | |
|     while ((nbRead = m_audioFifo.read(reinterpret_cast<quint8*>(&m_audioReadBuffer[m_audioReadBufferFill]), 4096)) != 0)
 | |
|     {
 | |
|         if (m_audioReadBufferFill + nbRead + 4096 < m_audioReadBuffer.size()) {
 | |
|             m_audioReadBufferFill += nbRead;
 | |
|         }
 | |
|     }
 | |
| }
 |