mirror of
				https://github.com/saitohirga/WSJT-X.git
				synced 2025-10-30 12:30:23 -04:00 
			
		
		
		
	
		
			
	
	
		
			49 lines
		
	
	
		
			1.4 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
		
		
			
		
	
	
			49 lines
		
	
	
		
			1.4 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
|  | //  Copyright John Maddock 2007.
 | ||
|  | //  Copyright Paul A. Bristow 2010.
 | ||
|  | //  Use, modification and distribution are subject to the
 | ||
|  | //  Boost Software License, Version 1.0. (See accompanying file
 | ||
|  | //  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
 | ||
|  | 
 | ||
|  | // Note that this file contains quickbook mark-up as well as code
 | ||
|  | // and comments, don't change any of the special comment mark-ups!
 | ||
|  | 
 | ||
|  | //[policy_ref_snip7
 | ||
|  | 
 | ||
|  | #include <boost/math/distributions/negative_binomial.hpp>
 | ||
|  | using boost::math::negative_binomial_distribution; | ||
|  | 
 | ||
|  | using namespace boost::math::policies; | ||
|  | 
 | ||
|  | typedef negative_binomial_distribution< | ||
|  |       double,  | ||
|  |       policy<discrete_quantile<integer_round_inwards> >  | ||
|  |    > dist_type; | ||
|  |     | ||
|  | // Lower quantile rounded up:
 | ||
|  | double x = quantile(dist_type(20, 0.3), 0.05); // 28 rounded up from 27.3898
 | ||
|  | // Upper quantile rounded down:
 | ||
|  | double y = quantile(complement(dist_type(20, 0.3), 0.05)); // 68 rounded down from 68.1584
 | ||
|  | 
 | ||
|  | //] //[/policy_ref_snip7]
 | ||
|  | 
 | ||
|  | #include <iostream>
 | ||
|  | using std::cout; using std::endl; | ||
|  | 
 | ||
|  | int main() | ||
|  | { | ||
|  |    cout << "using policy<discrete_quantile<integer_round_inwards> > " << endl | ||
|  |    << "quantile(dist_type(20, 0.3), 0.05) = " << x << endl  | ||
|  |    << "quantile(complement(dist_type(20, 0.3), 0.05)) =  " << y << endl; | ||
|  | } | ||
|  | 
 | ||
|  | /*
 | ||
|  | 
 | ||
|  | Output: | ||
|  |   using policy<discrete_quantile<integer_round_inwards> >  | ||
|  |   quantile(dist_type(20, 0.3), 0.05) = 28 | ||
|  |   quantile(complement(dist_type(20, 0.3), 0.05)) =  68 | ||
|  | 
 | ||
|  | 
 | ||
|  | */ | ||
|  | 
 |