mirror of
				https://github.com/saitohirga/WSJT-X.git
				synced 2025-10-30 20:40:28 -04:00 
			
		
		
		
	
		
			
	
	
		
			142 lines
		
	
	
		
			3.7 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
		
		
			
		
	
	
			142 lines
		
	
	
		
			3.7 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
|  | /*
 | ||
|  |  * gauss_packet.cpp | ||
|  |  * | ||
|  |  * Schroedinger equation with potential barrier and periodic boundary conditions | ||
|  |  * Initial Gauss packet moving to the right | ||
|  |  * | ||
|  |  * pipe output into gnuplot to see animation | ||
|  |  * | ||
|  |  * Implementation of Hamilton operator via MTL library | ||
|  |  * | ||
|  |  * Copyright 2011-2013 Mario Mulansky | ||
|  |  * Copyright 2011-2012 Karsten Ahnert | ||
|  |  * | ||
|  |  * Distributed under the Boost Software License, Version 1.0. | ||
|  |  * (See accompanying file LICENSE_1_0.txt or | ||
|  |  * copy at http://www.boost.org/LICENSE_1_0.txt)
 | ||
|  |  */ | ||
|  | 
 | ||
|  | 
 | ||
|  | #include <iostream>
 | ||
|  | #include <complex>
 | ||
|  | 
 | ||
|  | #include <boost/numeric/odeint.hpp>
 | ||
|  | #include <boost/numeric/odeint/external/mtl4/mtl4.hpp>
 | ||
|  | 
 | ||
|  | #include <boost/numeric/mtl/mtl.hpp>
 | ||
|  | 
 | ||
|  | 
 | ||
|  | using namespace std; | ||
|  | using namespace boost::numeric::odeint; | ||
|  | 
 | ||
|  | typedef mtl::dense_vector< complex< double > > state_type; | ||
|  | 
 | ||
|  | struct hamiltonian { | ||
|  | 
 | ||
|  |     typedef mtl::compressed2D< complex< double > > matrix_type; | ||
|  |     matrix_type m_H; | ||
|  | 
 | ||
|  |     hamiltonian( const int N ) : m_H( N , N ) | ||
|  |     { | ||
|  |         // constructor with zero potential
 | ||
|  |         m_H = 0.0; | ||
|  |         initialize_kinetic_term(); | ||
|  |     } | ||
|  | 
 | ||
|  |     //template< mtl::compressed2D< double > >
 | ||
|  |     hamiltonian( mtl::compressed2D< double > &V ) : m_H( num_rows( V ) , num_cols( V ) ) | ||
|  |     { | ||
|  |         // use potential V in hamiltonian
 | ||
|  |         m_H = complex<double>( 0.0 , -1.0 ) * V; | ||
|  |         initialize_kinetic_term(); | ||
|  |     } | ||
|  | 
 | ||
|  |     void initialize_kinetic_term( ) | ||
|  |     { | ||
|  |         const int N = num_rows( m_H ); | ||
|  |         mtl::matrix::inserter< matrix_type , mtl::update_plus< complex<double> > > ins( m_H ); | ||
|  |         const double z = 1.0; | ||
|  |         // fill diagonal and upper and lower diagonal
 | ||
|  |         for( int i = 0 ; i<N ; ++i ) | ||
|  |         { | ||
|  |             ins[ i ][ (i+1) % N ] << complex< double >( 0.0 , -z ); | ||
|  |             ins[ i ][ i ] << complex< double >( 0.0 , z ); | ||
|  |             ins[ (i+1) % N ][ i ] << complex< double >( 0.0 , -z ); | ||
|  |         } | ||
|  |     } | ||
|  | 
 | ||
|  |     void operator()( const state_type &psi , state_type &dpsidt , const double t ) | ||
|  |     { | ||
|  |         dpsidt = m_H * psi; | ||
|  |     } | ||
|  | 
 | ||
|  | }; | ||
|  | 
 | ||
|  | struct write_for_gnuplot | ||
|  | { | ||
|  |     size_t m_every , m_count; | ||
|  | 
 | ||
|  |     write_for_gnuplot( size_t every = 10 ) | ||
|  |     : m_every( every ) , m_count( 0 ) { } | ||
|  | 
 | ||
|  |     void operator()( const state_type &x , double t ) | ||
|  |     { | ||
|  |         if( ( m_count % m_every ) == 0 ) | ||
|  |         { | ||
|  |             //clog << t << endl;
 | ||
|  |             cout << "p [0:" << mtl::size(x) << "][0:0.02] '-'" << endl; | ||
|  |             for( size_t i=0 ; i<mtl::size(x) ; ++i ) | ||
|  |             { | ||
|  |                 cout << i << "\t" << norm(x[i]) << "\n"; | ||
|  |             } | ||
|  |             cout << "e" << endl; | ||
|  |         } | ||
|  | 
 | ||
|  |         ++m_count; | ||
|  |     } | ||
|  | }; | ||
|  | 
 | ||
|  | static const int N = 1024; | ||
|  | static const int N0 = 256; | ||
|  | static const double sigma0 = 20; | ||
|  | static const double k0 = -1.0; | ||
|  | 
 | ||
|  | int main( int argc , char** argv ) | ||
|  | { | ||
|  |     state_type x( N , 0.0 ); | ||
|  | 
 | ||
|  |     // initialize gauss packet with nonzero velocity
 | ||
|  |     for( int i=0 ; i<N ; ++i ) | ||
|  |     { | ||
|  |         x[i] = exp( -(i-N0)*(i-N0) / ( 4.0*sigma0*sigma0 ) ) * exp( complex< double >( 0.0 , k0*i ) ); | ||
|  |         //x[i] += 2.0*exp( -(i+N0-N)*(i+N0-N) / ( 4.0*sigma0*sigma0 ) ) * exp( complex< double >( 0.0 , -k0*i ) );
 | ||
|  |     } | ||
|  |     x /= mtl::two_norm( x ); | ||
|  | 
 | ||
|  |     typedef runge_kutta4< state_type > stepper; | ||
|  | 
 | ||
|  |     // create potential barrier
 | ||
|  |     mtl::compressed2D< double > V( N , N ); | ||
|  |     V = 0.0; | ||
|  |     { | ||
|  |         mtl::matrix::inserter< mtl::compressed2D< double > > ins( V ); | ||
|  |         for( int i=0 ; i<N ; ++i ) | ||
|  |         { | ||
|  |             //ins[i][i] << 1E-4*(i-N/2)*(i-N/2);
 | ||
|  | 
 | ||
|  |             if( i < N/2 ) | ||
|  |                 ins[ i ][ i ] << 0.0 ; | ||
|  |             else | ||
|  |                 ins[ i ][ i ] << 1.0 ; | ||
|  | 
 | ||
|  |         } | ||
|  |     } | ||
|  | 
 | ||
|  |     // perform integration, output can be piped to gnuplot
 | ||
|  |     integrate_const( stepper() , hamiltonian( V ) , x , 0.0 , 1000.0 , 0.1 , write_for_gnuplot( 10 ) ); | ||
|  | 
 | ||
|  |     clog << "Norm: " << mtl::two_norm( x ) << endl; | ||
|  | 
 | ||
|  |     return 0; | ||
|  | } |