mirror of
				https://github.com/saitohirga/WSJT-X.git
				synced 2025-10-31 13:10:19 -04:00 
			
		
		
		
	
		
			
	
	
		
			264 lines
		
	
	
		
			6.8 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
		
		
			
		
	
	
			264 lines
		
	
	
		
			6.8 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
|  | /* Reed-Solomon decoder
 | ||
|  |  * Copyright 2002 Phil Karn, KA9Q | ||
|  |  * May be used under the terms of the GNU General Public License (GPL) | ||
|  |  */ | ||
|  | 
 | ||
|  | #ifdef DEBUG
 | ||
|  | #include <stdio.h>
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  | #include <string.h>
 | ||
|  | 
 | ||
|  | #define NULL ((void *)0)
 | ||
|  | #define	min(a,b)	((a) < (b) ? (a) : (b))
 | ||
|  | 
 | ||
|  | #ifdef FIXED
 | ||
|  | #include "fixed.h"
 | ||
|  | #elif defined(BIGSYM)
 | ||
|  | #include "int.h"
 | ||
|  | #else
 | ||
|  | #include "char.h"
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  | int DECODE_RS( | ||
|  | #ifdef FIXED
 | ||
|  | DTYPE *data, int *eras_pos, int no_eras,int pad){ | ||
|  | #else
 | ||
|  | void *p,DTYPE *data, int *eras_pos, int no_eras){ | ||
|  |   struct rs *rs = (struct rs *)p; | ||
|  | #endif
 | ||
|  |   int deg_lambda, el, deg_omega; | ||
|  |   int i, j, r,k; | ||
|  |   DTYPE u,q,tmp,num1,num2,den,discr_r; | ||
|  |   DTYPE lambda[NROOTS+1], s[NROOTS];	/* Err+Eras Locator poly
 | ||
|  | 					 * and syndrome poly */ | ||
|  |   DTYPE b[NROOTS+1], t[NROOTS+1], omega[NROOTS+1]; | ||
|  |   DTYPE root[NROOTS], reg[NROOTS+1], loc[NROOTS]; | ||
|  |   int syn_error, count; | ||
|  | 
 | ||
|  | #ifdef FIXED
 | ||
|  |   /* Check pad parameter for validity */ | ||
|  |   if(pad < 0 || pad >= NN) | ||
|  |     return -1; | ||
|  | #endif
 | ||
|  | 
 | ||
|  |   /* form the syndromes; i.e., evaluate data(x) at roots of g(x) */ | ||
|  |   for(i=0;i<NROOTS;i++) | ||
|  |     s[i] = data[0]; | ||
|  | 
 | ||
|  |   for(j=1;j<NN-PAD;j++){ | ||
|  |     for(i=0;i<NROOTS;i++){ | ||
|  |       if(s[i] == 0){ | ||
|  | 	s[i] = data[j]; | ||
|  |       } else { | ||
|  | 	s[i] = data[j] ^ ALPHA_TO[MODNN(INDEX_OF[s[i]] + (FCR+i)*PRIM)]; | ||
|  |       } | ||
|  |     } | ||
|  |   } | ||
|  | 
 | ||
|  |   /* Convert syndromes to index form, checking for nonzero condition */ | ||
|  |   syn_error = 0; | ||
|  |   for(i=0;i<NROOTS;i++){ | ||
|  |     syn_error |= s[i]; | ||
|  |     s[i] = INDEX_OF[s[i]]; | ||
|  |   } | ||
|  | 
 | ||
|  |   if (!syn_error) { | ||
|  |     /* if syndrome is zero, data[] is a codeword and there are no
 | ||
|  |      * errors to correct. So return data[] unmodified | ||
|  |      */ | ||
|  |     count = 0; | ||
|  |     goto finish; | ||
|  |   } | ||
|  |   memset(&lambda[1],0,NROOTS*sizeof(lambda[0])); | ||
|  |   lambda[0] = 1; | ||
|  | 
 | ||
|  |   if (no_eras > 0) { | ||
|  |     /* Init lambda to be the erasure locator polynomial */ | ||
|  |     lambda[1] = ALPHA_TO[MODNN(PRIM*(NN-1-eras_pos[0]))]; | ||
|  |     for (i = 1; i < no_eras; i++) { | ||
|  |       u = MODNN(PRIM*(NN-1-eras_pos[i])); | ||
|  |       for (j = i+1; j > 0; j--) { | ||
|  | 	tmp = INDEX_OF[lambda[j - 1]]; | ||
|  | 	if(tmp != A0) | ||
|  | 	  lambda[j] ^= ALPHA_TO[MODNN(u + tmp)]; | ||
|  |       } | ||
|  |     } | ||
|  | 
 | ||
|  | #if DEBUG >= 1
 | ||
|  |     /* Test code that verifies the erasure locator polynomial just constructed
 | ||
|  |        Needed only for decoder debugging. */ | ||
|  |      | ||
|  |     /* find roots of the erasure location polynomial */ | ||
|  |     for(i=1;i<=no_eras;i++) | ||
|  |       reg[i] = INDEX_OF[lambda[i]]; | ||
|  | 
 | ||
|  |     count = 0; | ||
|  |     for (i = 1,k=IPRIM-1; i <= NN; i++,k = MODNN(k+IPRIM)) { | ||
|  |       q = 1; | ||
|  |       for (j = 1; j <= no_eras; j++) | ||
|  | 	if (reg[j] != A0) { | ||
|  | 	  reg[j] = MODNN(reg[j] + j); | ||
|  | 	  q ^= ALPHA_TO[reg[j]]; | ||
|  | 	} | ||
|  |       if (q != 0) | ||
|  | 	continue; | ||
|  |       /* store root and error location number indices */ | ||
|  |       root[count] = i; | ||
|  |       loc[count] = k; | ||
|  |       count++; | ||
|  |     } | ||
|  |     if (count != no_eras) { | ||
|  |       printf("count = %d no_eras = %d\n lambda(x) is WRONG\n",count,no_eras); | ||
|  |       count = -1; | ||
|  |       goto finish; | ||
|  |     } | ||
|  | #if DEBUG >= 2
 | ||
|  |     printf("\n Erasure positions as determined by roots of Eras Loc Poly:\n"); | ||
|  |     for (i = 0; i < count; i++) | ||
|  |       printf("%d ", loc[i]); | ||
|  |     printf("\n"); | ||
|  | #endif
 | ||
|  | #endif
 | ||
|  |   } | ||
|  |   for(i=0;i<NROOTS+1;i++) | ||
|  |     //    printf("%d  %d  %d\n",i,lambda[i],INDEX_OF[lambda[i]]);
 | ||
|  |     b[i] = INDEX_OF[lambda[i]]; | ||
|  |    | ||
|  |   /*
 | ||
|  |    * Begin Berlekamp-Massey algorithm to determine error+erasure | ||
|  |    * locator polynomial | ||
|  |    */ | ||
|  |   r = no_eras; | ||
|  |   el = no_eras; | ||
|  |   while (++r <= NROOTS) {	/* r is the step number */ | ||
|  |     /* Compute discrepancy at the r-th step in poly-form */ | ||
|  |     discr_r = 0; | ||
|  |     for (i = 0; i < r; i++){ | ||
|  |       if ((lambda[i] != 0) && (s[r-i-1] != A0)) { | ||
|  | 	discr_r ^= ALPHA_TO[MODNN(INDEX_OF[lambda[i]] + s[r-i-1])]; | ||
|  |       } | ||
|  |     } | ||
|  |     discr_r = INDEX_OF[discr_r];	/* Index form */ | ||
|  |     if (discr_r == A0) { | ||
|  |       /* 2 lines below: B(x) <-- x*B(x) */ | ||
|  |       memmove(&b[1],b,NROOTS*sizeof(b[0])); | ||
|  |       b[0] = A0; | ||
|  |     } else { | ||
|  |       /* 7 lines below: T(x) <-- lambda(x) - discr_r*x*b(x) */ | ||
|  |       t[0] = lambda[0]; | ||
|  |       for (i = 0 ; i < NROOTS; i++) { | ||
|  | 	if(b[i] != A0) | ||
|  | 	  t[i+1] = lambda[i+1] ^ ALPHA_TO[MODNN(discr_r + b[i])]; | ||
|  | 	else | ||
|  | 	  t[i+1] = lambda[i+1]; | ||
|  |       } | ||
|  |       if (2 * el <= r + no_eras - 1) { | ||
|  | 	el = r + no_eras - el; | ||
|  | 	/*
 | ||
|  | 	 * 2 lines below: B(x) <-- inv(discr_r) * | ||
|  | 	 * lambda(x) | ||
|  | 	 */ | ||
|  | 	for (i = 0; i <= NROOTS; i++) | ||
|  | 	  b[i] = (lambda[i] == 0) ? A0 : MODNN(INDEX_OF[lambda[i]] - discr_r + NN); | ||
|  |       } else { | ||
|  | 	/* 2 lines below: B(x) <-- x*B(x) */ | ||
|  | 	memmove(&b[1],b,NROOTS*sizeof(b[0])); | ||
|  | 	b[0] = A0; | ||
|  |       } | ||
|  |       memcpy(lambda,t,(NROOTS+1)*sizeof(t[0])); | ||
|  |     } | ||
|  |   } | ||
|  | 
 | ||
|  |   /* Convert lambda to index form and compute deg(lambda(x)) */ | ||
|  |   deg_lambda = 0; | ||
|  |   for(i=0;i<NROOTS+1;i++){ | ||
|  |     lambda[i] = INDEX_OF[lambda[i]]; | ||
|  |     if(lambda[i] != A0) | ||
|  |       deg_lambda = i; | ||
|  |   } | ||
|  |   /* Find roots of the error+erasure locator polynomial by Chien search */ | ||
|  |   memcpy(®[1],&lambda[1],NROOTS*sizeof(reg[0])); | ||
|  |   count = 0;		/* Number of roots of lambda(x) */ | ||
|  |   for (i = 1,k=IPRIM-1; i <= NN; i++,k = MODNN(k+IPRIM)) { | ||
|  |     q = 1; /* lambda[0] is always 0 */ | ||
|  |     for (j = deg_lambda; j > 0; j--){ | ||
|  |       if (reg[j] != A0) { | ||
|  | 	reg[j] = MODNN(reg[j] + j); | ||
|  | 	q ^= ALPHA_TO[reg[j]]; | ||
|  |       } | ||
|  |     } | ||
|  |     if (q != 0) | ||
|  |       continue; /* Not a root */ | ||
|  |     /* store root (index-form) and error location number */ | ||
|  | #if DEBUG>=2
 | ||
|  |     printf("count %d root %d loc %d\n",count,i,k); | ||
|  | #endif
 | ||
|  |     root[count] = i; | ||
|  |     loc[count] = k; | ||
|  |     /* If we've already found max possible roots,
 | ||
|  |      * abort the search to save time | ||
|  |      */ | ||
|  |     if(++count == deg_lambda) | ||
|  |       break; | ||
|  |   } | ||
|  |   if (deg_lambda != count) { | ||
|  |     /*
 | ||
|  |      * deg(lambda) unequal to number of roots => uncorrectable | ||
|  |      * error detected | ||
|  |      */ | ||
|  |     count = -1; | ||
|  |     goto finish; | ||
|  |   } | ||
|  |   /*
 | ||
|  |    * Compute err+eras evaluator poly omega(x) = s(x)*lambda(x) (modulo | ||
|  |    * x**NROOTS). in index form. Also find deg(omega). | ||
|  |    */ | ||
|  |   deg_omega = deg_lambda-1; | ||
|  |   for (i = 0; i <= deg_omega;i++){ | ||
|  |     tmp = 0; | ||
|  |     for(j=i;j >= 0; j--){ | ||
|  |       if ((s[i - j] != A0) && (lambda[j] != A0)) | ||
|  | 	tmp ^= ALPHA_TO[MODNN(s[i - j] + lambda[j])]; | ||
|  |     } | ||
|  |     omega[i] = INDEX_OF[tmp]; | ||
|  |   } | ||
|  | 
 | ||
|  |   /*
 | ||
|  |    * Compute error values in poly-form. num1 = omega(inv(X(l))), num2 = | ||
|  |    * inv(X(l))**(FCR-1) and den = lambda_pr(inv(X(l))) all in poly-form | ||
|  |    */ | ||
|  |   for (j = count-1; j >=0; j--) { | ||
|  |     num1 = 0; | ||
|  |     for (i = deg_omega; i >= 0; i--) { | ||
|  |       if (omega[i] != A0) | ||
|  | 	num1  ^= ALPHA_TO[MODNN(omega[i] + i * root[j])]; | ||
|  |     } | ||
|  |     num2 = ALPHA_TO[MODNN(root[j] * (FCR - 1) + NN)]; | ||
|  |     den = 0; | ||
|  |      | ||
|  |     /* lambda[i+1] for i even is the formal derivative lambda_pr of lambda[i] */ | ||
|  |     for (i = min(deg_lambda,NROOTS-1) & ~1; i >= 0; i -=2) { | ||
|  |       if(lambda[i+1] != A0) | ||
|  | 	den ^= ALPHA_TO[MODNN(lambda[i+1] + i * root[j])]; | ||
|  |     } | ||
|  | #if DEBUG >= 1
 | ||
|  |     if (den == 0) { | ||
|  |       printf("\n ERROR: denominator = 0\n"); | ||
|  |       count = -1; | ||
|  |       goto finish; | ||
|  |     } | ||
|  | #endif
 | ||
|  |     /* Apply error to data */ | ||
|  |     if (num1 != 0 && loc[j] >= PAD) { | ||
|  |       data[loc[j]-PAD] ^= ALPHA_TO[MODNN(INDEX_OF[num1] + INDEX_OF[num2] + NN - INDEX_OF[den])]; | ||
|  |     } | ||
|  |   } | ||
|  |  finish: | ||
|  |   if(eras_pos != NULL){ | ||
|  |     for(i=0;i<count;i++) | ||
|  |       eras_pos[i] = loc[i]; | ||
|  |   } | ||
|  |   return count; | ||
|  | } |