mirror of
				https://github.com/saitohirga/WSJT-X.git
				synced 2025-10-25 01:50:30 -04:00 
			
		
		
		
	
		
			
	
	
		
			432 lines
		
	
	
		
			3.2 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
		
		
			
		
	
	
			432 lines
		
	
	
		
			3.2 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
|  | 
 | ||
|  | PART 1: | ||
|  | 
 | ||
|  | Matrix m1: | ||
|  | 
 | ||
|  |  0:  0 | ||
|  |  1:  1 | ||
|  |  2:  2  3 | ||
|  |  3:  3 | ||
|  |  4:  4 | ||
|  |  5:  5 | ||
|  |  6:  6 | ||
|  |  7:  7 | ||
|  |  8:  8 | ||
|  |  9:  9 | ||
|  | 10: 10 38 | ||
|  | 11: 11 | ||
|  | 12: 12 | ||
|  | 13: 13 | ||
|  | 14: 14 | ||
|  | 15: 15 | ||
|  | 16: 16 | ||
|  | 17: 17 | ||
|  | 18: 18 | ||
|  | 19: 19 | ||
|  | 20: 20 | ||
|  | 21: 21 | ||
|  | 22: 22 | ||
|  | 23: 23 | ||
|  | 24: 24 | ||
|  | 25: 25 | ||
|  | 26: 26 | ||
|  | 27: 27 | ||
|  | 28: 28 | ||
|  | 29: 29 | ||
|  | 30: 30 | ||
|  | 31: 31 | ||
|  | 32: 32 | ||
|  | 33: 33 | ||
|  | 34:  4 34 | ||
|  | 
 | ||
|  | Matrix m2, as read from file.  Should be same as m1 above. | ||
|  | 
 | ||
|  |  0:  0 | ||
|  |  1:  1 | ||
|  |  2:  2  3 | ||
|  |  3:  3 | ||
|  |  4:  4 | ||
|  |  5:  5 | ||
|  |  6:  6 | ||
|  |  7:  7 | ||
|  |  8:  8 | ||
|  |  9:  9 | ||
|  | 10: 10 38 | ||
|  | 11: 11 | ||
|  | 12: 12 | ||
|  | 13: 13 | ||
|  | 14: 14 | ||
|  | 15: 15 | ||
|  | 16: 16 | ||
|  | 17: 17 | ||
|  | 18: 18 | ||
|  | 19: 19 | ||
|  | 20: 20 | ||
|  | 21: 21 | ||
|  | 22: 22 | ||
|  | 23: 23 | ||
|  | 24: 24 | ||
|  | 25: 25 | ||
|  | 26: 26 | ||
|  | 27: 27 | ||
|  | 28: 28 | ||
|  | 29: 29 | ||
|  | 30: 30 | ||
|  | 31: 31 | ||
|  | 32: 32 | ||
|  | 33: 33 | ||
|  | 34:  4 34 | ||
|  | 
 | ||
|  | Test of equality of m1 & m2 (should be 1): 1 | ||
|  | 
 | ||
|  | Matrix m3, copied from m1 above. | ||
|  | 
 | ||
|  |  0:  0 | ||
|  |  1:  1 | ||
|  |  2:  2  3 | ||
|  |  3:  3 | ||
|  |  4:  4 | ||
|  |  5:  5 | ||
|  |  6:  6 | ||
|  |  7:  7 | ||
|  |  8:  8 | ||
|  |  9:  9 | ||
|  | 10: 10 38 | ||
|  | 11: 11 | ||
|  | 12: 12 | ||
|  | 13: 13 | ||
|  | 14: 14 | ||
|  | 15: 15 | ||
|  | 16: 16 | ||
|  | 17: 17 | ||
|  | 18: 18 | ||
|  | 19: 19 | ||
|  | 20: 20 | ||
|  | 21: 21 | ||
|  | 22: 22 | ||
|  | 23: 23 | ||
|  | 24: 24 | ||
|  | 25: 25 | ||
|  | 26: 26 | ||
|  | 27: 27 | ||
|  | 28: 28 | ||
|  | 29: 29 | ||
|  | 30: 30 | ||
|  | 31: 31 | ||
|  | 32: 32 | ||
|  | 33: 33 | ||
|  | 34:  4 34 | ||
|  | 
 | ||
|  | Test of equality of m1 & m3 (should be 1): 1 | ||
|  | 
 | ||
|  | Matrix m3 again, should now be all zeros. | ||
|  | 
 | ||
|  |  0: | ||
|  |  1: | ||
|  |  2: | ||
|  |  3: | ||
|  |  4: | ||
|  |  5: | ||
|  |  6: | ||
|  |  7: | ||
|  |  8: | ||
|  |  9: | ||
|  | 10: | ||
|  | 11: | ||
|  | 12: | ||
|  | 13: | ||
|  | 14: | ||
|  | 15: | ||
|  | 16: | ||
|  | 17: | ||
|  | 18: | ||
|  | 19: | ||
|  | 20: | ||
|  | 21: | ||
|  | 22: | ||
|  | 23: | ||
|  | 24: | ||
|  | 25: | ||
|  | 26: | ||
|  | 27: | ||
|  | 28: | ||
|  | 29: | ||
|  | 30: | ||
|  | 31: | ||
|  | 32: | ||
|  | 33: | ||
|  | 34: | ||
|  | 
 | ||
|  | Test of equality of m1 & m3 (should be 0): 0 | ||
|  | 
 | ||
|  | 
 | ||
|  | PART 2: | ||
|  | 
 | ||
|  | Transpose of m1. | ||
|  | 
 | ||
|  |  0:  0 | ||
|  |  1:  1 | ||
|  |  2:  2 | ||
|  |  3:  2  3 | ||
|  |  4:  4 34 | ||
|  |  5:  5 | ||
|  |  6:  6 | ||
|  |  7:  7 | ||
|  |  8:  8 | ||
|  |  9:  9 | ||
|  | 10: 10 | ||
|  | 11: 11 | ||
|  | 12: 12 | ||
|  | 13: 13 | ||
|  | 14: 14 | ||
|  | 15: 15 | ||
|  | 16: 16 | ||
|  | 17: 17 | ||
|  | 18: 18 | ||
|  | 19: 19 | ||
|  | 20: 20 | ||
|  | 21: 21 | ||
|  | 22: 22 | ||
|  | 23: 23 | ||
|  | 24: 24 | ||
|  | 25: 25 | ||
|  | 26: 26 | ||
|  | 27: 27 | ||
|  | 28: 28 | ||
|  | 29: 29 | ||
|  | 30: 30 | ||
|  | 31: 31 | ||
|  | 32: 32 | ||
|  | 33: 33 | ||
|  | 34: 34 | ||
|  | 35: | ||
|  | 36: | ||
|  | 37: | ||
|  | 38: 10 | ||
|  | 39: | ||
|  | 
 | ||
|  | Matrix m1 after adding rows 2 and 12 and 3 to 10. | ||
|  | 
 | ||
|  |  0:  0 | ||
|  |  1:  1 | ||
|  |  2:  2  3 | ||
|  |  3:  3 | ||
|  |  4:  4 | ||
|  |  5:  5 | ||
|  |  6:  6 | ||
|  |  7:  7 | ||
|  |  8:  8 | ||
|  |  9:  9 | ||
|  | 10:  2 10 12 38 | ||
|  | 11: 11 | ||
|  | 12: 12 | ||
|  | 13: 13 | ||
|  | 14: 14 | ||
|  | 15: 15 | ||
|  | 16: 16 | ||
|  | 17: 17 | ||
|  | 18: 18 | ||
|  | 19: 19 | ||
|  | 20: 20 | ||
|  | 21: 21 | ||
|  | 22: 22 | ||
|  | 23: 23 | ||
|  | 24: 24 | ||
|  | 25: 25 | ||
|  | 26: 26 | ||
|  | 27: 27 | ||
|  | 28: 28 | ||
|  | 29: 29 | ||
|  | 30: 30 | ||
|  | 31: 31 | ||
|  | 32: 32 | ||
|  | 33: 33 | ||
|  | 34:  4 34 | ||
|  | 
 | ||
|  | Matrix m1 after further adding column 34 to 0. | ||
|  | 
 | ||
|  |  0:  0 | ||
|  |  1:  1 | ||
|  |  2:  2  3 | ||
|  |  3:  3 | ||
|  |  4:  4 | ||
|  |  5:  5 | ||
|  |  6:  6 | ||
|  |  7:  7 | ||
|  |  8:  8 | ||
|  |  9:  9 | ||
|  | 10:  2 10 12 38 | ||
|  | 11: 11 | ||
|  | 12: 12 | ||
|  | 13: 13 | ||
|  | 14: 14 | ||
|  | 15: 15 | ||
|  | 16: 16 | ||
|  | 17: 17 | ||
|  | 18: 18 | ||
|  | 19: 19 | ||
|  | 20: 20 | ||
|  | 21: 21 | ||
|  | 22: 22 | ||
|  | 23: 23 | ||
|  | 24: 24 | ||
|  | 25: 25 | ||
|  | 26: 26 | ||
|  | 27: 27 | ||
|  | 28: 28 | ||
|  | 29: 29 | ||
|  | 30: 30 | ||
|  | 31: 31 | ||
|  | 32: 32 | ||
|  | 33: 33 | ||
|  | 34:  0  4 34 | ||
|  | 
 | ||
|  | 
 | ||
|  | PART 3: | ||
|  | 
 | ||
|  | Matrix s0. | ||
|  | 
 | ||
|  | 0: | ||
|  | 1: 3 4 | ||
|  | 2: 0 | ||
|  | 3: 1 | ||
|  | 4: | ||
|  | 
 | ||
|  | Matrix s1. | ||
|  | 
 | ||
|  | 0: | ||
|  | 1: 3 5 | ||
|  | 2: | ||
|  | 3: 0 1 6 | ||
|  | 4: | ||
|  | 
 | ||
|  | Matrix s2. | ||
|  | 
 | ||
|  | 0: 0 | ||
|  | 1: 1 | ||
|  | 2: | ||
|  | 3: | ||
|  | 4: | ||
|  | 5: 1 2 3 | ||
|  | 6: | ||
|  | 
 | ||
|  | Maxtrix s1 times unpacked vector ( 1 0 0 1 0 1 0 ). | ||
|  | 
 | ||
|  | ( 0 0 0 1 0 ) | ||
|  | 
 | ||
|  | Sum of s0 and s1. | ||
|  | 
 | ||
|  | 0: | ||
|  | 1: 4 5 | ||
|  | 2: 0 | ||
|  | 3: 0 6 | ||
|  | 4: | ||
|  | 
 | ||
|  | Product of s1 and s2. | ||
|  | 
 | ||
|  | 0: | ||
|  | 1: 1 2 3 | ||
|  | 2: | ||
|  | 3: 0 1 | ||
|  | 4: | ||
|  | 
 | ||
|  | Tried to find (1,2), actually found: (1,2) | ||
|  | 
 | ||
|  | Above matrix with (1,2) cleared. | ||
|  | 
 | ||
|  | 0: | ||
|  | 1: 1 3 | ||
|  | 2: | ||
|  | 3: 0 1 | ||
|  | 4: | ||
|  | 
 | ||
|  | Tried to find (1,1), actually found: (1,1) | ||
|  | 
 | ||
|  | Matrix with (1,1) cleared as well. | ||
|  | 
 | ||
|  | 0: | ||
|  | 1: 3 | ||
|  | 2: | ||
|  | 3: 0 1 | ||
|  | 4: | ||
|  | 
 | ||
|  | 
 | ||
|  | PART 4: | ||
|  | 
 | ||
|  | Matrix s1. | ||
|  | 
 | ||
|  | 0: 3 5 | ||
|  | 1: 1 6 | ||
|  | 2: 0 | ||
|  | 3: 1 2 | ||
|  | 4: 0 2 | ||
|  | 5: 6 | ||
|  | 
 | ||
|  | LU decomposition (returned value was 0). | ||
|  | 
 | ||
|  | L= | ||
|  | 0: 3 | ||
|  | 1: 1 | ||
|  | 2: 0 | ||
|  | 3: 1 2 | ||
|  | 4: 0 2 4 | ||
|  | 5: | ||
|  | 
 | ||
|  | U= | ||
|  | 0: 0 | ||
|  | 1: 1 6 | ||
|  | 2: 2 6 | ||
|  | 3: 3 | ||
|  | 4: 6 | ||
|  | 
 | ||
|  | cols: 0 1 2 3 6 5 4 | ||
|  | rows: 2 1 3 0 4 5 | ||
|  | 
 | ||
|  | Product of L and U. | ||
|  | 
 | ||
|  | 0: 3 | ||
|  | 1: 1 6 | ||
|  | 2: 0 | ||
|  | 3: 1 2 | ||
|  | 4: 0 2 | ||
|  | 5: | ||
|  | 
 | ||
|  | Solution of Ly=x with x from ( 0 1 1 0 1 0 ) according to rows selected. | ||
|  | 
 | ||
|  |  1 1 1 0 1 | ||
|  | 
 | ||
|  | Returned value from forward_sub was 1 | ||
|  | 
 | ||
|  | Solution of Uz=y. | ||
|  | 
 | ||
|  |  1 0 0 0 0 0 1 | ||
|  | 
 | ||
|  | Returned value from backward_sub was 1 | ||
|  | 
 | ||
|  | 
 | ||
|  | PART 5: | ||
|  | 
 | ||
|  | Matrix m1: | ||
|  | 
 | ||
|  | 0: 3 | ||
|  | 1: 1 | ||
|  | 2: 2 | ||
|  | 3: 0 | ||
|  | 
 | ||
|  | Matrix m2, copyrows of m1 in order 3,1,2,0 (should be identity) | ||
|  | 
 | ||
|  | 0: 0 | ||
|  | 1: 1 | ||
|  | 2: 2 | ||
|  | 3: 3 | ||
|  | 
 | ||
|  | Matrix m3, copycols of m1 in order 3,1,2,0 (should be identity) | ||
|  | 
 | ||
|  | 0: 0 | ||
|  | 1: 1 | ||
|  | 2: 2 | ||
|  | 3: 3 | ||
|  | 
 | ||
|  | 
 | ||
|  | DONE WITH TESTS. |