mirror of
				https://github.com/saitohirga/WSJT-X.git
				synced 2025-10-31 04:50:34 -04:00 
			
		
		
		
	
		
			
	
	
		
			275 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
		
		
			
		
	
	
			275 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
|  | // Copyright John Maddock 2006.
 | ||
|  | // Copyright Paul A. Bristow 2007, 2009
 | ||
|  | //  Use, modification and distribution are subject to the
 | ||
|  | //  Boost Software License, Version 1.0. (See accompanying file
 | ||
|  | //  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
 | ||
|  | 
 | ||
|  | #include <boost/math/concepts/real_concept.hpp>
 | ||
|  | #define BOOST_TEST_MAIN
 | ||
|  | #include <boost/test/unit_test.hpp>
 | ||
|  | #include <boost/test/floating_point_comparison.hpp>
 | ||
|  | #include <boost/math/special_functions/math_fwd.hpp>
 | ||
|  | #include <boost/math/tools/stats.hpp>
 | ||
|  | #include <boost/math/tools/test.hpp>
 | ||
|  | #include <boost/math/constants/constants.hpp>
 | ||
|  | #include <boost/type_traits/is_floating_point.hpp>
 | ||
|  | #include <boost/array.hpp>
 | ||
|  | #include "functor.hpp"
 | ||
|  | 
 | ||
|  | #include "handle_test_result.hpp"
 | ||
|  | #include "table_type.hpp"
 | ||
|  | 
 | ||
|  | #ifndef SC_
 | ||
|  | #define SC_(x) static_cast<typename table_type<T>::type>(BOOST_JOIN(x, L))
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  | template <class Real, class T> | ||
|  | void test_inverses(const T& data) | ||
|  | { | ||
|  |    using namespace std; | ||
|  |    //typedef typename T::value_type row_type;
 | ||
|  |    typedef Real                   value_type; | ||
|  | 
 | ||
|  |    value_type precision = static_cast<value_type>(ldexp(1.0, 1-boost::math::policies::digits<value_type, boost::math::policies::policy<> >()/2)) * 100; | ||
|  |    if(boost::math::policies::digits<value_type, boost::math::policies::policy<> >() < 50) | ||
|  |       precision = 1;   // 1% or two decimal digits, all we can hope for when the input is truncated
 | ||
|  | 
 | ||
|  |    for(unsigned i = 0; i < data.size(); ++i) | ||
|  |    { | ||
|  |       //
 | ||
|  |       // These inverse tests are thrown off if the output of the
 | ||
|  |       // incomplete beta is too close to 1: basically there is insuffient
 | ||
|  |       // information left in the value we're using as input to the inverse
 | ||
|  |       // to be able to get back to the original value.
 | ||
|  |       //
 | ||
|  |       if(Real(data[i][5]) == 0) | ||
|  |          BOOST_CHECK_EQUAL(boost::math::ibeta_inv(Real(data[i][0]), Real(data[i][1]), Real(data[i][5])), value_type(0)); | ||
|  |       else if((1 - Real(data[i][5]) > 0.001)  | ||
|  |          && (fabs(Real(data[i][5])) > 2 * boost::math::tools::min_value<value_type>())  | ||
|  |          && (fabs(Real(data[i][5])) > 2 * boost::math::tools::min_value<double>())) | ||
|  |       { | ||
|  |          value_type inv = boost::math::ibeta_inv(Real(data[i][0]), Real(data[i][1]), Real(data[i][5])); | ||
|  |          BOOST_CHECK_CLOSE(Real(data[i][2]), inv, precision); | ||
|  |       } | ||
|  |       else if(1 == Real(data[i][5])) | ||
|  |          BOOST_CHECK_EQUAL(boost::math::ibeta_inv(Real(data[i][0]), Real(data[i][1]), Real(data[i][5])), value_type(1)); | ||
|  | 
 | ||
|  |       if(Real(data[i][6]) == 0) | ||
|  |          BOOST_CHECK_EQUAL(boost::math::ibetac_inv(Real(data[i][0]), Real(data[i][1]), Real(data[i][6])), value_type(1)); | ||
|  |       else if((1 - Real(data[i][6]) > 0.001)  | ||
|  |          && (fabs(Real(data[i][6])) > 2 * boost::math::tools::min_value<value_type>())  | ||
|  |          && (fabs(Real(data[i][6])) > 2 * boost::math::tools::min_value<double>())) | ||
|  |       { | ||
|  |          value_type inv = boost::math::ibetac_inv(Real(data[i][0]), Real(data[i][1]), Real(data[i][6])); | ||
|  |          BOOST_CHECK_CLOSE(Real(data[i][2]), inv, precision); | ||
|  |       } | ||
|  |       else if(Real(data[i][6]) == 1) | ||
|  |          BOOST_CHECK_EQUAL(boost::math::ibetac_inv(Real(data[i][0]), Real(data[i][1]), Real(data[i][6])), value_type(0)); | ||
|  |    } | ||
|  | } | ||
|  | 
 | ||
|  | template <class Real, class T> | ||
|  | void test_inverses2(const T& data, const char* type_name, const char* test_name) | ||
|  | { | ||
|  | #if !(defined(ERROR_REPORTING_MODE) && !defined(IBETA_INV_FUNCTION_TO_TEST))
 | ||
|  |    //typedef typename T::value_type row_type;
 | ||
|  |    typedef Real                   value_type; | ||
|  | 
 | ||
|  |    typedef value_type (*pg)(value_type, value_type, value_type); | ||
|  | #ifdef IBETA_INV_FUNCTION_TO_TEST
 | ||
|  |    pg funcp = IBETA_INV_FUNCTION_TO_TEST; | ||
|  | #elif defined(BOOST_MATH_NO_DEDUCED_FUNCTION_POINTERS)
 | ||
|  |    pg funcp = boost::math::ibeta_inv<value_type, value_type, value_type>; | ||
|  | #else
 | ||
|  |    pg funcp = boost::math::ibeta_inv; | ||
|  | #endif
 | ||
|  | 
 | ||
|  |    boost::math::tools::test_result<value_type> result; | ||
|  | 
 | ||
|  |    std::cout << "Testing " << test_name << " with type " << type_name | ||
|  |       << "\n~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\n"; | ||
|  | 
 | ||
|  |    //
 | ||
|  |    // test ibeta_inv(T, T, T) against data:
 | ||
|  |    //
 | ||
|  |    result = boost::math::tools::test_hetero<Real>( | ||
|  |       data, | ||
|  |       bind_func<Real>(funcp, 0, 1, 2), | ||
|  |       extract_result<Real>(3)); | ||
|  |    handle_test_result(result, data[result.worst()], result.worst(), type_name, "ibeta_inv", test_name); | ||
|  |    //
 | ||
|  |    // test ibetac_inv(T, T, T) against data:
 | ||
|  |    //
 | ||
|  | #ifdef IBETAC_INV_FUNCTION_TO_TEST
 | ||
|  |    funcp = IBETAC_INV_FUNCTION_TO_TEST; | ||
|  | #elif defined(BOOST_MATH_NO_DEDUCED_FUNCTION_POINTERS)
 | ||
|  |    funcp = boost::math::ibetac_inv<value_type, value_type, value_type>; | ||
|  | #else
 | ||
|  |    funcp = boost::math::ibetac_inv; | ||
|  | #endif
 | ||
|  |    result = boost::math::tools::test_hetero<Real>( | ||
|  |       data, | ||
|  |       bind_func<Real>(funcp, 0, 1, 2), | ||
|  |       extract_result<Real>(4)); | ||
|  |    handle_test_result(result, data[result.worst()], result.worst(), type_name, "ibetac_inv", test_name); | ||
|  | #endif
 | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | template <class T> | ||
|  | void test_beta(T, const char* name) | ||
|  | { | ||
|  | #if !defined(ERROR_REPORTING_MODE)
 | ||
|  |    (void)name; | ||
|  |    //
 | ||
|  |    // The actual test data is rather verbose, so it's in a separate file
 | ||
|  |    //
 | ||
|  |    // The contents are as follows, each row of data contains
 | ||
|  |    // five items, input value a, input value b, integration limits x, beta(a, b, x) and ibeta(a, b, x):
 | ||
|  |    //
 | ||
|  | #if !defined(TEST_DATA) || (TEST_DATA == 1)
 | ||
|  | #  include "ibeta_small_data.ipp"
 | ||
|  | 
 | ||
|  |    test_inverses<T>(ibeta_small_data); | ||
|  | #endif
 | ||
|  | 
 | ||
|  | #if !defined(TEST_DATA) || (TEST_DATA == 2)
 | ||
|  | #  include "ibeta_data.ipp"
 | ||
|  | 
 | ||
|  |    test_inverses<T>(ibeta_data); | ||
|  | #endif
 | ||
|  | 
 | ||
|  | #if !defined(TEST_DATA) || (TEST_DATA == 3)
 | ||
|  | #  include "ibeta_large_data.ipp"
 | ||
|  | 
 | ||
|  |    test_inverses<T>(ibeta_large_data); | ||
|  | #endif
 | ||
|  | 
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  | #if !defined(TEST_DATA) || (TEST_DATA == 4)
 | ||
|  | #  include "ibeta_inv_data.ipp"
 | ||
|  | 
 | ||
|  |    test_inverses2<T>(ibeta_inv_data, name, "Inverse incomplete beta"); | ||
|  | #endif
 | ||
|  | } | ||
|  | 
 | ||
|  | template <class T> | ||
|  | void test_spots(T) | ||
|  | { | ||
|  |    BOOST_MATH_STD_USING | ||
|  |    //
 | ||
|  |    // basic sanity checks, tolerance is 100 epsilon expressed as a percentage:
 | ||
|  |    //
 | ||
|  |    T tolerance = boost::math::tools::epsilon<T>() * 10000; | ||
|  |    BOOST_CHECK_CLOSE( | ||
|  |       ::boost::math::ibeta_inv( | ||
|  |          static_cast<T>(1), | ||
|  |          static_cast<T>(2), | ||
|  |          static_cast<T>(0.5)), | ||
|  |       static_cast<T>(0.29289321881345247559915563789515096071516406231153L), tolerance); | ||
|  |    BOOST_CHECK_CLOSE( | ||
|  |       ::boost::math::ibeta_inv( | ||
|  |          static_cast<T>(3), | ||
|  |          static_cast<T>(0.5), | ||
|  |          static_cast<T>(0.5)), | ||
|  |       static_cast<T>(0.92096723292382700385142816696980724853063433975470L), tolerance); | ||
|  |    BOOST_CHECK_CLOSE( | ||
|  |       ::boost::math::ibeta_inv( | ||
|  |          static_cast<T>(20.125), | ||
|  |          static_cast<T>(0.5), | ||
|  |          static_cast<T>(0.5)), | ||
|  |       static_cast<T>(0.98862133312917003480022776106012775747685870929920L), tolerance); | ||
|  |    BOOST_CHECK_CLOSE( | ||
|  |       ::boost::math::ibeta_inv( | ||
|  |          static_cast<T>(40), | ||
|  |          static_cast<T>(80), | ||
|  |          static_cast<T>(0.5)), | ||
|  |       static_cast<T>(0.33240456430025026300937492802591128972548660643778L), tolerance); | ||
|  |    BOOST_CHECK_CLOSE( | ||
|  |       ::boost::math::ibeta_inv( | ||
|  |          static_cast<T>(40), | ||
|  |          static_cast<T>(0.5), | ||
|  |          ldexp(T(1), -30)), | ||
|  |       static_cast<T>(0.624305407878048788716096298053941618358257550305573588792717L), tolerance); | ||
|  |    BOOST_CHECK_CLOSE( | ||
|  |       ::boost::math::ibeta_inv( | ||
|  |          static_cast<T>(40), | ||
|  |          static_cast<T>(0.5), | ||
|  |          static_cast<T>(1 - ldexp(T(1), -30))), | ||
|  |       static_cast<T>(0.99999999999999999998286262026583217516676792408012252456039L), tolerance); | ||
|  |    BOOST_CHECK_CLOSE( | ||
|  |       ::boost::math::ibeta_inv( | ||
|  |          static_cast<T>(0.5), | ||
|  |          static_cast<T>(40), | ||
|  |          static_cast<T>(ldexp(T(1), -30))), | ||
|  |       static_cast<T>(1.713737973416782483323207591987747543960774485649459249e-20L), tolerance); | ||
|  |    BOOST_CHECK_CLOSE( | ||
|  |       ::boost::math::ibeta_inv( | ||
|  |          static_cast<T>(0.5), | ||
|  |          static_cast<T>(0.75), | ||
|  |          static_cast<T>(ldexp(T(1), -30))), | ||
|  |       static_cast<T>(1.245132488513853853809715434621955746959615015005382639e-18L), tolerance); | ||
|  |    BOOST_CHECK_CLOSE( | ||
|  |       ::boost::math::ibeta_inv( | ||
|  |          static_cast<T>(0.5), | ||
|  |          static_cast<T>(0.5), | ||
|  |          static_cast<T>(0.25)), | ||
|  |       static_cast<T>(0.1464466094067262377995778189475754803575820311557629L), tolerance); | ||
|  |    BOOST_CHECK_CLOSE( | ||
|  |       ::boost::math::ibeta_inv( | ||
|  |          static_cast<T>(0.5), | ||
|  |          static_cast<T>(0.5), | ||
|  |          static_cast<T>(0.75)), | ||
|  |       static_cast<T>(0.853553390593273762200422181052424519642417968844237018294169L), tolerance); | ||
|  |    BOOST_CHECK_CLOSE( | ||
|  |       ::boost::math::ibeta_inv( | ||
|  |          static_cast<T>(1), | ||
|  |          static_cast<T>(5), | ||
|  |          static_cast<T>(0.125)), | ||
|  |       static_cast<T>(0.026352819384831863473794894078665766580641189002729204514544L), tolerance); | ||
|  |    BOOST_CHECK_CLOSE( | ||
|  |       ::boost::math::ibeta_inv( | ||
|  |          static_cast<T>(5), | ||
|  |          static_cast<T>(1), | ||
|  |          static_cast<T>(0.125)), | ||
|  |       static_cast<T>(0.659753955386447129687000985614820066516734506596709340752903L), tolerance); | ||
|  |    BOOST_CHECK_CLOSE( | ||
|  |       ::boost::math::ibeta_inv( | ||
|  |          static_cast<T>(1), | ||
|  |          static_cast<T>(0.125), | ||
|  |          static_cast<T>(0.125)), | ||
|  |       static_cast<T>(0.656391084194183349609374999999999999999999999999999999999999L), tolerance); | ||
|  |    BOOST_CHECK_CLOSE( | ||
|  |       ::boost::math::ibeta_inv( | ||
|  |          static_cast<T>(0.125), | ||
|  |          static_cast<T>(1), | ||
|  |          static_cast<T>(0.125)), | ||
|  |       static_cast<T>(5.960464477539062500000e-8), tolerance); | ||
|  |    BOOST_CHECK_CLOSE( | ||
|  |       ::boost::math::ibetac_inv( | ||
|  |          static_cast<T>(5), | ||
|  |          static_cast<T>(1), | ||
|  |          static_cast<T>(0.125)), | ||
|  |       static_cast<T>(0.973647180615168136526205105921334233419358810997270795485455L), tolerance); | ||
|  |    BOOST_CHECK_CLOSE( | ||
|  |       ::boost::math::ibetac_inv( | ||
|  |          static_cast<T>(1), | ||
|  |          static_cast<T>(5), | ||
|  |          static_cast<T>(0.125)), | ||
|  |       static_cast<T>(0.340246044613552870312999014385179933483265493403290659247096L), tolerance); | ||
|  |    BOOST_CHECK_CLOSE( | ||
|  |       ::boost::math::ibetac_inv( | ||
|  |          static_cast<T>(0.125), | ||
|  |          static_cast<T>(1), | ||
|  |          static_cast<T>(0.125)), | ||
|  |       static_cast<T>(0.343608915805816650390625000000000000000000000000000000000000L), tolerance); | ||
|  |    BOOST_CHECK_CLOSE( | ||
|  |       ::boost::math::ibetac_inv( | ||
|  |          static_cast<T>(1), | ||
|  |          static_cast<T>(0.125), | ||
|  |          static_cast<T>(0.125)), | ||
|  |       static_cast<T>(0.99999994039535522460937500000000000000000000000L), tolerance); | ||
|  | } | ||
|  | 
 |