mirror of
				https://github.com/saitohirga/WSJT-X.git
				synced 2025-10-27 11:00:32 -04:00 
			
		
		
		
	
		
			
	
	
		
			85 lines
		
	
	
		
			2.6 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
		
		
			
		
	
	
			85 lines
		
	
	
		
			2.6 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
|  | /*
 | ||
|  |  * abm_precision.cpp | ||
|  |  * | ||
|  |  * example to check the order of the multi-step methods | ||
|  |  * | ||
|  |  * Copyright 2009-2013 Karsten Ahnert | ||
|  |  * Copyright 2009-2013 Mario Mulansky | ||
|  |  * | ||
|  |  * Distributed under the Boost Software License, Version 1.0. | ||
|  |  * (See accompanying file LICENSE_1_0.txt or | ||
|  |  * copy at http://www.boost.org/LICENSE_1_0.txt)
 | ||
|  |  */ | ||
|  | 
 | ||
|  | #include <iostream>
 | ||
|  | #include <cmath>
 | ||
|  | 
 | ||
|  | #include <boost/array.hpp>
 | ||
|  | #include <boost/numeric/odeint.hpp>
 | ||
|  | 
 | ||
|  | using namespace boost::numeric::odeint; | ||
|  | 
 | ||
|  | const int Steps = 4; | ||
|  | 
 | ||
|  | typedef double value_type; | ||
|  | 
 | ||
|  | typedef boost::array< double , 2 > state_type; | ||
|  | 
 | ||
|  | typedef runge_kutta_fehlberg78<state_type> initializing_stepper_type; | ||
|  | typedef adams_bashforth_moulton< Steps , state_type > stepper_type; | ||
|  | //typedef adams_bashforth< Steps , state_type > stepper_type;
 | ||
|  | 
 | ||
|  | // harmonic oscillator, analytic solution x[0] = sin( t )
 | ||
|  | struct osc | ||
|  | { | ||
|  |     void operator()( const state_type &x , state_type &dxdt , const double t ) const | ||
|  |     { | ||
|  |         dxdt[0] = x[1]; | ||
|  |         dxdt[1] = -x[0]; | ||
|  |     } | ||
|  | }; | ||
|  | 
 | ||
|  | int main() | ||
|  | { | ||
|  |     stepper_type stepper; | ||
|  |     initializing_stepper_type init_stepper; | ||
|  |     const int o = stepper.order()+1; //order of the error is order of approximation + 1
 | ||
|  | 
 | ||
|  |     const state_type x0 = {{ 0.0 , 1.0 }}; | ||
|  |     state_type x1 = x0; | ||
|  |     double t = 0.0; | ||
|  |     double dt = 0.25; | ||
|  |     // initialization, does a number of steps already to fill internal buffer, t is increased
 | ||
|  |     // we use the rk78 as initializing stepper
 | ||
|  |     stepper.initialize( boost::ref(init_stepper) , osc() , x1 , t , dt ); | ||
|  |     // do a number of steps to fill the buffer with results from adams bashforth
 | ||
|  |     for( size_t n=0 ; n < stepper.steps ; ++n ) | ||
|  |     { | ||
|  |         stepper.do_step( osc() , x1 , t , dt ); | ||
|  |         t += dt; | ||
|  |     } | ||
|  |     double A = std::sqrt( x1[0]*x1[0] + x1[1]*x1[1] ); | ||
|  |     double phi = std::asin(x1[0]/A) - t; | ||
|  |     // now we do the actual step
 | ||
|  |     stepper.do_step( osc() , x1 , t , dt ); | ||
|  |     // only examine the error of the adams-bashforth-moulton step, not the initialization
 | ||
|  |     const double f = 2.0 * std::abs( A*sin(t+dt+phi) - x1[0] ) / std::pow( dt , o ); // upper bound
 | ||
|  | 
 | ||
|  |     std::cout << "# " << o << " , " << f << std::endl; | ||
|  | 
 | ||
|  |     /* as long as we have errors above machine precision */ | ||
|  |     while( f*std::pow( dt , o ) > 1E-16 ) | ||
|  |     { | ||
|  |         x1 = x0; | ||
|  |         t = 0.0; | ||
|  |         stepper.initialize( boost::ref(init_stepper) , osc() , x1 , t , dt ); | ||
|  |         A = std::sqrt( x1[0]*x1[0] + x1[1]*x1[1] ); | ||
|  |         phi = std::asin(x1[0]/A) - t; | ||
|  |         // now we do the actual step
 | ||
|  |         stepper.do_step( osc() , x1 , t , dt ); | ||
|  |         // only examine the error of the adams-bashforth-moulton step, not the initialization
 | ||
|  |         std::cout << dt << '\t' <<  std::abs( A*sin(t+dt+phi) - x1[0] ) << std::endl; | ||
|  |         dt *= 0.5; | ||
|  |     } | ||
|  | } |