mirror of
				https://github.com/saitohirga/WSJT-X.git
				synced 2025-11-03 21:40:52 -05:00 
			
		
		
		
	
		
			
	
	
		
			264 lines
		
	
	
		
			6.8 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
		
		
			
		
	
	
			264 lines
		
	
	
		
			6.8 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| 
								 | 
							
								/* Reed-Solomon decoder
							 | 
						||
| 
								 | 
							
								 * Copyright 2002 Phil Karn, KA9Q
							 | 
						||
| 
								 | 
							
								 * May be used under the terms of the GNU General Public License (GPL)
							 | 
						||
| 
								 | 
							
								 */
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#ifdef DEBUG
							 | 
						||
| 
								 | 
							
								#include <stdio.h>
							 | 
						||
| 
								 | 
							
								#endif
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#include <string.h>
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#define NULL ((void *)0)
							 | 
						||
| 
								 | 
							
								#define	min(a,b)	((a) < (b) ? (a) : (b))
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#ifdef FIXED
							 | 
						||
| 
								 | 
							
								#include "fixed.h"
							 | 
						||
| 
								 | 
							
								#elif defined(BIGSYM)
							 | 
						||
| 
								 | 
							
								#include "int.h"
							 | 
						||
| 
								 | 
							
								#else
							 | 
						||
| 
								 | 
							
								#include "char.h"
							 | 
						||
| 
								 | 
							
								#endif
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								int DECODE_RS(
							 | 
						||
| 
								 | 
							
								#ifdef FIXED
							 | 
						||
| 
								 | 
							
								DTYPE *data, int *eras_pos, int no_eras,int pad){
							 | 
						||
| 
								 | 
							
								#else
							 | 
						||
| 
								 | 
							
								void *p,DTYPE *data, int *eras_pos, int no_eras){
							 | 
						||
| 
								 | 
							
								  struct rs *rs = (struct rs *)p;
							 | 
						||
| 
								 | 
							
								#endif
							 | 
						||
| 
								 | 
							
								  int deg_lambda, el, deg_omega;
							 | 
						||
| 
								 | 
							
								  int i, j, r,k;
							 | 
						||
| 
								 | 
							
								  DTYPE u,q,tmp,num1,num2,den,discr_r;
							 | 
						||
| 
								 | 
							
								  DTYPE lambda[NROOTS+1], s[NROOTS];	/* Err+Eras Locator poly
							 | 
						||
| 
								 | 
							
													 * and syndrome poly */
							 | 
						||
| 
								 | 
							
								  DTYPE b[NROOTS+1], t[NROOTS+1], omega[NROOTS+1];
							 | 
						||
| 
								 | 
							
								  DTYPE root[NROOTS], reg[NROOTS+1], loc[NROOTS];
							 | 
						||
| 
								 | 
							
								  int syn_error, count;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#ifdef FIXED
							 | 
						||
| 
								 | 
							
								  /* Check pad parameter for validity */
							 | 
						||
| 
								 | 
							
								  if(pad < 0 || pad >= NN)
							 | 
						||
| 
								 | 
							
								    return -1;
							 | 
						||
| 
								 | 
							
								#endif
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  /* form the syndromes; i.e., evaluate data(x) at roots of g(x) */
							 | 
						||
| 
								 | 
							
								  for(i=0;i<NROOTS;i++)
							 | 
						||
| 
								 | 
							
								    s[i] = data[0];
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  for(j=1;j<NN-PAD;j++){
							 | 
						||
| 
								 | 
							
								    for(i=0;i<NROOTS;i++){
							 | 
						||
| 
								 | 
							
								      if(s[i] == 0){
							 | 
						||
| 
								 | 
							
									s[i] = data[j];
							 | 
						||
| 
								 | 
							
								      } else {
							 | 
						||
| 
								 | 
							
									s[i] = data[j] ^ ALPHA_TO[MODNN(INDEX_OF[s[i]] + (FCR+i)*PRIM)];
							 | 
						||
| 
								 | 
							
								      }
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  /* Convert syndromes to index form, checking for nonzero condition */
							 | 
						||
| 
								 | 
							
								  syn_error = 0;
							 | 
						||
| 
								 | 
							
								  for(i=0;i<NROOTS;i++){
							 | 
						||
| 
								 | 
							
								    syn_error |= s[i];
							 | 
						||
| 
								 | 
							
								    s[i] = INDEX_OF[s[i]];
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  if (!syn_error) {
							 | 
						||
| 
								 | 
							
								    /* if syndrome is zero, data[] is a codeword and there are no
							 | 
						||
| 
								 | 
							
								     * errors to correct. So return data[] unmodified
							 | 
						||
| 
								 | 
							
								     */
							 | 
						||
| 
								 | 
							
								    count = 0;
							 | 
						||
| 
								 | 
							
								    goto finish;
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								  memset(&lambda[1],0,NROOTS*sizeof(lambda[0]));
							 | 
						||
| 
								 | 
							
								  lambda[0] = 1;
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  if (no_eras > 0) {
							 | 
						||
| 
								 | 
							
								    /* Init lambda to be the erasure locator polynomial */
							 | 
						||
| 
								 | 
							
								    lambda[1] = ALPHA_TO[MODNN(PRIM*(NN-1-eras_pos[0]))];
							 | 
						||
| 
								 | 
							
								    for (i = 1; i < no_eras; i++) {
							 | 
						||
| 
								 | 
							
								      u = MODNN(PRIM*(NN-1-eras_pos[i]));
							 | 
						||
| 
								 | 
							
								      for (j = i+1; j > 0; j--) {
							 | 
						||
| 
								 | 
							
									tmp = INDEX_OF[lambda[j - 1]];
							 | 
						||
| 
								 | 
							
									if(tmp != A0)
							 | 
						||
| 
								 | 
							
									  lambda[j] ^= ALPHA_TO[MODNN(u + tmp)];
							 | 
						||
| 
								 | 
							
								      }
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								#if DEBUG >= 1
							 | 
						||
| 
								 | 
							
								    /* Test code that verifies the erasure locator polynomial just constructed
							 | 
						||
| 
								 | 
							
								       Needed only for decoder debugging. */
							 | 
						||
| 
								 | 
							
								    
							 | 
						||
| 
								 | 
							
								    /* find roots of the erasure location polynomial */
							 | 
						||
| 
								 | 
							
								    for(i=1;i<=no_eras;i++)
							 | 
						||
| 
								 | 
							
								      reg[i] = INDEX_OF[lambda[i]];
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								    count = 0;
							 | 
						||
| 
								 | 
							
								    for (i = 1,k=IPRIM-1; i <= NN; i++,k = MODNN(k+IPRIM)) {
							 | 
						||
| 
								 | 
							
								      q = 1;
							 | 
						||
| 
								 | 
							
								      for (j = 1; j <= no_eras; j++)
							 | 
						||
| 
								 | 
							
									if (reg[j] != A0) {
							 | 
						||
| 
								 | 
							
									  reg[j] = MODNN(reg[j] + j);
							 | 
						||
| 
								 | 
							
									  q ^= ALPHA_TO[reg[j]];
							 | 
						||
| 
								 | 
							
									}
							 | 
						||
| 
								 | 
							
								      if (q != 0)
							 | 
						||
| 
								 | 
							
									continue;
							 | 
						||
| 
								 | 
							
								      /* store root and error location number indices */
							 | 
						||
| 
								 | 
							
								      root[count] = i;
							 | 
						||
| 
								 | 
							
								      loc[count] = k;
							 | 
						||
| 
								 | 
							
								      count++;
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								    if (count != no_eras) {
							 | 
						||
| 
								 | 
							
								      printf("count = %d no_eras = %d\n lambda(x) is WRONG\n",count,no_eras);
							 | 
						||
| 
								 | 
							
								      count = -1;
							 | 
						||
| 
								 | 
							
								      goto finish;
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								#if DEBUG >= 2
							 | 
						||
| 
								 | 
							
								    printf("\n Erasure positions as determined by roots of Eras Loc Poly:\n");
							 | 
						||
| 
								 | 
							
								    for (i = 0; i < count; i++)
							 | 
						||
| 
								 | 
							
								      printf("%d ", loc[i]);
							 | 
						||
| 
								 | 
							
								    printf("\n");
							 | 
						||
| 
								 | 
							
								#endif
							 | 
						||
| 
								 | 
							
								#endif
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								  for(i=0;i<NROOTS+1;i++)
							 | 
						||
| 
								 | 
							
								    //    printf("%d  %d  %d\n",i,lambda[i],INDEX_OF[lambda[i]]);
							 | 
						||
| 
								 | 
							
								    b[i] = INDEX_OF[lambda[i]];
							 | 
						||
| 
								 | 
							
								  
							 | 
						||
| 
								 | 
							
								  /*
							 | 
						||
| 
								 | 
							
								   * Begin Berlekamp-Massey algorithm to determine error+erasure
							 | 
						||
| 
								 | 
							
								   * locator polynomial
							 | 
						||
| 
								 | 
							
								   */
							 | 
						||
| 
								 | 
							
								  r = no_eras;
							 | 
						||
| 
								 | 
							
								  el = no_eras;
							 | 
						||
| 
								 | 
							
								  while (++r <= NROOTS) {	/* r is the step number */
							 | 
						||
| 
								 | 
							
								    /* Compute discrepancy at the r-th step in poly-form */
							 | 
						||
| 
								 | 
							
								    discr_r = 0;
							 | 
						||
| 
								 | 
							
								    for (i = 0; i < r; i++){
							 | 
						||
| 
								 | 
							
								      if ((lambda[i] != 0) && (s[r-i-1] != A0)) {
							 | 
						||
| 
								 | 
							
									discr_r ^= ALPHA_TO[MODNN(INDEX_OF[lambda[i]] + s[r-i-1])];
							 | 
						||
| 
								 | 
							
								      }
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								    discr_r = INDEX_OF[discr_r];	/* Index form */
							 | 
						||
| 
								 | 
							
								    if (discr_r == A0) {
							 | 
						||
| 
								 | 
							
								      /* 2 lines below: B(x) <-- x*B(x) */
							 | 
						||
| 
								 | 
							
								      memmove(&b[1],b,NROOTS*sizeof(b[0]));
							 | 
						||
| 
								 | 
							
								      b[0] = A0;
							 | 
						||
| 
								 | 
							
								    } else {
							 | 
						||
| 
								 | 
							
								      /* 7 lines below: T(x) <-- lambda(x) - discr_r*x*b(x) */
							 | 
						||
| 
								 | 
							
								      t[0] = lambda[0];
							 | 
						||
| 
								 | 
							
								      for (i = 0 ; i < NROOTS; i++) {
							 | 
						||
| 
								 | 
							
									if(b[i] != A0)
							 | 
						||
| 
								 | 
							
									  t[i+1] = lambda[i+1] ^ ALPHA_TO[MODNN(discr_r + b[i])];
							 | 
						||
| 
								 | 
							
									else
							 | 
						||
| 
								 | 
							
									  t[i+1] = lambda[i+1];
							 | 
						||
| 
								 | 
							
								      }
							 | 
						||
| 
								 | 
							
								      if (2 * el <= r + no_eras - 1) {
							 | 
						||
| 
								 | 
							
									el = r + no_eras - el;
							 | 
						||
| 
								 | 
							
									/*
							 | 
						||
| 
								 | 
							
									 * 2 lines below: B(x) <-- inv(discr_r) *
							 | 
						||
| 
								 | 
							
									 * lambda(x)
							 | 
						||
| 
								 | 
							
									 */
							 | 
						||
| 
								 | 
							
									for (i = 0; i <= NROOTS; i++)
							 | 
						||
| 
								 | 
							
									  b[i] = (lambda[i] == 0) ? A0 : MODNN(INDEX_OF[lambda[i]] - discr_r + NN);
							 | 
						||
| 
								 | 
							
								      } else {
							 | 
						||
| 
								 | 
							
									/* 2 lines below: B(x) <-- x*B(x) */
							 | 
						||
| 
								 | 
							
									memmove(&b[1],b,NROOTS*sizeof(b[0]));
							 | 
						||
| 
								 | 
							
									b[0] = A0;
							 | 
						||
| 
								 | 
							
								      }
							 | 
						||
| 
								 | 
							
								      memcpy(lambda,t,(NROOTS+1)*sizeof(t[0]));
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  /* Convert lambda to index form and compute deg(lambda(x)) */
							 | 
						||
| 
								 | 
							
								  deg_lambda = 0;
							 | 
						||
| 
								 | 
							
								  for(i=0;i<NROOTS+1;i++){
							 | 
						||
| 
								 | 
							
								    lambda[i] = INDEX_OF[lambda[i]];
							 | 
						||
| 
								 | 
							
								    if(lambda[i] != A0)
							 | 
						||
| 
								 | 
							
								      deg_lambda = i;
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								  /* Find roots of the error+erasure locator polynomial by Chien search */
							 | 
						||
| 
								 | 
							
								  memcpy(®[1],&lambda[1],NROOTS*sizeof(reg[0]));
							 | 
						||
| 
								 | 
							
								  count = 0;		/* Number of roots of lambda(x) */
							 | 
						||
| 
								 | 
							
								  for (i = 1,k=IPRIM-1; i <= NN; i++,k = MODNN(k+IPRIM)) {
							 | 
						||
| 
								 | 
							
								    q = 1; /* lambda[0] is always 0 */
							 | 
						||
| 
								 | 
							
								    for (j = deg_lambda; j > 0; j--){
							 | 
						||
| 
								 | 
							
								      if (reg[j] != A0) {
							 | 
						||
| 
								 | 
							
									reg[j] = MODNN(reg[j] + j);
							 | 
						||
| 
								 | 
							
									q ^= ALPHA_TO[reg[j]];
							 | 
						||
| 
								 | 
							
								      }
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								    if (q != 0)
							 | 
						||
| 
								 | 
							
								      continue; /* Not a root */
							 | 
						||
| 
								 | 
							
								    /* store root (index-form) and error location number */
							 | 
						||
| 
								 | 
							
								#if DEBUG>=2
							 | 
						||
| 
								 | 
							
								    printf("count %d root %d loc %d\n",count,i,k);
							 | 
						||
| 
								 | 
							
								#endif
							 | 
						||
| 
								 | 
							
								    root[count] = i;
							 | 
						||
| 
								 | 
							
								    loc[count] = k;
							 | 
						||
| 
								 | 
							
								    /* If we've already found max possible roots,
							 | 
						||
| 
								 | 
							
								     * abort the search to save time
							 | 
						||
| 
								 | 
							
								     */
							 | 
						||
| 
								 | 
							
								    if(++count == deg_lambda)
							 | 
						||
| 
								 | 
							
								      break;
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								  if (deg_lambda != count) {
							 | 
						||
| 
								 | 
							
								    /*
							 | 
						||
| 
								 | 
							
								     * deg(lambda) unequal to number of roots => uncorrectable
							 | 
						||
| 
								 | 
							
								     * error detected
							 | 
						||
| 
								 | 
							
								     */
							 | 
						||
| 
								 | 
							
								    count = -1;
							 | 
						||
| 
								 | 
							
								    goto finish;
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								  /*
							 | 
						||
| 
								 | 
							
								   * Compute err+eras evaluator poly omega(x) = s(x)*lambda(x) (modulo
							 | 
						||
| 
								 | 
							
								   * x**NROOTS). in index form. Also find deg(omega).
							 | 
						||
| 
								 | 
							
								   */
							 | 
						||
| 
								 | 
							
								  deg_omega = deg_lambda-1;
							 | 
						||
| 
								 | 
							
								  for (i = 0; i <= deg_omega;i++){
							 | 
						||
| 
								 | 
							
								    tmp = 0;
							 | 
						||
| 
								 | 
							
								    for(j=i;j >= 0; j--){
							 | 
						||
| 
								 | 
							
								      if ((s[i - j] != A0) && (lambda[j] != A0))
							 | 
						||
| 
								 | 
							
									tmp ^= ALPHA_TO[MODNN(s[i - j] + lambda[j])];
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								    omega[i] = INDEX_OF[tmp];
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  /*
							 | 
						||
| 
								 | 
							
								   * Compute error values in poly-form. num1 = omega(inv(X(l))), num2 =
							 | 
						||
| 
								 | 
							
								   * inv(X(l))**(FCR-1) and den = lambda_pr(inv(X(l))) all in poly-form
							 | 
						||
| 
								 | 
							
								   */
							 | 
						||
| 
								 | 
							
								  for (j = count-1; j >=0; j--) {
							 | 
						||
| 
								 | 
							
								    num1 = 0;
							 | 
						||
| 
								 | 
							
								    for (i = deg_omega; i >= 0; i--) {
							 | 
						||
| 
								 | 
							
								      if (omega[i] != A0)
							 | 
						||
| 
								 | 
							
									num1  ^= ALPHA_TO[MODNN(omega[i] + i * root[j])];
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								    num2 = ALPHA_TO[MODNN(root[j] * (FCR - 1) + NN)];
							 | 
						||
| 
								 | 
							
								    den = 0;
							 | 
						||
| 
								 | 
							
								    
							 | 
						||
| 
								 | 
							
								    /* lambda[i+1] for i even is the formal derivative lambda_pr of lambda[i] */
							 | 
						||
| 
								 | 
							
								    for (i = min(deg_lambda,NROOTS-1) & ~1; i >= 0; i -=2) {
							 | 
						||
| 
								 | 
							
								      if(lambda[i+1] != A0)
							 | 
						||
| 
								 | 
							
									den ^= ALPHA_TO[MODNN(lambda[i+1] + i * root[j])];
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								#if DEBUG >= 1
							 | 
						||
| 
								 | 
							
								    if (den == 0) {
							 | 
						||
| 
								 | 
							
								      printf("\n ERROR: denominator = 0\n");
							 | 
						||
| 
								 | 
							
								      count = -1;
							 | 
						||
| 
								 | 
							
								      goto finish;
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								#endif
							 | 
						||
| 
								 | 
							
								    /* Apply error to data */
							 | 
						||
| 
								 | 
							
								    if (num1 != 0 && loc[j] >= PAD) {
							 | 
						||
| 
								 | 
							
								      data[loc[j]-PAD] ^= ALPHA_TO[MODNN(INDEX_OF[num1] + INDEX_OF[num2] + NN - INDEX_OF[den])];
							 | 
						||
| 
								 | 
							
								    }
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								 finish:
							 | 
						||
| 
								 | 
							
								  if(eras_pos != NULL){
							 | 
						||
| 
								 | 
							
								    for(i=0;i<count;i++)
							 | 
						||
| 
								 | 
							
								      eras_pos[i] = loc[i];
							 | 
						||
| 
								 | 
							
								  }
							 | 
						||
| 
								 | 
							
								  return count;
							 | 
						||
| 
								 | 
							
								}
							 |