mirror of
				https://github.com/saitohirga/WSJT-X.git
				synced 2025-11-03 21:40:52 -05:00 
			
		
		
		
	
		
			
	
	
		
			89 lines
		
	
	
		
			2.8 KiB
		
	
	
	
		
			Fortran
		
	
	
	
	
	
		
		
			
		
	
	
			89 lines
		
	
	
		
			2.8 KiB
		
	
	
	
		
			Fortran
		
	
	
	
	
	
| 
								 | 
							
								subroutine sun(y,m,DD,UT,lon,lat,RA,Dec,LST,Az,El,mjd,day)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  implicit none
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  integer y                         !Year
							 | 
						||
| 
								 | 
							
								  integer m                         !Month
							 | 
						||
| 
								 | 
							
								  integer DD                        !Day
							 | 
						||
| 
								 | 
							
								  integer mjd                       !Modified Julian Date
							 | 
						||
| 
								 | 
							
								  real UT                           !UT!in hours
							 | 
						||
| 
								 | 
							
								  real RA,Dec                       !RA and Dec of sun
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								! NB: Double caps here are single caps in the writeup.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								! Orbital elements of the Sun (also N=0, i=0, a=1):
							 | 
						||
| 
								 | 
							
								  real w                            !Argument of perihelion
							 | 
						||
| 
								 | 
							
								  real e                            !Eccentricity
							 | 
						||
| 
								 | 
							
								  real MM                           !Mean anomaly
							 | 
						||
| 
								 | 
							
								  real Ls                           !Mean longitude
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								! Other standard variables:
							 | 
						||
| 
								 | 
							
								  real v                            !True anomaly
							 | 
						||
| 
								 | 
							
								  real EE                           !Eccentric anomaly
							 | 
						||
| 
								 | 
							
								  real ecl                          !Obliquity of the ecliptic
							 | 
						||
| 
								 | 
							
								  real d                            !Ephemeris time argument in days
							 | 
						||
| 
								 | 
							
								  real r                            !Distance to sun, AU
							 | 
						||
| 
								 | 
							
								  real xv,yv                        !x and y coords in ecliptic
							 | 
						||
| 
								 | 
							
								  real lonsun                       !Ecliptic long and lat of sun
							 | 
						||
| 
								 | 
							
								!Ecliptic coords of sun (geocentric)
							 | 
						||
| 
								 | 
							
								  real xs,ys
							 | 
						||
| 
								 | 
							
								!Equatorial coords of sun (geocentric)
							 | 
						||
| 
								 | 
							
								  real xe,ye,ze
							 | 
						||
| 
								 | 
							
								  real lon,lat
							 | 
						||
| 
								 | 
							
								  real GMST0,LST,HA
							 | 
						||
| 
								 | 
							
								  real xx,yy,zz
							 | 
						||
| 
								 | 
							
								  real xhor,yhor,zhor
							 | 
						||
| 
								 | 
							
								  real Az,El
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  real day
							 | 
						||
| 
								 | 
							
								  real rad
							 | 
						||
| 
								 | 
							
								  data rad/57.2957795/
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								! Time in days, with Jan 0, 2000 equal to 0.0:
							 | 
						||
| 
								 | 
							
								  d=367*y - 7*(y+(m+9)/12)/4 + 275*m/9 + DD - 730530 + UT/24.0
							 | 
						||
| 
								 | 
							
								  mjd=d + 51543
							 | 
						||
| 
								 | 
							
								  ecl = 23.4393 - 3.563e-7 * d
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								! Compute updated orbital elements for Sun:
							 | 
						||
| 
								 | 
							
								  w = 282.9404 + 4.70935e-5 * d
							 | 
						||
| 
								 | 
							
								  e = 0.016709 - 1.151e-9 * d
							 | 
						||
| 
								 | 
							
								  MM = mod(356.0470d0 + 0.9856002585d0 * d + 360000.d0,360.d0)
							 | 
						||
| 
								 | 
							
								  Ls = mod(w+MM+720.0,360.0)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  EE = MM + e*rad*sin(MM/rad) * (1.0 + e*cos(M/rad))
							 | 
						||
| 
								 | 
							
								  EE = EE - (EE - e*rad*sin(EE/rad)-MM) / (1.0 - e*cos(EE/rad))
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  xv = cos(EE/rad) - e
							 | 
						||
| 
								 | 
							
								  yv = sqrt(1.0-e*e) * sin(EE/rad)
							 | 
						||
| 
								 | 
							
								  v = rad*atan2(yv,xv)
							 | 
						||
| 
								 | 
							
								  r = sqrt(xv*xv + yv*yv)
							 | 
						||
| 
								 | 
							
								  lonsun = mod(v + w + 720.0,360.0)
							 | 
						||
| 
								 | 
							
								! Ecliptic coordinates of sun (rectangular):
							 | 
						||
| 
								 | 
							
								  xs = r * cos(lonsun/rad)
							 | 
						||
| 
								 | 
							
								  ys = r * sin(lonsun/rad)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								! Equatorial coordinates of sun (rectangular):
							 | 
						||
| 
								 | 
							
								  xe = xs
							 | 
						||
| 
								 | 
							
								  ye = ys * cos(ecl/rad)
							 | 
						||
| 
								 | 
							
								  ze = ys * sin(ecl/rad)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								! RA and Dec in degrees:
							 | 
						||
| 
								 | 
							
								  RA = rad*atan2(ye,xe)
							 | 
						||
| 
								 | 
							
								  Dec = rad*atan2(ze,sqrt(xe*xe + ye*ye))
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  GMST0 = (Ls + 180.0)/15.0
							 | 
						||
| 
								 | 
							
								  LST = mod(GMST0+UT+lon/15.0+48.0,24.0)    !LST in hours
							 | 
						||
| 
								 | 
							
								  HA = 15.0*LST - RA                        !HA in degrees
							 | 
						||
| 
								 | 
							
								  xx = cos(HA/rad)*cos(Dec/rad)
							 | 
						||
| 
								 | 
							
								  yy = sin(HA/rad)*cos(Dec/rad)
							 | 
						||
| 
								 | 
							
								  zz =             sin(Dec/rad)
							 | 
						||
| 
								 | 
							
								  xhor = xx*sin(lat/rad) - zz*cos(lat/rad)
							 | 
						||
| 
								 | 
							
								  yhor = yy
							 | 
						||
| 
								 | 
							
								  zhor = xx*cos(lat/rad) + zz*sin(lat/rad)
							 | 
						||
| 
								 | 
							
								  Az = mod(rad*atan2(yhor,xhor) + 180.0 + 360.0,360.0)
							 | 
						||
| 
								 | 
							
								  El = rad*asin(zhor)
							 | 
						||
| 
								 | 
							
								  day=d-1.5
							 | 
						||
| 
								 | 
							
								  
							 | 
						||
| 
								 | 
							
								  return
							 | 
						||
| 
								 | 
							
								end subroutine sun
							 |