mirror of
				https://github.com/saitohirga/WSJT-X.git
				synced 2025-10-30 20:40:28 -04:00 
			
		
		
		
	
		
			
	
	
		
			919 lines
		
	
	
		
			51 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
		
		
			
		
	
	
			919 lines
		
	
	
		
			51 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
|  | [def __R ['[*R]]] | ||
|  | [def __C ['[*C]]] | ||
|  | [def __H ['[*H]]] | ||
|  | [def __O ['[*O]]] | ||
|  | [def __R3 ['[*'''R<superscript>3</superscript>''']]] | ||
|  | [def __R4 ['[*'''R<superscript>4</superscript>''']]] | ||
|  | [def __quadrulple ('''α,β,γ,δ''')] | ||
|  | [def __quat_formula ['[^q = '''α + βi + γj + δk''']]] | ||
|  | [def __quat_complex_formula ['[^q = ('''α + βi) + (γ + δi)j''' ]]] | ||
|  | [def __not_equal ['[^xy '''≠''' yx]]] | ||
|  | 
 | ||
|  | [mathpart quaternions Quaternions] | ||
|  | 
 | ||
|  | [section:quat_overview Overview] | ||
|  | 
 | ||
|  | Quaternions are a relative of complex numbers. | ||
|  | 
 | ||
|  | Quaternions are in fact part of a small hierarchy of structures built | ||
|  | upon the real numbers, which comprise only the set of real numbers | ||
|  | (traditionally named __R), the set of complex numbers (traditionally named __C), | ||
|  | the set of quaternions (traditionally named __H) and the set of octonions | ||
|  | (traditionally named __O), which possess interesting mathematical properties | ||
|  | (chief among which is the fact that they are ['division algebras], | ||
|  | ['i.e.] where the following property is true: if ['[^y]] is an element of that | ||
|  | algebra and is [*not equal to zero], then ['[^yx = yx']], where ['[^x]] and ['[^x']] | ||
|  | denote elements of that algebra, implies that ['[^x = x']]). | ||
|  | Each member of the hierarchy is a super-set of the former. | ||
|  | 
 | ||
|  | One of the most important aspects of quaternions is that they provide an | ||
|  | efficient way to parameterize rotations in __R3 (the usual three-dimensional space) | ||
|  | and __R4. | ||
|  | 
 | ||
|  | In practical terms, a quaternion is simply a quadruple of real numbers __quadrulple, | ||
|  | which we can write in the form __quat_formula, where ['[^i]] is the same object as for complex numbers, | ||
|  | and ['[^j]] and ['[^k]] are distinct objects which play essentially the same kind of role as ['[^i]]. | ||
|  | 
 | ||
|  | An addition and a multiplication is defined on the set of quaternions, | ||
|  | which generalize their real and complex counterparts. The main novelty | ||
|  | here is that [*the multiplication is not commutative] (i.e. there are | ||
|  | quaternions ['[^x]] and ['[^y]] such that __not_equal). A good mnemotechnical way of remembering | ||
|  | things is by using the formula ['[^i*i = j*j = k*k = -1]]. | ||
|  | 
 | ||
|  | Quaternions (and their kin) are described in far more details in this | ||
|  | other [@../quaternion/TQE.pdf document] | ||
|  | (with [@../quaternion/TQE_EA.pdf errata and addenda]). | ||
|  | 
 | ||
|  | Some traditional constructs, such as the exponential, carry over without | ||
|  | too much change into the realms of quaternions, but other, such as taking | ||
|  | a square root, do not. | ||
|  | 
 | ||
|  | [endsect] | ||
|  | 
 | ||
|  | [section:quat_header Header File] | ||
|  | 
 | ||
|  | The interface and implementation are both supplied by the header file | ||
|  | [@../../../../boost/math/quaternion.hpp quaternion.hpp]. | ||
|  | 
 | ||
|  | [endsect] | ||
|  | 
 | ||
|  | [section:quat_synopsis Synopsis] | ||
|  | 
 | ||
|  |    namespace boost{ namespace math{ | ||
|  | 
 | ||
|  |    template<typename T> class ``[link math_toolkit.quat quaternion]``; | ||
|  |    template<>           class ``[link math_toolkit.spec quaternion<float>]``; | ||
|  |    template<>           class ``[link math_quaternion_double quaternion<double>]``; | ||
|  |    template<>           class ``[link math_quaternion_long_double quaternion<long double>]``; | ||
|  | 
 | ||
|  |    // operators | ||
|  |    template<typename T> quaternion<T> ``[link math_toolkit.quat_non_mem.binary_addition_operators operator +]`` (T const & lhs, quaternion<T> const & rhs); | ||
|  |    template<typename T> quaternion<T> ``[link math_toolkit.quat_non_mem.binary_addition_operators operator +]`` (quaternion<T> const & lhs, T const & rhs); | ||
|  |    template<typename T> quaternion<T> ``[link math_toolkit.quat_non_mem.binary_addition_operators operator +]`` (::std::complex<T> const & lhs, quaternion<T> const & rhs); | ||
|  |    template<typename T> quaternion<T> ``[link math_toolkit.quat_non_mem.binary_addition_operators operator +]`` (quaternion<T> const & lhs, ::std::complex<T> const & rhs); | ||
|  |    template<typename T> quaternion<T> ``[link math_toolkit.quat_non_mem.binary_addition_operators operator +]`` (quaternion<T> const & lhs, quaternion<T> const & rhs); | ||
|  | 
 | ||
|  |    template<typename T> quaternion<T> ``[link math_toolkit.quat_non_mem.binary_subtraction_operators operator -]`` (T const & lhs, quaternion<T> const & rhs); | ||
|  |    template<typename T> quaternion<T> ``[link math_toolkit.quat_non_mem.binary_subtraction_operators operator -]`` (quaternion<T> const & lhs, T const & rhs); | ||
|  |    template<typename T> quaternion<T> ``[link math_toolkit.quat_non_mem.binary_subtraction_operators operator -]`` (::std::complex<T> const & lhs, quaternion<T> const & rhs); | ||
|  |    template<typename T> quaternion<T> ``[link math_toolkit.quat_non_mem.binary_subtraction_operators operator -]`` (quaternion<T> const & lhs, ::std::complex<T> const & rhs); | ||
|  |    template<typename T> quaternion<T> ``[link math_toolkit.quat_non_mem.binary_subtraction_operators operator -]`` (quaternion<T> const & lhs, quaternion<T> const & rhs); | ||
|  | 
 | ||
|  |    template<typename T> quaternion<T> ``[link math_toolkit.quat_non_mem.binary_multiplication_operators operator *]`` (T const & lhs, quaternion<T> const & rhs); | ||
|  |    template<typename T> quaternion<T> ``[link math_toolkit.quat_non_mem.binary_multiplication_operators operator *]`` (quaternion<T> const & lhs, T const & rhs); | ||
|  |    template<typename T> quaternion<T> ``[link math_toolkit.quat_non_mem.binary_multiplication_operators operator *]`` (::std::complex<T> const & lhs, quaternion<T> const & rhs); | ||
|  |    template<typename T> quaternion<T> ``[link math_toolkit.quat_non_mem.binary_multiplication_operators operator *]`` (quaternion<T> const & lhs, ::std::complex<T> const & rhs); | ||
|  |    template<typename T> quaternion<T> ``[link math_toolkit.quat_non_mem.binary_multiplication_operators operator *]`` (quaternion<T> const & lhs, quaternion<T> const & rhs); | ||
|  | 
 | ||
|  |    template<typename T> quaternion<T> ``[link math_toolkit.quat_non_mem.binary_division_operators operator /]`` (T const & lhs, quaternion<T> const & rhs); | ||
|  |    template<typename T> quaternion<T> ``[link math_toolkit.quat_non_mem.binary_division_operators operator /]`` (quaternion<T> const & lhs, T const & rhs); | ||
|  |    template<typename T> quaternion<T> ``[link math_toolkit.quat_non_mem.binary_division_operators operator /]`` (::std::complex<T> const & lhs, quaternion<T> const & rhs); | ||
|  |    template<typename T> quaternion<T> ``[link math_toolkit.quat_non_mem.binary_division_operators operator /]`` (quaternion<T> const & lhs, ::std::complex<T> const & rhs); | ||
|  |    template<typename T> quaternion<T> ``[link math_toolkit.quat_non_mem.binary_division_operators operator /]`` (quaternion<T> const & lhs, quaternion<T> const & rhs); | ||
|  | 
 | ||
|  |    template<typename T> quaternion<T> ``[link math_toolkit.quat_non_mem.unary_plus operator +]`` (quaternion<T> const & q); | ||
|  |    template<typename T> quaternion<T> ``[link math_toolkit.quat_non_mem.unary_minus operator -]`` (quaternion<T> const & q); | ||
|  | 
 | ||
|  |    template<typename T> bool ``[link math_toolkit.quat_non_mem.equality_operators operator ==]`` (T const & lhs, quaternion<T> const & rhs); | ||
|  |    template<typename T> bool ``[link math_toolkit.quat_non_mem.equality_operators operator ==]`` (quaternion<T> const & lhs, T const & rhs); | ||
|  |    template<typename T> bool ``[link math_toolkit.quat_non_mem.equality_operators operator ==]`` (::std::complex<T> const & lhs, quaternion<T> const & rhs); | ||
|  |    template<typename T> bool ``[link math_toolkit.quat_non_mem.equality_operators operator ==]`` (quaternion<T> const & lhs, ::std::complex<T> const & rhs); | ||
|  |    template<typename T> bool ``[link math_toolkit.quat_non_mem.equality_operators operator ==]`` (quaternion<T> const & lhs, quaternion<T> const & rhs); | ||
|  | 
 | ||
|  |    template<typename T> bool ``[link math_toolkit.quat_non_mem.inequality_operators operator !=]`` (T const & lhs, quaternion<T> const & rhs); | ||
|  |    template<typename T> bool ``[link math_toolkit.quat_non_mem.inequality_operators operator !=]`` (quaternion<T> const & lhs, T const & rhs); | ||
|  |    template<typename T> bool ``[link math_toolkit.quat_non_mem.inequality_operators operator !=]`` (::std::complex<T> const & lhs, quaternion<T> const & rhs); | ||
|  |    template<typename T> bool ``[link math_toolkit.quat_non_mem.inequality_operators operator !=]`` (quaternion<T> const & lhs, ::std::complex<T> const & rhs); | ||
|  |    template<typename T> bool ``[link math_toolkit.quat_non_mem.inequality_operators operator !=]`` (quaternion<T> const & lhs, quaternion<T> const & rhs); | ||
|  | 
 | ||
|  |    template<typename T, typename charT, class traits> | ||
|  |    ::std::basic_istream<charT,traits>& ``[link math_toolkit.quat_non_mem.stream_extractor operator >>]`` (::std::basic_istream<charT,traits> & is, quaternion<T> & q); | ||
|  | 
 | ||
|  |    template<typename T, typename charT, class traits> | ||
|  |    ::std::basic_ostream<charT,traits>& operator ``[link math_toolkit.quat_non_mem.stream_inserter operator <<]`` (::std::basic_ostream<charT,traits> & os, quaternion<T> const & q); | ||
|  | 
 | ||
|  |    // values | ||
|  |    template<typename T> T              ``[link math_toolkit.value_op.real_and_unreal real]``(quaternion<T> const & q); | ||
|  |    template<typename T> quaternion<T>  ``[link math_toolkit.value_op.real_and_unreal unreal]``(quaternion<T> const & q); | ||
|  | 
 | ||
|  |    template<typename T> T              ``[link math_toolkit.value_op.sup sup]``(quaternion<T> const & q); | ||
|  |    template<typename T> T              ``[link math_toolkit.value_op.l1 l1]``(quaternion<T> const & q); | ||
|  |    template<typename T> T              ``[link math_toolkit.value_op.abs abs]``(quaternion<T> const & q); | ||
|  |    template<typename T> T              ``[link math_toolkit.value_op.norm norm]``(quaternion<T>const  & q); | ||
|  |    template<typename T> quaternion<T>  ``[link math_toolkit.value_op.conj conj]``(quaternion<T> const & q); | ||
|  | 
 | ||
|  |    template<typename T> quaternion<T>  ``[link math_quaternions.creation_spherical]``(T const & rho, T const & theta, T const & phi1, T const & phi2); | ||
|  |    template<typename T> quaternion<T>  ``[link math_quaternions.creation_semipolar semipolar]``(T const & rho, T const & alpha, T const & theta1, T const & theta2); | ||
|  |    template<typename T> quaternion<T>  ``[link math_quaternions.creation_multipolar multipolar]``(T const & rho1, T const & theta1, T const & rho2, T const & theta2); | ||
|  |    template<typename T> quaternion<T>  ``[link math_quaternions.creation_cylindrospherical cylindrospherical]``(T const & t, T const & radius, T const & longitude, T const & latitude); | ||
|  |    template<typename T> quaternion<T>  ``[link math_quaternions.creation_cylindrical cylindrical]``(T const & r, T const & angle, T const & h1, T const & h2); | ||
|  | 
 | ||
|  |    // transcendentals | ||
|  |    template<typename T> quaternion<T>  ``[link math_toolkit.trans.exp exp]``(quaternion<T> const & q); | ||
|  |    template<typename T> quaternion<T>  ``[link math_toolkit.trans.cos cos]``(quaternion<T> const & q); | ||
|  |    template<typename T> quaternion<T>  ``[link math_toolkit.trans.sin sin]``(quaternion<T> const & q); | ||
|  |    template<typename T> quaternion<T>  ``[link math_toolkit.trans.tan tan]``(quaternion<T> const & q); | ||
|  |    template<typename T> quaternion<T>  ``[link math_toolkit.trans.cosh cosh]``(quaternion<T> const & q); | ||
|  |    template<typename T> quaternion<T>  ``[link math_toolkit.trans.sinh sinh]``(quaternion<T> const & q); | ||
|  |    template<typename T> quaternion<T>  ``[link math_toolkit.trans.tanh tanh]``(quaternion<T> const & q); | ||
|  |    template<typename T> quaternion<T>  ``[link math_toolkit.trans.pow pow]``(quaternion<T> const & q, int n); | ||
|  | 
 | ||
|  |    } // namespace math | ||
|  |    } // namespace boost | ||
|  | 
 | ||
|  | [endsect] | ||
|  | 
 | ||
|  | [section:quat Template Class quaternion] | ||
|  | 
 | ||
|  |    namespace boost{ namespace math{ | ||
|  | 
 | ||
|  |    template<typename T> | ||
|  |    class quaternion | ||
|  |    { | ||
|  |    public: | ||
|  | 
 | ||
|  |       typedef T ``[link math_toolkit.mem_typedef value_type]``; | ||
|  | 
 | ||
|  |       explicit ``[link math_toolkit.quat_mem_fun.constructors quaternion]``(T const & requested_a = T(), T const & requested_b = T(), T const & requested_c = T(), T const & requested_d = T()); | ||
|  |       explicit ``[link math_toolkit.quat_mem_fun.constructors quaternion]``(::std::complex<T> const & z0, ::std::complex<T> const & z1 = ::std::complex<T>()); | ||
|  |       template<typename X> | ||
|  |       explicit ``[link math_toolkit.quat_mem_fun.constructors quaternion]``(quaternion<X> const & a_recopier); | ||
|  | 
 | ||
|  |       T                  ``[link math_toolkit.quat_mem_fun.real_and_unreal_parts real]``() const; | ||
|  |       quaternion<T>      ``[link math_toolkit.quat_mem_fun.real_and_unreal_parts unreal]``() const; | ||
|  |       T                  ``[link math_toolkit.quat_mem_fun.individual_real_components R_component_1]``() const; | ||
|  |       T                  ``[link math_toolkit.quat_mem_fun.individual_real_components R_component_2]``() const; | ||
|  |       T                  ``[link math_toolkit.quat_mem_fun.individual_real_components R_component_3]``() const; | ||
|  |       T                  ``[link math_toolkit.quat_mem_fun.individual_real_components R_component_4]``() const; | ||
|  |       ::std::complex<T>  ``[link math_toolkit.quat_mem_fun.individual_complex_components C_component_1]``() const; | ||
|  |       ::std::complex<T>  ``[link math_toolkit.quat_mem_fun.individual_complex_components C_component_2]``() const; | ||
|  | 
 | ||
|  |       quaternion<T>&     ``[link math_toolkit.quat_mem_fun.assignment_operators operator = ]``(quaternion<T> const  & a_affecter); | ||
|  |       template<typename X> | ||
|  |       quaternion<T>&     ``[link math_toolkit.quat_mem_fun.assignment_operators operator = ]``(quaternion<X> const  & a_affecter); | ||
|  |       quaternion<T>&     ``[link math_toolkit.quat_mem_fun.assignment_operators operator = ]``(T const  & a_affecter); | ||
|  |       quaternion<T>&     ``[link math_toolkit.quat_mem_fun.assignment_operators operator = ]``(::std::complex<T> const & a_affecter); | ||
|  | 
 | ||
|  |       quaternion<T>&     ``[link math_toolkit.quat_mem_fun.addition_operators operator += ]``(T const & rhs); | ||
|  |       quaternion<T>&     ``[link math_toolkit.quat_mem_fun.addition_operators operator += ]``(::std::complex<T> const & rhs); | ||
|  |       template<typename X> | ||
|  |       quaternion<T>&     ``[link math_toolkit.quat_mem_fun.addition_operators operator += ]``(quaternion<X> const & rhs); | ||
|  | 
 | ||
|  |       quaternion<T>&     ``[link math_toolkit.quat_mem_fun.subtraction_operators operator -= ]``(T const & rhs); | ||
|  |       quaternion<T>&     ``[link math_toolkit.quat_mem_fun.subtraction_operators operator -= ]``(::std::complex<T> const & rhs); | ||
|  |       template<typename X> | ||
|  |       quaternion<T>&     ``[link math_toolkit.quat_mem_fun.subtraction_operators operator -= ]``(quaternion<X> const & rhs); | ||
|  | 
 | ||
|  |       quaternion<T>&     ``[link math_toolkit.quat_mem_fun.multiplication_operators operator *= ]``(T const & rhs); | ||
|  |       quaternion<T>&     ``[link math_toolkit.quat_mem_fun.multiplication_operators operator *= ]``(::std::complex<T> const & rhs); | ||
|  |       template<typename X> | ||
|  |       quaternion<T>&     ``[link math_toolkit.quat_mem_fun.multiplication_operators operator *= ]``(quaternion<X> const & rhs); | ||
|  | 
 | ||
|  |       quaternion<T>&     ``[link math_toolkit.quat_mem_fun.division_operators operator /= ]``(T const & rhs); | ||
|  |       quaternion<T>&     ``[link math_toolkit.quat_mem_fun.division_operators operator /= ]``(::std::complex<T> const & rhs); | ||
|  |       template<typename X> | ||
|  |       quaternion<T>&     ``[link math_toolkit.quat_mem_fun.division_operators operator /= ]``(quaternion<X> const & rhs); | ||
|  |    }; | ||
|  | 
 | ||
|  |    } // namespace math | ||
|  |    } // namespace boost | ||
|  | 
 | ||
|  | [endsect] | ||
|  | 
 | ||
|  | [section:spec Quaternion Specializations] | ||
|  | 
 | ||
|  |    namespace boost{ namespace math{ | ||
|  | 
 | ||
|  |    template<> | ||
|  |    class quaternion<float> | ||
|  |    { | ||
|  |    public: | ||
|  |       typedef float ``[link math_toolkit.mem_typedef value_type]``; | ||
|  | 
 | ||
|  |       explicit ``[link math_toolkit.quat_mem_fun.constructors quaternion]``(float const & requested_a = 0.0f, float const & requested_b = 0.0f, float const & requested_c = 0.0f, float const & requested_d = 0.0f); | ||
|  |       explicit ``[link math_toolkit.quat_mem_fun.constructors quaternion]``(::std::complex<float> const & z0, ::std::complex<float> const & z1 = ::std::complex<float>()); | ||
|  |       explicit ``[link math_toolkit.quat_mem_fun.constructors quaternion]``(quaternion<double> const & a_recopier); | ||
|  |       explicit ``[link math_toolkit.quat_mem_fun.constructors quaternion]``(quaternion<long double> const & a_recopier); | ||
|  | 
 | ||
|  |       float                  ``[link math_toolkit.quat_mem_fun.real_and_unreal_parts real]``() const; | ||
|  |       quaternion<float>      ``[link math_toolkit.quat_mem_fun.real_and_unreal_parts unreal]``() const; | ||
|  |       float                  ``[link math_toolkit.quat_mem_fun.individual_real_components R_component_1]``() const; | ||
|  |       float                  ``[link math_toolkit.quat_mem_fun.individual_real_components R_component_2]``() const; | ||
|  |       float                  ``[link math_toolkit.quat_mem_fun.individual_real_components R_component_3]``() const; | ||
|  |       float                  ``[link math_toolkit.quat_mem_fun.individual_real_components R_component_4]``() const; | ||
|  |       ::std::complex<float>  ``[link math_toolkit.quat_mem_fun.individual_complex_components C_component_1]``() const; | ||
|  |       ::std::complex<float>  ``[link math_toolkit.quat_mem_fun.individual_complex_components C_component_2]``() const; | ||
|  | 
 | ||
|  |       quaternion<float>&     ``[link math_toolkit.quat_mem_fun.assignment_operators operator = ]``(quaternion<float> const  & a_affecter); | ||
|  |       template<typename X> | ||
|  |       quaternion<float>&     ``[link math_toolkit.quat_mem_fun.assignment_operators operator = ]``(quaternion<X> const  & a_affecter); | ||
|  |       quaternion<float>&     ``[link math_toolkit.quat_mem_fun.assignment_operators operator = ]``(float const  & a_affecter); | ||
|  |       quaternion<float>&     ``[link math_toolkit.quat_mem_fun.assignment_operators operator = ]``(::std::complex<float> const & a_affecter); | ||
|  | 
 | ||
|  |       quaternion<float>&     ``[link math_toolkit.quat_mem_fun.addition_operators operator += ]``(float const & rhs); | ||
|  |       quaternion<float>&     ``[link math_toolkit.quat_mem_fun.addition_operators operator += ]``(::std::complex<float> const & rhs); | ||
|  |       template<typename X> | ||
|  |       quaternion<float>&     ``[link math_toolkit.quat_mem_fun.addition_operators operator += ]``(quaternion<X> const & rhs); | ||
|  | 
 | ||
|  |       quaternion<float>&     ``[link math_toolkit.quat_mem_fun.subtraction_operators operator -= ]``(float const & rhs); | ||
|  |       quaternion<float>&     ``[link math_toolkit.quat_mem_fun.subtraction_operators operator -= ]``(::std::complex<float> const & rhs); | ||
|  |       template<typename X> | ||
|  |       quaternion<float>&     ``[link math_toolkit.quat_mem_fun.subtraction_operators operator -= ]``(quaternion<X> const & rhs); | ||
|  | 
 | ||
|  |       quaternion<float>&     ``[link math_toolkit.quat_mem_fun.multiplication_operators operator *= ]``(float const & rhs); | ||
|  |       quaternion<float>&     ``[link math_toolkit.quat_mem_fun.multiplication_operators operator *= ]``(::std::complex<float> const & rhs); | ||
|  |       template<typename X> | ||
|  |       quaternion<float>&     ``[link math_toolkit.quat_mem_fun.multiplication_operators operator *= ]``(quaternion<X> const & rhs); | ||
|  | 
 | ||
|  |       quaternion<float>&     ``[link math_toolkit.quat_mem_fun.division_operators operator /= ]``(float const & rhs); | ||
|  |       quaternion<float>&     ``[link math_toolkit.quat_mem_fun.division_operators operator /= ]``(::std::complex<float> const & rhs); | ||
|  |       template<typename X> | ||
|  |       quaternion<float>&     ``[link math_toolkit.quat_mem_fun.division_operators operator /= ]``(quaternion<X> const & rhs); | ||
|  |    }; | ||
|  | 
 | ||
|  | [#math_quaternion_double] | ||
|  | 
 | ||
|  |    template<> | ||
|  |    class quaternion<double> | ||
|  |    { | ||
|  |    public: | ||
|  |       typedef double ``[link math_toolkit.mem_typedef value_type]``; | ||
|  | 
 | ||
|  |       explicit ``[link math_toolkit.quat_mem_fun.constructors quaternion]``(double const & requested_a = 0.0, double const & requested_b = 0.0, double const & requested_c = 0.0, double const & requested_d = 0.0); | ||
|  |       explicit ``[link math_toolkit.quat_mem_fun.constructors quaternion]``(::std::complex<double> const & z0, ::std::complex<double> const & z1 = ::std::complex<double>()); | ||
|  |       explicit ``[link math_toolkit.quat_mem_fun.constructors quaternion]``(quaternion<float> const & a_recopier); | ||
|  |       explicit ``[link math_toolkit.quat_mem_fun.constructors quaternion]``(quaternion<long double> const & a_recopier); | ||
|  | 
 | ||
|  |       double                  ``[link math_toolkit.quat_mem_fun.real_and_unreal_parts real]``() const; | ||
|  |       quaternion<double>      ``[link math_toolkit.quat_mem_fun.real_and_unreal_parts unreal]``() const; | ||
|  |       double                  ``[link math_toolkit.quat_mem_fun.individual_real_components R_component_1]``() const; | ||
|  |       double                  ``[link math_toolkit.quat_mem_fun.individual_real_components R_component_2]``() const; | ||
|  |       double                  ``[link math_toolkit.quat_mem_fun.individual_real_components R_component_3]``() const; | ||
|  |       double                  ``[link math_toolkit.quat_mem_fun.individual_real_components R_component_4]``() const; | ||
|  |       ::std::complex<double>  ``[link math_toolkit.quat_mem_fun.individual_complex_components C_component_1]``() const; | ||
|  |       ::std::complex<double>  ``[link math_toolkit.quat_mem_fun.individual_complex_components C_component_2]``() const; | ||
|  | 
 | ||
|  |       quaternion<double>&     ``[link math_toolkit.quat_mem_fun.assignment_operators operator = ]``(quaternion<double> const  & a_affecter); | ||
|  |       template<typename X> | ||
|  |       quaternion<double>&     ``[link math_toolkit.quat_mem_fun.assignment_operators operator = ]``(quaternion<X> const  & a_affecter); | ||
|  |       quaternion<double>&     ``[link math_toolkit.quat_mem_fun.assignment_operators operator = ]``(double const  & a_affecter); | ||
|  |       quaternion<double>&     ``[link math_toolkit.quat_mem_fun.assignment_operators operator = ]``(::std::complex<double> const & a_affecter); | ||
|  | 
 | ||
|  |       quaternion<double>&     ``[link math_toolkit.quat_mem_fun.addition_operators operator += ]``(double const & rhs); | ||
|  |       quaternion<double>&     ``[link math_toolkit.quat_mem_fun.addition_operators operator += ]``(::std::complex<double> const & rhs); | ||
|  |       template<typename X> | ||
|  |       quaternion<double>&     ``[link math_toolkit.quat_mem_fun.addition_operators operator += ]``(quaternion<X> const & rhs); | ||
|  | 
 | ||
|  |       quaternion<double>&     ``[link math_toolkit.quat_mem_fun.subtraction_operators operator -= ]``(double const & rhs); | ||
|  |       quaternion<double>&     ``[link math_toolkit.quat_mem_fun.subtraction_operators operator -= ]``(::std::complex<double> const & rhs); | ||
|  |       template<typename X> | ||
|  |       quaternion<double>&     ``[link math_toolkit.quat_mem_fun.subtraction_operators operator -= ]``(quaternion<X> const & rhs); | ||
|  | 
 | ||
|  |       quaternion<double>&     ``[link math_toolkit.quat_mem_fun.multiplication_operators operator *= ]``(double const & rhs); | ||
|  |       quaternion<double>&     ``[link math_toolkit.quat_mem_fun.multiplication_operators operator *= ]``(::std::complex<double> const & rhs); | ||
|  |       template<typename X> | ||
|  |       quaternion<double>&     ``[link math_toolkit.quat_mem_fun.multiplication_operators operator *= ]``(quaternion<X> const & rhs); | ||
|  | 
 | ||
|  |       quaternion<double>&     ``[link math_toolkit.quat_mem_fun.division_operators operator /= ]``(double const & rhs); | ||
|  |       quaternion<double>&     ``[link math_toolkit.quat_mem_fun.division_operators operator /= ]``(::std::complex<double> const & rhs); | ||
|  |       template<typename X> | ||
|  |       quaternion<double>&     ``[link math_toolkit.quat_mem_fun.division_operators operator /= ]``(quaternion<X> const & rhs); | ||
|  |    }; | ||
|  | 
 | ||
|  | [#math_quaternion_long_double] | ||
|  | 
 | ||
|  |    template<> | ||
|  |    class quaternion<long double> | ||
|  |    { | ||
|  |    public: | ||
|  |       typedef long double ``[link math_toolkit.mem_typedef value_type]``; | ||
|  | 
 | ||
|  |       explicit ``[link math_toolkit.quat_mem_fun.constructors quaternion]``(long double const & requested_a = 0.0L, long double const & requested_b = 0.0L, long double const & requested_c = 0.0L, long double const & requested_d = 0.0L); | ||
|  |       explicit ``[link math_toolkit.quat_mem_fun.constructors quaternion]``(::std::complex<long double> const & z0, ::std::complex<long double> const & z1 = ::std::complex<long double>()); | ||
|  |       explicit ``[link math_toolkit.quat_mem_fun.constructors quaternion]``(quaternion<float> const & a_recopier); | ||
|  |       explicit ``[link math_toolkit.quat_mem_fun.constructors quaternion]``(quaternion<double> const & a_recopier); | ||
|  | 
 | ||
|  |       long double                  ``[link math_toolkit.quat_mem_fun.real_and_unreal_parts real]``() const; | ||
|  |       quaternion<long double>      ``[link math_toolkit.quat_mem_fun.real_and_unreal_parts unreal]``() const; | ||
|  |       long double                  ``[link math_toolkit.quat_mem_fun.individual_real_components R_component_1]``() const; | ||
|  |       long double                  ``[link math_toolkit.quat_mem_fun.individual_real_components R_component_2]``() const; | ||
|  |       long double                  ``[link math_toolkit.quat_mem_fun.individual_real_components R_component_3]``() const; | ||
|  |       long double                  ``[link math_toolkit.quat_mem_fun.individual_real_components R_component_4]``() const; | ||
|  |       ::std::complex<long double>  ``[link math_toolkit.quat_mem_fun.individual_complex_components C_component_1]``() const; | ||
|  |       ::std::complex<long double>  ``[link math_toolkit.quat_mem_fun.individual_complex_components C_component_2]``() const; | ||
|  | 
 | ||
|  |       quaternion<long double>&     ``[link math_toolkit.quat_mem_fun.assignment_operators operator = ]``(quaternion<long double> const  & a_affecter); | ||
|  |       template<typename X> | ||
|  |       quaternion<long double>&     ``[link math_toolkit.quat_mem_fun.assignment_operators operator = ]``(quaternion<X> const  & a_affecter); | ||
|  |       quaternion<long double>&     ``[link math_toolkit.quat_mem_fun.assignment_operators operator = ]``(long double const  & a_affecter); | ||
|  |       quaternion<long double>&     ``[link math_toolkit.quat_mem_fun.assignment_operators operator = ]``(::std::complex<long double> const & a_affecter); | ||
|  | 
 | ||
|  |       quaternion<long double>&     ``[link math_toolkit.quat_mem_fun.addition_operators operator += ]``(long double const & rhs); | ||
|  |       quaternion<long double>&     ``[link math_toolkit.quat_mem_fun.addition_operators operator += ]``(::std::complex<long double> const & rhs); | ||
|  |       template<typename X> | ||
|  |       quaternion<long double>&     ``[link math_toolkit.quat_mem_fun.addition_operators operator += ]``(quaternion<X> const & rhs); | ||
|  | 
 | ||
|  |       quaternion<long double>&     ``[link math_toolkit.quat_mem_fun.subtraction_operators operator -= ]``(long double const & rhs); | ||
|  |       quaternion<long double>&     ``[link math_toolkit.quat_mem_fun.subtraction_operators operator -= ]``(::std::complex<long double> const & rhs); | ||
|  |       template<typename X> | ||
|  |       quaternion<long double>&     ``[link math_toolkit.quat_mem_fun.subtraction_operators operator -= ]``(quaternion<X> const & rhs); | ||
|  | 
 | ||
|  |       quaternion<long double>&     ``[link math_toolkit.quat_mem_fun.multiplication_operators operator *= ]``(long double const & rhs); | ||
|  |       quaternion<long double>&     ``[link math_toolkit.quat_mem_fun.multiplication_operators operator *= ]``(::std::complex<long double> const & rhs); | ||
|  |       template<typename X> | ||
|  |       quaternion<long double>&     ``[link math_toolkit.quat_mem_fun.multiplication_operators operator *= ]``(quaternion<X> const & rhs); | ||
|  | 
 | ||
|  |       quaternion<long double>&     ``[link math_toolkit.quat_mem_fun.division_operators operator /= ]``(long double const & rhs); | ||
|  |       quaternion<long double>&     ``[link math_toolkit.quat_mem_fun.division_operators operator /= ]``(::std::complex<long double> const & rhs); | ||
|  |       template<typename X> | ||
|  |       quaternion<long double>&     ``[link math_toolkit.quat_mem_fun.division_operators operator /= ]``(quaternion<X> const & rhs); | ||
|  |    }; | ||
|  | 
 | ||
|  |    } // namespace math | ||
|  |    } // namespace boost | ||
|  | 
 | ||
|  | [endsect] | ||
|  | 
 | ||
|  | [section:mem_typedef Quaternion Member Typedefs] | ||
|  | 
 | ||
|  | [*value_type] | ||
|  | 
 | ||
|  | Template version: | ||
|  | 
 | ||
|  |    typedef T value_type; | ||
|  | 
 | ||
|  | Float specialization version: | ||
|  | 
 | ||
|  |    typedef float value_type; | ||
|  | 
 | ||
|  | Double specialization version: | ||
|  | 
 | ||
|  |    typedef double value_type; | ||
|  | 
 | ||
|  | Long double specialization version: | ||
|  | 
 | ||
|  |    typedef long double value_type; | ||
|  | 
 | ||
|  | These provide easy acces to the type the template is built upon. | ||
|  | 
 | ||
|  | [endsect] | ||
|  | 
 | ||
|  | [section:quat_mem_fun Quaternion Member Functions] | ||
|  | [h3 Constructors] | ||
|  | 
 | ||
|  | Template version: | ||
|  | 
 | ||
|  |    explicit quaternion(T const & requested_a = T(), T const & requested_b = T(), T const & requested_c = T(), T const & requested_d = T()); | ||
|  |    explicit quaternion(::std::complex<T> const & z0, ::std::complex<T> const & z1 = ::std::complex<T>()); | ||
|  |    template<typename X> | ||
|  |    explicit quaternion(quaternion<X> const & a_recopier); | ||
|  | 
 | ||
|  | Float specialization version: | ||
|  | 
 | ||
|  |    explicit quaternion(float const & requested_a = 0.0f, float const & requested_b = 0.0f, float const & requested_c = 0.0f, float const & requested_d = 0.0f); | ||
|  |    explicit quaternion(::std::complex<float> const & z0,::std::complex<float> const & z1 = ::std::complex<float>()); | ||
|  |    explicit quaternion(quaternion<double> const & a_recopier); | ||
|  |    explicit quaternion(quaternion<long double> const & a_recopier); | ||
|  | 
 | ||
|  | Double specialization version: | ||
|  | 
 | ||
|  |    explicit quaternion(double const & requested_a = 0.0, double const & requested_b = 0.0, double const & requested_c = 0.0, double const & requested_d = 0.0); | ||
|  |    explicit quaternion(::std::complex<double> const & z0, ::std::complex<double> const & z1 = ::std::complex<double>()); | ||
|  |    explicit quaternion(quaternion<float> const & a_recopier); | ||
|  |    explicit quaternion(quaternion<long double> const & a_recopier); | ||
|  | 
 | ||
|  | Long double specialization version: | ||
|  | 
 | ||
|  |    explicit quaternion(long double const & requested_a = 0.0L, long double const & requested_b = 0.0L, long double const & requested_c = 0.0L, long double const & requested_d = 0.0L); | ||
|  |    explicit quaternion( ::std::complex<long double> const & z0, ::std::complex<long double> const & z1 = ::std::complex<long double>()); | ||
|  |    explicit quaternion(quaternion<float> const & a_recopier); | ||
|  |    explicit quaternion(quaternion<double> const & a_recopier); | ||
|  | 
 | ||
|  | A default constructor is provided for each form, which initializes | ||
|  | each component to the default values for their type | ||
|  | (i.e. zero for floating numbers). This constructor can also accept | ||
|  | one to four base type arguments. A constructor is also provided to | ||
|  | build quaternions from one or two complex numbers sharing the same | ||
|  | base type. The unspecialized template also sports a templarized copy | ||
|  | constructor, while the specialized forms have copy constructors | ||
|  | from the other two specializations, which are explicit when a risk of | ||
|  | precision loss exists. For the unspecialized form, the base type's | ||
|  | constructors must not throw. | ||
|  | 
 | ||
|  | Destructors and untemplated copy constructors (from the same type) are | ||
|  | provided by the compiler. Converting copy constructors make use of a | ||
|  | templated helper function in a "detail" subnamespace. | ||
|  | 
 | ||
|  | [h3 Other member functions] | ||
|  | [h4 Real and Unreal Parts] | ||
|  | 
 | ||
|  |    T             real() const; | ||
|  |    quaternion<T> unreal() const; | ||
|  | 
 | ||
|  | Like complex number, quaternions do have a meaningful notion of "real part", | ||
|  | but unlike them there is no meaningful notion of "imaginary part". | ||
|  | Instead there is an "unreal part" which itself is a quaternion, | ||
|  | and usually nothing simpler (as opposed to the complex number case). | ||
|  | These are returned by the first two functions. | ||
|  | 
 | ||
|  | [h4 Individual Real Components] | ||
|  | 
 | ||
|  |    T R_component_1() const; | ||
|  |    T R_component_2() const; | ||
|  |    T R_component_3() const; | ||
|  |    T R_component_4() const; | ||
|  | 
 | ||
|  | A quaternion having four real components, these are returned by these four | ||
|  | functions. Hence real and R_component_1 return the same value. | ||
|  | 
 | ||
|  | [h4 Individual Complex  Components] | ||
|  | 
 | ||
|  |    ::std::complex<T>  C_component_1() const; | ||
|  |    ::std::complex<T>  C_component_2() const; | ||
|  | 
 | ||
|  | A quaternion likewise has two complex components, and as we have seen above, | ||
|  | for any quaternion __quat_formula we also have __quat_complex_formula. These functions return them. | ||
|  | The real part of `q.C_component_1()` is the same as `q.real()`. | ||
|  | 
 | ||
|  | [h3 Quaternion Member Operators] | ||
|  | [h4 Assignment Operators] | ||
|  | 
 | ||
|  |    quaternion<T>& operator = (quaternion<T> const & a_affecter); | ||
|  |    template<typename X> | ||
|  |    quaternion<T>& operator = (quaternion<X> const& a_affecter); | ||
|  |    quaternion<T>& operator = (T const& a_affecter); | ||
|  |    quaternion<T>& operator = (::std::complex<T> const& a_affecter); | ||
|  | 
 | ||
|  | These perform the expected assignment, with type modification if necessary | ||
|  | (for instance, assigning from a base type will set the real part to that | ||
|  | value, and all other components to zero). For the unspecialized form, | ||
|  | the base type's assignment operators must not throw. | ||
|  | 
 | ||
|  | [h4 Addition Operators] | ||
|  | 
 | ||
|  |    quaternion<T>& operator += (T const & rhs) | ||
|  |    quaternion<T>& operator += (::std::complex<T> const & rhs); | ||
|  |    template<typename X> | ||
|  |    quaternion<T>& operator += (quaternion<X> const & rhs); | ||
|  | 
 | ||
|  | These perform the mathematical operation `(*this)+rhs` and store the result in | ||
|  | `*this`. The unspecialized form has exception guards, which the specialized | ||
|  | forms do not, so as to insure exception safety. For the unspecialized form, | ||
|  | the base type's assignment operators must not throw. | ||
|  | 
 | ||
|  | [h4 Subtraction Operators] | ||
|  | 
 | ||
|  |    quaternion<T>& operator -= (T const & rhs) | ||
|  |    quaternion<T>& operator -= (::std::complex<T> const & rhs); | ||
|  |    template<typename X> | ||
|  |    quaternion<T>& operator -= (quaternion<X> const & rhs); | ||
|  | 
 | ||
|  | These perform the mathematical operation `(*this)-rhs` and store the result | ||
|  | in `*this`. The unspecialized form has exception guards, which the | ||
|  | specialized forms do not, so as to insure exception safety. | ||
|  | For the unspecialized form, the base type's assignment operators | ||
|  | must not throw. | ||
|  | 
 | ||
|  | [h4 Multiplication Operators] | ||
|  | 
 | ||
|  |    quaternion<T>& operator *= (T const & rhs) | ||
|  |    quaternion<T>& operator *= (::std::complex<T> const & rhs); | ||
|  |    template<typename X> | ||
|  |    quaternion<T>& operator *= (quaternion<X> const & rhs); | ||
|  | 
 | ||
|  | These perform the mathematical operation `(*this)*rhs` [*in this order] | ||
|  | (order is important as multiplication is not commutative for quaternions) | ||
|  | and store the result in `*this`. The unspecialized form has exception guards, | ||
|  | which the specialized forms do not, so as to insure exception safety. | ||
|  | For the unspecialized form, the base type's assignment operators must not throw. | ||
|  | 
 | ||
|  | [h4 Division Operators] | ||
|  | 
 | ||
|  |    quaternion<T>& operator /= (T const & rhs) | ||
|  |    quaternion<T>& operator /= (::std::complex<T> const & rhs); | ||
|  |    template<typename X> | ||
|  |    quaternion<T>& operator /= (quaternion<X> const & rhs); | ||
|  | 
 | ||
|  | These perform the mathematical operation `(*this)*inverse_of(rhs)` [*in this | ||
|  | order] (order is important as multiplication is not commutative for quaternions) | ||
|  | and store the result in `*this`. The unspecialized form has exception guards, | ||
|  | which the specialized forms do not, so as to insure exception safety. | ||
|  | For the unspecialized form, the base type's assignment operators must not throw. | ||
|  | 
 | ||
|  | [endsect] | ||
|  | [section:quat_non_mem Quaternion Non-Member Operators] | ||
|  | 
 | ||
|  | [h4 Unary Plus] | ||
|  | 
 | ||
|  |    template<typename T> | ||
|  |    quaternion<T> operator + (quaternion<T> const & q); | ||
|  | 
 | ||
|  | This unary operator simply returns q. | ||
|  | 
 | ||
|  | [h4 Unary Minus] | ||
|  | 
 | ||
|  |    template<typename T> | ||
|  |    quaternion<T> operator - (quaternion<T> const & q); | ||
|  | 
 | ||
|  | This unary operator returns the opposite of q. | ||
|  | 
 | ||
|  | [h4 Binary Addition Operators] | ||
|  | 
 | ||
|  |    template<typename T> quaternion<T> operator + (T const & lhs, quaternion<T> const & rhs); | ||
|  |    template<typename T> quaternion<T> operator + (quaternion<T> const & lhs, T const & rhs); | ||
|  |    template<typename T> quaternion<T> operator + (::std::complex<T> const & lhs, quaternion<T> const & rhs); | ||
|  |    template<typename T> quaternion<T> operator + (quaternion<T> const & lhs, ::std::complex<T> const & rhs); | ||
|  |    template<typename T> quaternion<T> operator + (quaternion<T> const & lhs, quaternion<T> const & rhs); | ||
|  | 
 | ||
|  | These operators return `quaternion<T>(lhs) += rhs`. | ||
|  | 
 | ||
|  | [h4 Binary Subtraction Operators] | ||
|  | 
 | ||
|  |    template<typename T> quaternion<T> operator - (T const & lhs, quaternion<T> const & rhs); | ||
|  |    template<typename T> quaternion<T> operator - (quaternion<T> const & lhs, T const & rhs); | ||
|  |    template<typename T> quaternion<T> operator - (::std::complex<T> const & lhs, quaternion<T> const & rhs); | ||
|  |    template<typename T> quaternion<T> operator - (quaternion<T> const & lhs, ::std::complex<T> const & rhs); | ||
|  |    template<typename T> quaternion<T> operator - (quaternion<T> const & lhs, quaternion<T> const & rhs); | ||
|  | 
 | ||
|  | These operators return `quaternion<T>(lhs) -= rhs`. | ||
|  | 
 | ||
|  | [h4 Binary Multiplication Operators] | ||
|  | 
 | ||
|  |    template<typename T> quaternion<T> operator * (T const & lhs, quaternion<T> const & rhs); | ||
|  |    template<typename T> quaternion<T> operator * (quaternion<T> const & lhs, T const & rhs); | ||
|  |    template<typename T> quaternion<T> operator * (::std::complex<T> const & lhs, quaternion<T> const & rhs); | ||
|  |    template<typename T> quaternion<T> operator * (quaternion<T> const & lhs, ::std::complex<T> const & rhs); | ||
|  |    template<typename T> quaternion<T> operator * (quaternion<T> const & lhs, quaternion<T> const & rhs); | ||
|  | 
 | ||
|  | These operators return `quaternion<T>(lhs) *= rhs`. | ||
|  | 
 | ||
|  | [h4 Binary Division Operators] | ||
|  | 
 | ||
|  |    template<typename T> quaternion<T> operator / (T const & lhs, quaternion<T> const & rhs); | ||
|  |    template<typename T> quaternion<T> operator / (quaternion<T> const & lhs, T const & rhs); | ||
|  |    template<typename T> quaternion<T> operator / (::std::complex<T> const & lhs, quaternion<T> const & rhs); | ||
|  |    template<typename T> quaternion<T> operator / (quaternion<T> const & lhs, ::std::complex<T> const & rhs); | ||
|  |    template<typename T> quaternion<T> operator / (quaternion<T> const & lhs, quaternion<T> const & rhs); | ||
|  | 
 | ||
|  | These operators return `quaternion<T>(lhs) /= rhs`. It is of course still an | ||
|  | error to divide by zero... | ||
|  | 
 | ||
|  | [h4 Equality Operators] | ||
|  | 
 | ||
|  |    template<typename T> bool  operator == (T const & lhs, quaternion<T> const & rhs); | ||
|  |    template<typename T> bool  operator == (quaternion<T> const & lhs, T const & rhs); | ||
|  |    template<typename T> bool  operator == (::std::complex<T> const & lhs, quaternion<T> const & rhs); | ||
|  |    template<typename T> bool  operator == (quaternion<T> const & lhs, ::std::complex<T> const & rhs); | ||
|  |    template<typename T> bool  operator == (quaternion<T> const & lhs, quaternion<T> const & rhs); | ||
|  | 
 | ||
|  | These return true if and only if the four components of `quaternion<T>(lhs)` | ||
|  | are equal to their counterparts in `quaternion<T>(rhs)`. As with any | ||
|  | floating-type entity, this is essentially meaningless. | ||
|  | 
 | ||
|  | [h4 Inequality Operators] | ||
|  | 
 | ||
|  |    template<typename T> bool  operator != (T const & lhs, quaternion<T> const & rhs); | ||
|  |    template<typename T> bool  operator != (quaternion<T> const & lhs, T const & rhs); | ||
|  |    template<typename T> bool  operator != (::std::complex<T> const & lhs, quaternion<T> const & rhs); | ||
|  |    template<typename T> bool  operator != (quaternion<T> const & lhs, ::std::complex<T> const & rhs); | ||
|  |    template<typename T> bool  operator != (quaternion<T> const & lhs, quaternion<T> const & rhs); | ||
|  | 
 | ||
|  | These return true if and only if `quaternion<T>(lhs) == quaternion<T>(rhs)` is | ||
|  | false. As with any floating-type entity, this is essentially meaningless. | ||
|  | 
 | ||
|  | [h4 Stream Extractor] | ||
|  | 
 | ||
|  |    template<typename T, typename charT, class traits> | ||
|  |    ::std::basic_istream<charT,traits>& operator >> (::std::basic_istream<charT,traits> & is, quaternion<T> & q); | ||
|  | 
 | ||
|  | Extracts a quaternion q of one of the following forms | ||
|  | (with a, b, c and d of type `T`): | ||
|  | 
 | ||
|  | [^a (a), (a,b), (a,b,c), (a,b,c,d) (a,(c)), (a,(c,d)), ((a)), ((a),c), ((a),(c)), ((a),(c,d)), ((a,b)), ((a,b),c), ((a,b),(c)), ((a,b),(c,d))] | ||
|  | 
 | ||
|  | The input values must be convertible to `T`. If bad input is encountered, | ||
|  | calls `is.setstate(ios::failbit)` (which may throw ios::failure (27.4.5.3)). | ||
|  | 
 | ||
|  | [*Returns:] `is`. | ||
|  | 
 | ||
|  | The rationale for the list of accepted formats is that either we have a | ||
|  | list of up to four reals, or else we have a couple of complex numbers, | ||
|  | and in that case if it formated as a proper complex number, then it should | ||
|  | be accepted. Thus potential ambiguities are lifted (for instance (a,b) is | ||
|  | (a,b,0,0) and not (a,0,b,0), i.e. it is parsed as a list of two real numbers | ||
|  | and not two complex numbers which happen to have imaginary parts equal to zero). | ||
|  | 
 | ||
|  | [h4 Stream Inserter] | ||
|  | 
 | ||
|  |    template<typename T, typename charT, class traits> | ||
|  |    ::std::basic_ostream<charT,traits>& operator << (::std::basic_ostream<charT,traits> & os, quaternion<T> const & q); | ||
|  | 
 | ||
|  | Inserts the quaternion q onto the stream `os` as if it were implemented as follows: | ||
|  | 
 | ||
|  |    template<typename T, typename charT, class traits> | ||
|  |    ::std::basic_ostream<charT,traits>& operator << ( | ||
|  |                   ::std::basic_ostream<charT,traits> & os, | ||
|  |                   quaternion<T> const & q) | ||
|  |    { | ||
|  |       ::std::basic_ostringstream<charT,traits>  s; | ||
|  | 
 | ||
|  |       s.flags(os.flags()); | ||
|  |       s.imbue(os.getloc()); | ||
|  |       s.precision(os.precision()); | ||
|  | 
 | ||
|  |       s << '(' << q.R_component_1() << ',' | ||
|  |                << q.R_component_2() << ',' | ||
|  |                << q.R_component_3() << ',' | ||
|  |                << q.R_component_4() << ')'; | ||
|  | 
 | ||
|  |       return os << s.str(); | ||
|  |    } | ||
|  | 
 | ||
|  | [endsect] | ||
|  | 
 | ||
|  | [section:value_op Quaternion Value Operations] | ||
|  | 
 | ||
|  | [h4 real and unreal] | ||
|  | 
 | ||
|  |    template<typename T> T              real(quaternion<T> const & q); | ||
|  |    template<typename T> quaternion<T>  unreal(quaternion<T> const & q); | ||
|  | 
 | ||
|  | These return `q.real()` and `q.unreal()` respectively. | ||
|  | 
 | ||
|  | [h4 conj] | ||
|  | 
 | ||
|  |    template<typename T> quaternion<T>  conj(quaternion<T> const & q); | ||
|  | 
 | ||
|  | This returns the conjugate of the quaternion. | ||
|  | 
 | ||
|  | [h4 sup] | ||
|  | 
 | ||
|  | template<typename T>  T  sup(quaternion<T> const & q); | ||
|  | 
 | ||
|  | This return the sup norm (the greatest among | ||
|  | `abs(q.R_component_1())...abs(q.R_component_4()))` of the quaternion. | ||
|  | 
 | ||
|  | [h4 l1] | ||
|  | 
 | ||
|  |    template<typename T> T  l1(quaternion<T> const & q); | ||
|  | 
 | ||
|  | This return the l1 norm `(abs(q.R_component_1())+...+abs(q.R_component_4()))` | ||
|  | of the quaternion. | ||
|  | 
 | ||
|  | [h4 abs] | ||
|  | 
 | ||
|  |    template<typename T> T  abs(quaternion<T> const & q); | ||
|  | 
 | ||
|  | This return the magnitude (Euclidian norm) of the quaternion. | ||
|  | 
 | ||
|  | [h4 norm] | ||
|  | 
 | ||
|  |    template<typename T> T  norm(quaternion<T>const  & q); | ||
|  | 
 | ||
|  | This return the (Cayley) norm of the quaternion. | ||
|  | The term "norm" might be confusing, as most people associate it with the | ||
|  | Euclidian norm (and quadratic functionals). For this version of | ||
|  | (the mathematical objects known as) quaternions, the Euclidian norm | ||
|  | (also known as magnitude) is the square root of the Cayley norm. | ||
|  | 
 | ||
|  | [endsect] | ||
|  | 
 | ||
|  | [section:create Quaternion Creation Functions] | ||
|  | 
 | ||
|  |    template<typename T> quaternion<T> spherical(T const & rho, T const & theta, T const & phi1, T const & phi2); | ||
|  |    template<typename T> quaternion<T> semipolar(T const & rho, T const & alpha, T const & theta1, T const & theta2); | ||
|  |    template<typename T> quaternion<T> multipolar(T const & rho1, T const & theta1, T const & rho2, T const & theta2); | ||
|  |    template<typename T> quaternion<T> cylindrospherical(T const & t, T const & radius, T const & longitude, T const & latitude); | ||
|  |    template<typename T> quaternion<T> cylindrical(T const & r, T const & angle, T const & h1, T const & h2); | ||
|  | 
 | ||
|  | These build quaternions in a way similar to the way polar builds complex | ||
|  | numbers, as there is no strict equivalent to polar coordinates for quaternions. | ||
|  | 
 | ||
|  | [#math_quaternions.creation_spherical] `spherical` is a simple transposition of `polar`, it takes as inputs | ||
|  | a (positive) magnitude and a point on the hypersphere, given by three angles. | ||
|  | The first of these, `theta` has a natural range of `-pi` to `+pi`, and the other | ||
|  | two have natural ranges of `-pi/2` to `+pi/2` (as is the case with the usual | ||
|  | spherical coordinates in __R3). Due to the many symmetries and periodicities, | ||
|  | nothing untoward happens if the magnitude is negative or the angles are | ||
|  | outside their natural ranges. The expected degeneracies (a magnitude of | ||
|  | zero ignores the angles settings...) do happen however. | ||
|  | 
 | ||
|  | [#math_quaternions.creation_cylindrical] `cylindrical` is likewise a simple transposition of the usual | ||
|  | cylindrical coordinates in __R3, which in turn is another derivative of | ||
|  | planar polar coordinates. The first two inputs are the polar coordinates of | ||
|  | the first __C component of the quaternion. The third and fourth inputs | ||
|  | are placed into the third and fourth __R components of the quaternion, | ||
|  | respectively. | ||
|  | 
 | ||
|  | [#math_quaternions.creation_multipolar] `multipolar` is yet another simple generalization of polar coordinates. | ||
|  | This time, both __C components of the quaternion are given in polar coordinates. | ||
|  | 
 | ||
|  | [#math_quaternions.creation_cylindrospherical] `cylindrospherical` is specific to quaternions. It is often interesting to | ||
|  | consider __H as the cartesian product of __R by __R3 (the quaternionic | ||
|  | multiplication as then a special form, as given here). This function | ||
|  | therefore builds a quaternion from this representation, with the __R3 | ||
|  | component given in usual __R3 spherical coordinates. | ||
|  | 
 | ||
|  | [#math_quaternions.creation_semipolar] `semipolar` is another generator which is specific to quaternions. | ||
|  | It takes as a first input the magnitude of the quaternion, as a | ||
|  | second input an angle in the range `0` to `+pi/2` such that magnitudes | ||
|  | of the first two __C components of the quaternion are the product of the | ||
|  | first input and the sine and cosine of this angle, respectively, and finally | ||
|  | as third and fourth inputs angles in the range `-pi/2` to `+pi/2` which | ||
|  | represent the arguments of the first and second __C components of | ||
|  | the quaternion, respectively. As usual, nothing untoward happens if | ||
|  | what should be magnitudes are negative numbers or angles are out of their | ||
|  | natural ranges, as symmetries and periodicities kick in. | ||
|  | 
 | ||
|  | In this version of our implementation of quaternions, there is no | ||
|  | analogue of the complex value operation `arg` as the situation is | ||
|  | somewhat more complicated. Unit quaternions are linked both to | ||
|  | rotations in __R3 and in __R4, and the correspondences are not too complicated, | ||
|  | but there is currently a lack of standard (de facto or de jure) matrix | ||
|  | library with which the conversions could work. This should be remedied in | ||
|  | a further revision. In the mean time, an example of how this could be | ||
|  | done is presented here for | ||
|  | [@../../example/HSO3.hpp __R3], and here for | ||
|  | [@../../example/HSO4.hpp __R4] | ||
|  | ([@../../example/HSO3SO4.cpp example test file]). | ||
|  | 
 | ||
|  | [endsect] | ||
|  | 
 | ||
|  | [section:trans Quaternion Transcendentals] | ||
|  | 
 | ||
|  | There is no `log` or `sqrt` provided for quaternions in this implementation, | ||
|  | and `pow` is likewise restricted to integral powers of the exponent. | ||
|  | There are several reasons to this: on the one hand, the equivalent of | ||
|  | analytic continuation for quaternions ("branch cuts") remains to be | ||
|  | investigated thoroughly (by me, at any rate...), and we wish to avoid the | ||
|  | nonsense introduced in the standard by exponentiations of complexes by | ||
|  | complexes (which is well defined, but not in the standard...). | ||
|  | Talking of nonsense, saying that `pow(0,0)` is "implementation defined" is just | ||
|  | plain brain-dead... | ||
|  | 
 | ||
|  | We do, however provide several transcendentals, chief among which is the | ||
|  | exponential. This author claims the complete proof of the "closed formula" | ||
|  | as his own, as well as its independant invention (there are claims to prior | ||
|  | invention of the formula, such as one by Professor Shoemake, and it is | ||
|  | possible that the formula had been known a couple of centuries back, but in | ||
|  | absence of bibliographical reference, the matter is pending, awaiting further | ||
|  | investigation; on the other hand, the definition and existence of the | ||
|  | exponential on the quaternions, is of course a fact known for a very long time). | ||
|  | Basically, any converging power series with real coefficients which allows for a | ||
|  | closed formula in __C can be transposed to __H. More transcendentals of this | ||
|  | type could be added in a further revision upon request. It should be | ||
|  | noted that it is these functions which force the dependency upon the | ||
|  | [@../../../../boost/math/special_functions/sinc.hpp boost/math/special_functions/sinc.hpp] and the | ||
|  | [@../../../../boost/math/special_functions/sinhc.hpp boost/math/special_functions/sinhc.hpp] headers. | ||
|  | 
 | ||
|  | [h4 exp] | ||
|  | 
 | ||
|  |    template<typename T> quaternion<T> exp(quaternion<T> const & q); | ||
|  | 
 | ||
|  | Computes the exponential of the quaternion. | ||
|  | 
 | ||
|  | [h4 cos] | ||
|  | 
 | ||
|  |    template<typename T> quaternion<T>  cos(quaternion<T> const & q); | ||
|  | 
 | ||
|  | Computes the cosine of the quaternion | ||
|  | 
 | ||
|  | [h4 sin] | ||
|  | 
 | ||
|  |    template<typename T> quaternion<T>  sin(quaternion<T> const & q); | ||
|  | 
 | ||
|  | Computes the sine of the quaternion. | ||
|  | 
 | ||
|  | [h4 tan] | ||
|  | 
 | ||
|  |    template<typename T> quaternion<T>  tan(quaternion<T> const & q); | ||
|  | 
 | ||
|  | Computes the tangent of the quaternion. | ||
|  | 
 | ||
|  | [h4 cosh] | ||
|  | 
 | ||
|  |    template<typename T> quaternion<T>  cosh(quaternion<T> const & q); | ||
|  | 
 | ||
|  | Computes the hyperbolic cosine of the quaternion. | ||
|  | 
 | ||
|  | [h4 sinh] | ||
|  | 
 | ||
|  |    template<typename T> quaternion<T>  sinh(quaternion<T> const & q); | ||
|  | 
 | ||
|  | Computes the hyperbolic sine of the quaternion. | ||
|  | 
 | ||
|  | [h4 tanh] | ||
|  | 
 | ||
|  |    template<typename T> quaternion<T>  tanh(quaternion<T> const & q); | ||
|  | 
 | ||
|  | Computes the hyperbolic tangent of the quaternion. | ||
|  | 
 | ||
|  | [h4 pow] | ||
|  | 
 | ||
|  |    template<typename T> quaternion<T>  pow(quaternion<T> const & q, int n); | ||
|  | 
 | ||
|  | Computes the n-th power of the quaternion q. | ||
|  | 
 | ||
|  | [endsect] | ||
|  | 
 | ||
|  | [section:quat_tests Test Program] | ||
|  | 
 | ||
|  | The [@../../test/quaternion_test.cpp quaternion_test.cpp] | ||
|  | test program tests quaternions specializations for float, double and long double | ||
|  | ([@../quaternion/output.txt sample output], with message output | ||
|  | enabled). | ||
|  | 
 | ||
|  | If you define the symbol TEST_VERBOSE, you will get | ||
|  | additional output ([@../quaternion/output_more.txt verbose output]); | ||
|  | this will only be helpfull if you enable message output at the same time, | ||
|  | of course (by uncommenting the relevant line in the test or by adding | ||
|  | [^--log_level=messages] to your command line,...). In that case, and if you | ||
|  | are running interactively, you may in addition define the symbol | ||
|  | BOOST_INTERACTIVE_TEST_INPUT_ITERATOR to interactively test the input | ||
|  | operator with input of your choice from the standard input | ||
|  | (instead of hard-coding it in the test). | ||
|  | 
 | ||
|  | [endsect] | ||
|  | 
 | ||
|  | [section:exp The Quaternionic Exponential] | ||
|  | 
 | ||
|  | Please refer to the following PDF's: | ||
|  | 
 | ||
|  | *[@../quaternion/TQE.pdf The Quaternionic Exponential (and beyond)] | ||
|  | *[@../quaternion/TQE_EA.pdf The Quaternionic Exponential (and beyond) ERRATA & ADDENDA] | ||
|  | 
 | ||
|  | [endsect] | ||
|  | 
 | ||
|  | [section:acknowledgement Acknowledgements] | ||
|  | 
 | ||
|  | The mathematical text has been typeset with | ||
|  | [@http://www.nisus-soft.com/ Nisus Writer]. Jens Maurer has helped with | ||
|  | portability and standard adherence, and was the Review Manager | ||
|  | for this library. More acknowledgements in the History section. | ||
|  | Thank you to all who contributed to the discution about this library. | ||
|  | 
 | ||
|  | [endsect] | ||
|  | 
 | ||
|  | [section:quat_history History] | ||
|  | 
 | ||
|  | * 1.5.9 - 13/5/2013:  Incorporated into Boost.Math. | ||
|  | * 1.5.8 - 17/12/2005: Converted documentation to Quickbook Format. | ||
|  | * 1.5.7 - 24/02/2003: transitionned to the unit test framework; <boost/config.hpp> now included by the library header (rather than the test files). | ||
|  | * 1.5.6 - 15/10/2002: Gcc2.95.x and stlport on linux compatibility by Alkis Evlogimenos (alkis@routescience.com). | ||
|  | * 1.5.5 - 27/09/2002: Microsoft VCPP 7 compatibility, by Michael Stevens (michael@acfr.usyd.edu.au); requires the /Za compiler option. | ||
|  | * 1.5.4 - 19/09/2002: fixed problem with multiple inclusion (in different translation units); attempt at an improved compatibility with Microsoft compilers, by Michael Stevens (michael@acfr.usyd.edu.au) and Fredrik Blomqvist; other compatibility fixes. | ||
|  | * 1.5.3 - 01/02/2002: bugfix and Gcc 2.95.3 compatibility by Douglas Gregor (gregod@cs.rpi.edu). | ||
|  | * 1.5.2 - 07/07/2001: introduced namespace math. | ||
|  | * 1.5.1 - 07/06/2001: (end of Boost review) now includes <boost/math/special_functions/sinc.hpp> and <boost/math/special_functions/sinhc.hpp> instead of <boost/special_functions.hpp>; corrected bug in sin (Daryle Walker); removed check for self-assignment (Gary Powel); made converting functions explicit (Gary Powel); added overflow guards for division operators and abs (Peter Schmitteckert); added sup and l1; used Vesa Karvonen's CPP metaprograming technique to simplify code. | ||
|  | * 1.5.0 - 26/03/2001: boostification, inlining of all operators except input, output and pow, fixed exception safety of some members (template version) and output operator, added spherical, semipolar, multipolar, cylindrospherical and cylindrical. | ||
|  | * 1.4.0 - 09/01/2001: added tan and tanh. | ||
|  | * 1.3.1 - 08/01/2001: cosmetic fixes. | ||
|  | * 1.3.0 - 12/07/2000: pow now uses Maarten Hilferink's (mhilferink@tip.nl) algorithm. | ||
|  | * 1.2.0 - 25/05/2000: fixed the division operators and output; changed many signatures. | ||
|  | * 1.1.0 - 23/05/2000: changed sinc into sinc_pi; added sin, cos, sinh, cosh. | ||
|  | * 1.0.0 - 10/08/1999: first public version. | ||
|  | 
 | ||
|  | [endsect] | ||
|  | [section:quat_todo To Do] | ||
|  | 
 | ||
|  | * Improve testing. | ||
|  | * Rewrite input operatore using Spirit (creates a dependency). | ||
|  | * Put in place an Expression Template mechanism (perhaps borrowing from uBlas). | ||
|  | * Use uBlas for the link with rotations (and move from the | ||
|  | [@../../example/HSO3SO4.cpp example] | ||
|  | implementation to an efficient one). | ||
|  | 
 | ||
|  | [endsect] | ||
|  | [endmathpart] | ||
|  | 
 | ||
|  | [/ | ||
|  | Copyright 1999, 2005, 2013 Hubert Holin. | ||
|  | Distributed under the Boost Software License, Version 1.0. | ||
|  | (See accompanying file LICENSE_1_0.txt or copy at | ||
|  | http://www.boost.org/LICENSE_1_0.txt). | ||
|  | ] | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 |