mirror of
				https://github.com/saitohirga/WSJT-X.git
				synced 2025-10-27 11:00:32 -04:00 
			
		
		
		
	
		
			
	
	
		
			183 lines
		
	
	
		
			8.1 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
		
		
			
		
	
	
			183 lines
		
	
	
		
			8.1 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
|  | // negative_binomial_example2.cpp
 | ||
|  | 
 | ||
|  | // Copyright Paul A. Bristow 2007, 2010.
 | ||
|  | 
 | ||
|  | // Use, modification and distribution are subject to the
 | ||
|  | // Boost Software License, Version 1.0.
 | ||
|  | // (See accompanying file LICENSE_1_0.txt
 | ||
|  | // or copy at http://www.boost.org/LICENSE_1_0.txt)
 | ||
|  | 
 | ||
|  | // Simple example demonstrating use of the Negative Binomial Distribution.
 | ||
|  | 
 | ||
|  | #include <boost/math/distributions/negative_binomial.hpp>
 | ||
|  |   using boost::math::negative_binomial_distribution; | ||
|  |   using boost::math::negative_binomial; // typedef
 | ||
|  | 
 | ||
|  | // In a sequence of trials or events
 | ||
|  | // (Bernoulli, independent, yes or no, succeed or fail)
 | ||
|  | // with success_fraction probability p,
 | ||
|  | // negative_binomial is the probability that k or fewer failures
 | ||
|  | // preceed the r th trial's success.
 | ||
|  | 
 | ||
|  | #include <iostream>
 | ||
|  | using std::cout; | ||
|  | using std::endl; | ||
|  | using std::setprecision; | ||
|  | using std::showpoint; | ||
|  | using std::setw; | ||
|  | using std::left; | ||
|  | using std::right; | ||
|  | #include <limits>
 | ||
|  | using std::numeric_limits; | ||
|  | 
 | ||
|  | int main() | ||
|  | { | ||
|  |   cout << "Negative_binomial distribution - simple example 2" << endl; | ||
|  |   // Construct a negative binomial distribution with:
 | ||
|  |   // 8 successes (r), success fraction (p) 0.25 = 25% or 1 in 4 successes.
 | ||
|  |   negative_binomial mynbdist(8, 0.25); // Shorter method using typedef.
 | ||
|  | 
 | ||
|  |   // Display (to check) properties of the distribution just constructed.
 | ||
|  |   cout << "mean(mynbdist) = " << mean(mynbdist) << endl; // 24
 | ||
|  |   cout << "mynbdist.successes() = " << mynbdist.successes()  << endl; // 8
 | ||
|  |   // r th successful trial, after k failures, is r + k th trial.
 | ||
|  |   cout << "mynbdist.success_fraction() = " << mynbdist.success_fraction() << endl;  | ||
|  |   // success_fraction = failures/successes or k/r = 0.25 or 25%. 
 | ||
|  |   cout << "mynbdist.percent success  = " << mynbdist.success_fraction() * 100 << "%"  << endl; | ||
|  |   // Show as % too.
 | ||
|  |   // Show some cumulative distribution function values for failures k = 2 and 8
 | ||
|  |   cout << "cdf(mynbdist, 2.) = " << cdf(mynbdist, 2.) << endl; // 0.000415802001953125
 | ||
|  |   cout << "cdf(mynbdist, 8.) = " << cdf(mynbdist, 8.) << endl; // 0.027129956288263202
 | ||
|  |   cout << "cdf(complement(mynbdist, 8.)) = " << cdf(complement(mynbdist, 8.)) << endl; // 0.9728700437117368
 | ||
|  |   // Check that cdf plus its complement is unity.
 | ||
|  |   cout << "cdf + complement = " << cdf(mynbdist, 8.) + cdf(complement(mynbdist, 8.))  << endl; // 1
 | ||
|  |   // Note: No complement for pdf! 
 | ||
|  | 
 | ||
|  |   // Compare cdf with sum of pdfs.
 | ||
|  |   double sum = 0.; // Calculate the sum of all the pdfs,
 | ||
|  |   int k = 20; // for 20 failures
 | ||
|  |   for(signed i = 0; i <= k; ++i) | ||
|  |   { | ||
|  |     sum += pdf(mynbdist, double(i)); | ||
|  |   } | ||
|  |   // Compare with the cdf
 | ||
|  |   double cdf8 = cdf(mynbdist, static_cast<double>(k)); | ||
|  |   double diff = sum - cdf8; // Expect the diference to be very small.
 | ||
|  |   cout << setprecision(17) << "Sum pdfs = " << sum << ' ' // sum = 0.40025683281803698
 | ||
|  |   << ", cdf = " << cdf(mynbdist, static_cast<double>(k)) //  cdf = 0.40025683281803687
 | ||
|  |   << ", difference = "  // difference = 0.50000000000000000
 | ||
|  |   << setprecision(1) << diff/ (std::numeric_limits<double>::epsilon() * sum) | ||
|  |   << " in epsilon units." << endl; | ||
|  | 
 | ||
|  |   // Note: Use boost::math::tools::epsilon rather than std::numeric_limits
 | ||
|  |   //  to cover RealTypes that do not specialize numeric_limits.
 | ||
|  | 
 | ||
|  | //[neg_binomial_example2
 | ||
|  | 
 | ||
|  |   // Print a table of values that can be used to plot
 | ||
|  |   // using Excel, or some other superior graphical display tool.
 | ||
|  | 
 | ||
|  |   cout.precision(17); // Use max_digits10 precision, the maximum available for a reference table.
 | ||
|  |   cout << showpoint << endl; // include trailing zeros.
 | ||
|  |   // This is a maximum possible precision for the type (here double) to suit a reference table.
 | ||
|  |   int maxk = static_cast<int>(2. * mynbdist.successes() /  mynbdist.success_fraction()); | ||
|  |   // This maxk shows most of the range of interest, probability about 0.0001 to 0.999.
 | ||
|  |   cout << "\n"" k            pdf                      cdf""\n" << endl; | ||
|  |   for (int k = 0; k < maxk; k++) | ||
|  |   { | ||
|  |     cout << right << setprecision(17) << showpoint | ||
|  |       << right << setw(3) << k  << ", " | ||
|  |       << left << setw(25) << pdf(mynbdist, static_cast<double>(k)) | ||
|  |       << left << setw(25) << cdf(mynbdist, static_cast<double>(k)) | ||
|  |       << endl; | ||
|  |   } | ||
|  |   cout << endl; | ||
|  | //] [/ neg_binomial_example2]
 | ||
|  |   return 0; | ||
|  | } // int main()
 | ||
|  | 
 | ||
|  | /*
 | ||
|  | 
 | ||
|  | Output is: | ||
|  | 
 | ||
|  | negative_binomial distribution - simple example 2 | ||
|  | mean(mynbdist) = 24 | ||
|  | mynbdist.successes() = 8 | ||
|  | mynbdist.success_fraction() = 0.25 | ||
|  | mynbdist.percent success  = 25% | ||
|  | cdf(mynbdist, 2.) = 0.000415802001953125 | ||
|  | cdf(mynbdist, 8.) = 0.027129956288263202 | ||
|  | cdf(complement(mynbdist, 8.)) = 0.9728700437117368 | ||
|  | cdf + complement = 1 | ||
|  | Sum pdfs = 0.40025683281803692 , cdf = 0.40025683281803687, difference = 0.25 in epsilon units. | ||
|  | 
 | ||
|  | //[neg_binomial_example2_1
 | ||
|  |  k            pdf                      cdf | ||
|  |   0, 1.5258789062500000e-005  1.5258789062500003e-005   | ||
|  |   1, 9.1552734375000000e-005  0.00010681152343750000    | ||
|  |   2, 0.00030899047851562522   0.00041580200195312500    | ||
|  |   3, 0.00077247619628906272   0.0011882781982421875     | ||
|  |   4, 0.0015932321548461918    0.0027815103530883789     | ||
|  |   5, 0.0028678178787231476    0.0056493282318115234     | ||
|  |   6, 0.0046602040529251142    0.010309532284736633      | ||
|  |   7, 0.0069903060793876605    0.017299838364124298      | ||
|  |   8, 0.0098301179241389001    0.027129956288263202      | ||
|  |   9, 0.013106823898851871     0.040236780187115073      | ||
|  |  10, 0.016711200471036140     0.056947980658151209      | ||
|  |  11, 0.020509200578089786     0.077457181236241013      | ||
|  |  12, 0.024354675686481652     0.10181185692272265       | ||
|  |  13, 0.028101548869017230     0.12991340579173993       | ||
|  |  14, 0.031614242477644432     0.16152764826938440       | ||
|  |  15, 0.034775666725408917     0.19630331499479325       | ||
|  |  16, 0.037492515688331451     0.23379583068312471       | ||
|  |  17, 0.039697957787645101     0.27349378847076977       | ||
|  |  18, 0.041352039362130305     0.31484582783290005       | ||
|  |  19, 0.042440250924291580     0.35728607875719176       | ||
|  |  20, 0.042970754060845245     0.40025683281803687       | ||
|  |  21, 0.042970754060845225     0.44322758687888220       | ||
|  |  22, 0.042482450037426581     0.48571003691630876       | ||
|  |  23, 0.041558918514873783     0.52726895543118257       | ||
|  |  24, 0.040260202311284021     0.56752915774246648       | ||
|  |  25, 0.038649794218832620     0.60617895196129912       | ||
|  |  26, 0.036791631035234917     0.64297058299653398       | ||
|  |  27, 0.034747651533277427     0.67771823452981139       | ||
|  |  28, 0.032575923312447595     0.71029415784225891       | ||
|  |  29, 0.030329307911589130     0.74062346575384819       | ||
|  |  30, 0.028054609818219924     0.76867807557206813       | ||
|  |  31, 0.025792141284492545     0.79447021685656061       | ||
|  |  32, 0.023575629142856460     0.81804584599941710       | ||
|  |  33, 0.021432390129869489     0.83947823612928651       | ||
|  |  34, 0.019383705779220189     0.85886194190850684       | ||
|  |  35, 0.017445335201298231     0.87630727710980494       | ||
|  |  36, 0.015628112784496322     0.89193538989430121       | ||
|  |  37, 0.013938587078064250     0.90587397697236549       | ||
|  |  38, 0.012379666154859701     0.91825364312722524       | ||
|  |  39, 0.010951243136991251     0.92920488626421649       | ||
|  |  40, 0.0096507830144735539    0.93885566927869002       | ||
|  |  41, 0.0084738582566109364    0.94732952753530097       | ||
|  |  42, 0.0074146259745345548    0.95474415350983555       | ||
|  |  43, 0.0064662435824429246    0.96121039709227851       | ||
|  |  44, 0.0056212231142827853    0.96683162020656122       | ||
|  |  45, 0.0048717266990450708    0.97170334690560634       | ||
|  |  46, 0.0042098073105878630    0.97591315421619418       | ||
|  |  47, 0.0036275999165703964    0.97954075413276465       | ||
|  |  48, 0.0031174686783026818    0.98265822281106729       | ||
|  |  49, 0.0026721160099737302    0.98533033882104104       | ||
|  |  50, 0.0022846591885275322    0.98761499800956853       | ||
|  |  51, 0.0019486798960970148    0.98956367790566557       | ||
|  |  52, 0.0016582516423517923    0.99122192954801736       | ||
|  |  53, 0.0014079495076571762    0.99262987905567457       | ||
|  |  54, 0.0011928461106539983    0.99382272516632852       | ||
|  |  55, 0.0010084971662802015    0.99483122233260868       | ||
|  |  56, 0.00085091948404891532   0.99568214181665760       | ||
|  |  57, 0.00071656377604119542   0.99639870559269883       | ||
|  |  58, 0.00060228420831048650   0.99700098980100937       | ||
|  |  59, 0.00050530624256557675   0.99750629604357488       | ||
|  |  60, 0.00042319397814867202   0.99792949002172360       | ||
|  |  61, 0.00035381791615708398   0.99828330793788067       | ||
|  |  62, 0.00029532382517950324   0.99857863176306016       | ||
|  |  63, 0.00024610318764958566   0.99882473495070978       | ||
|  | //] [neg_binomial_example2_1 end of Quickbook]
 | ||
|  | 
 | ||
|  | */ |