mirror of
				https://github.com/saitohirga/WSJT-X.git
				synced 2025-10-27 11:00:32 -04:00 
			
		
		
		
	
		
			
	
	
		
			567 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
		
		
			
		
	
	
			567 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
|  | 
 | ||
|  | // normal_misc_examples.cpp
 | ||
|  | 
 | ||
|  | // Copyright Paul A. Bristow 2007, 2010, 2014, 2016.
 | ||
|  | 
 | ||
|  | // Use, modification and distribution are subject to the
 | ||
|  | // Boost Software License, Version 1.0.
 | ||
|  | // (See accompanying file LICENSE_1_0.txt
 | ||
|  | // or copy at http://www.boost.org/LICENSE_1_0.txt)
 | ||
|  | 
 | ||
|  | // Example of using normal distribution.
 | ||
|  | 
 | ||
|  | // Note that this file contains Quickbook mark-up as well as code
 | ||
|  | // and comments, don't change any of the special comment mark-ups!
 | ||
|  | 
 | ||
|  | /*`
 | ||
|  | First we need some includes to access the normal distribution | ||
|  | (and some std output of course). | ||
|  | */ | ||
|  | 
 | ||
|  | #include <boost/cstdfloat.hpp> // MUST be first include!!!
 | ||
|  | // See Implementation of Float128 type, Overloading template functions with float128_t.
 | ||
|  | 
 | ||
|  | #include <boost/math/distributions/normal.hpp> // for normal_distribution.
 | ||
|  |   using boost::math::normal; // typedef provides default type of double.
 | ||
|  | 
 | ||
|  | #include <iostream>
 | ||
|  |   //using std::cout; using std::endl;
 | ||
|  |   //using std::left; using std::showpoint; using std::noshowpoint;
 | ||
|  | #include <iomanip>
 | ||
|  |   //using std::setw; using std::setprecision;
 | ||
|  | #include <limits>
 | ||
|  |   //using std::numeric_limits;
 | ||
|  | 
 | ||
|  |   /*!
 | ||
|  | Function max_digits10 | ||
|  | Returns maximum number of possibly significant decimal digits for a floating-point type FPT, | ||
|  | even for older compilers/standard libraries that | ||
|  | lack support for std::std::numeric_limits<FPT>::max_digits10, | ||
|  | when the Kahan formula 2 + binary_digits * 0.3010 is used instead. | ||
|  | Also provides the correct result for Visual Studio 2010 where the max_digits10 provided for float is wrong. | ||
|  | */ | ||
|  | namespace boost | ||
|  | { | ||
|  | namespace math | ||
|  | { | ||
|  | template <typename FPT> | ||
|  | int max_digits10() | ||
|  | { | ||
|  | // Since max_digits10 is not defined (or wrong) on older systems, define a local max_digits10.
 | ||
|  | 
 | ||
|  |   // Usage:   int m = max_digits10<boost::float64_t>();
 | ||
|  |   const int m = | ||
|  | #if (defined BOOST_NO_CXX11_NUMERIC_LIMITS) || (_MSC_VER == 1600) // is wrongly 8 not 9 for VS2010.
 | ||
|  |   2 + std::numeric_limits<FPT>::digits * 3010/10000; | ||
|  | #else
 | ||
|  |   std::numeric_limits<FPT>::max_digits10; | ||
|  | #endif
 | ||
|  |   return m; | ||
|  | } | ||
|  | } // namespace math
 | ||
|  | } // namespace boost
 | ||
|  | 
 | ||
|  | template <typename FPT> | ||
|  | void normal_table() | ||
|  | { | ||
|  |   using namespace boost::math; | ||
|  | 
 | ||
|  |   FPT step = static_cast<FPT>(1.); // step in z.
 | ||
|  |   FPT range = static_cast<FPT>(10.); // min and max z = -range to +range.
 | ||
|  | 
 | ||
|  |   // Traditional tables are only computed to much lower precision.
 | ||
|  |   // but @c std::std::numeric_limits<double>::max_digits10;
 | ||
|  |   // on new Standard Libraries gives 17,
 | ||
|  |   // the maximum number of digits from 64-bit double that can possibly be significant.
 | ||
|  |   // @c std::std::numeric_limits<double>::digits10; == 15
 | ||
|  |   // is number of @b guaranteed digits, the other two digits being 'noisy'.
 | ||
|  |   // Here we use a custom version of max_digits10 which deals with those platforms
 | ||
|  |   // where @c std::numeric_limits is not specialized,
 | ||
|  |   // or @c std::numeric_limits<>::max_digits10 not implemented, or wrong.
 | ||
|  |   int precision = boost::math::max_digits10<FPT>(); | ||
|  | 
 | ||
|  | // std::cout << typeid(FPT).name() << std::endl;
 | ||
|  | // demo_normal.cpp:85: undefined reference to `typeinfo for __float128'
 | ||
|  | // [@http://gcc.gnu.org/bugzilla/show_bug.cgi?id=43622   GCC 43622]
 | ||
|  | //  typeinfo for __float128 was missing GCC 4.9 Mar 2014, but OK for GCC 6.1.1.
 | ||
|  | 
 | ||
|  |    // Construct a standard normal distribution s, with
 | ||
|  |    // (default mean = zero, and standard deviation = unity)
 | ||
|  |    normal s; | ||
|  |    std::cout << "\nStandard normal distribution, mean = "<< s.mean() | ||
|  |       << ", standard deviation = " << s.standard_deviation() << std::endl; | ||
|  | 
 | ||
|  |   std::cout << "maxdigits_10 is " << precision | ||
|  |     << ", digits10 is " << std::numeric_limits<FPT>::digits10 << std::endl; | ||
|  | 
 | ||
|  |   std::cout << "Probability distribution function values" << std::endl; | ||
|  | 
 | ||
|  |   std::cout << "  z " "   PDF " << std::endl; | ||
|  |   for (FPT z = -range; z < range + step; z += step) | ||
|  |   { | ||
|  |     std::cout << std::left << std::setprecision(3) << std::setw(6) << z << " " | ||
|  |       << std::setprecision(precision) << std::setw(12) << pdf(s, z) << std::endl; | ||
|  |   } | ||
|  |   std::cout.precision(6); // Restore to default precision.
 | ||
|  | 
 | ||
|  | /*`And the area under the normal curve from -[infin] up to z,
 | ||
|  |   the cumulative distribution function (CDF). | ||
|  | */ | ||
|  |   // For a standard normal distribution:
 | ||
|  |   std::cout << "Standard normal mean = "<< s.mean() | ||
|  |     << ", standard deviation = " << s.standard_deviation() << std::endl; | ||
|  |   std::cout << "Integral (area under the curve) from - infinity up to z." << std::endl; | ||
|  |   std::cout << "  z " "   CDF " << std::endl; | ||
|  |   for (FPT z = -range; z < range + step; z += step) | ||
|  |   { | ||
|  |     std::cout << std::left << std::setprecision(3) << std::setw(6) << z << " " | ||
|  |       << std::setprecision(precision) << std::setw(12) << cdf(s, z) << std::endl; | ||
|  |   } | ||
|  |   std::cout.precision(6); // Reset to default precision.
 | ||
|  | } // template <typename FPT> void normal_table()
 | ||
|  | 
 | ||
|  | int main() | ||
|  | { | ||
|  |   std::cout << "\nExample: Normal distribution tables." << std::endl; | ||
|  | 
 | ||
|  |   using namespace boost::math; | ||
|  | 
 | ||
|  |   try | ||
|  |   {// Tip - always use try'n'catch blocks to ensure that messages from thrown exceptions are shown.
 | ||
|  | 
 | ||
|  | //[normal_table_1
 | ||
|  | #ifdef BOOST_FLOAT32_C
 | ||
|  |     normal_table<boost::float32_t>(); // Usually type float
 | ||
|  | #endif
 | ||
|  |     normal_table<boost::float64_t>(); // Uusually type double. Assume that float64_t is always available.
 | ||
|  | #ifdef BOOST_FLOAT80_C
 | ||
|  |     normal_table<boost::float80_t>(); // Type long double on some X86 platforms.
 | ||
|  | #endif
 | ||
|  | #ifdef BOOST_FLOAT128_C
 | ||
|  |     normal_table<boost::float128_t>(); // Type _Quad on some Intel and __float128 on some GCC platforms.
 | ||
|  | #endif
 | ||
|  |     normal_table<boost::floatmax_t>(); | ||
|  | //] [/normal_table_1 ]
 | ||
|  |   } | ||
|  |   catch(std::exception ex) | ||
|  |   { | ||
|  |     std::cout << "exception thrown " << ex.what() << std::endl; | ||
|  |   } | ||
|  | 
 | ||
|  |   return 0; | ||
|  | }  // int main()
 | ||
|  | 
 | ||
|  | 
 | ||
|  | /*
 | ||
|  | 
 | ||
|  | GCC 4.8.1 with quadmath | ||
|  | 
 | ||
|  | Example: Normal distribution tables. | ||
|  | 
 | ||
|  | Standard normal distribution, mean = 0, standard deviation = 1 | ||
|  | maxdigits_10 is 9, digits10 is 6 | ||
|  | Probability distribution function values | ||
|  |   z    PDF | ||
|  | -10    7.69459863e-023 | ||
|  | -9     1.02797736e-018 | ||
|  | -8     5.05227108e-015 | ||
|  | -7     9.13472041e-012 | ||
|  | -6     6.07588285e-009 | ||
|  | -5     1.48671951e-006 | ||
|  | -4     0.000133830226 | ||
|  | -3     0.00443184841 | ||
|  | -2     0.0539909665 | ||
|  | -1     0.241970725 | ||
|  | 0      0.39894228 | ||
|  | 1      0.241970725 | ||
|  | 2      0.0539909665 | ||
|  | 3      0.00443184841 | ||
|  | 4      0.000133830226 | ||
|  | 5      1.48671951e-006 | ||
|  | 6      6.07588285e-009 | ||
|  | 7      9.13472041e-012 | ||
|  | 8      5.05227108e-015 | ||
|  | 9      1.02797736e-018 | ||
|  | 10     7.69459863e-023 | ||
|  | Standard normal mean = 0, standard deviation = 1 | ||
|  | Integral (area under the curve) from - infinity up to z. | ||
|  |   z    CDF | ||
|  | -10    7.61985302e-024 | ||
|  | -9     1.12858841e-019 | ||
|  | -8     6.22096057e-016 | ||
|  | -7     1.27981254e-012 | ||
|  | -6     9.86587645e-010 | ||
|  | -5     2.86651572e-007 | ||
|  | -4     3.16712418e-005 | ||
|  | -3     0.00134989803 | ||
|  | -2     0.0227501319 | ||
|  | -1     0.158655254 | ||
|  | 0      0.5 | ||
|  | 1      0.841344746 | ||
|  | 2      0.977249868 | ||
|  | 3      0.998650102 | ||
|  | 4      0.999968329 | ||
|  | 5      0.999999713 | ||
|  | 6      0.999999999 | ||
|  | 7      1 | ||
|  | 8      1 | ||
|  | 9      1 | ||
|  | 10     1 | ||
|  | 
 | ||
|  | Standard normal distribution, mean = 0, standard deviation = 1 | ||
|  | maxdigits_10 is 17, digits10 is 15 | ||
|  | Probability distribution function values | ||
|  |   z    PDF | ||
|  | -10    7.6945986267064199e-023 | ||
|  | -9     1.0279773571668917e-018 | ||
|  | -8     5.0522710835368927e-015 | ||
|  | -7     9.1347204083645953e-012 | ||
|  | -6     6.0758828498232861e-009 | ||
|  | -5     1.4867195147342979e-006 | ||
|  | -4     0.00013383022576488537 | ||
|  | -3     0.0044318484119380075 | ||
|  | -2     0.053990966513188063 | ||
|  | -1     0.24197072451914337 | ||
|  | 0      0.3989422804014327 | ||
|  | 1      0.24197072451914337 | ||
|  | 2      0.053990966513188063 | ||
|  | 3      0.0044318484119380075 | ||
|  | 4      0.00013383022576488537 | ||
|  | 5      1.4867195147342979e-006 | ||
|  | 6      6.0758828498232861e-009 | ||
|  | 7      9.1347204083645953e-012 | ||
|  | 8      5.0522710835368927e-015 | ||
|  | 9      1.0279773571668917e-018 | ||
|  | 10     7.6945986267064199e-023 | ||
|  | Standard normal mean = 0, standard deviation = 1 | ||
|  | Integral (area under the curve) from - infinity up to z. | ||
|  |   z    CDF | ||
|  | -10    7.6198530241605945e-024 | ||
|  | -9     1.1285884059538422e-019 | ||
|  | -8     6.2209605742718204e-016 | ||
|  | -7     1.279812543885835e-012 | ||
|  | -6     9.865876450377014e-010 | ||
|  | -5     2.8665157187919455e-007 | ||
|  | -4     3.1671241833119972e-005 | ||
|  | -3     0.0013498980316300957 | ||
|  | -2     0.022750131948179216 | ||
|  | -1     0.15865525393145705 | ||
|  | 0      0.5 | ||
|  | 1      0.84134474606854293 | ||
|  | 2      0.97724986805182079 | ||
|  | 3      0.9986501019683699 | ||
|  | 4      0.99996832875816688 | ||
|  | 5      0.99999971334842808 | ||
|  | 6      0.9999999990134123 | ||
|  | 7      0.99999999999872013 | ||
|  | 8      0.99999999999999933 | ||
|  | 9      1 | ||
|  | 10     1 | ||
|  | 
 | ||
|  | Standard normal distribution, mean = 0, standard deviation = 1 | ||
|  | maxdigits_10 is 21, digits10 is 18 | ||
|  | Probability distribution function values | ||
|  |   z    PDF | ||
|  | -10    7.69459862670641993759e-023 | ||
|  | -9     1.0279773571668916523e-018 | ||
|  | -8     5.05227108353689273243e-015 | ||
|  | -7     9.13472040836459525705e-012 | ||
|  | -6     6.07588284982328608733e-009 | ||
|  | -5     1.48671951473429788965e-006 | ||
|  | -4     0.00013383022576488536764 | ||
|  | -3     0.00443184841193800752729 | ||
|  | -2     0.0539909665131880628364 | ||
|  | -1     0.241970724519143365328 | ||
|  | 0      0.398942280401432702863 | ||
|  | 1      0.241970724519143365328 | ||
|  | 2      0.0539909665131880628364 | ||
|  | 3      0.00443184841193800752729 | ||
|  | 4      0.00013383022576488536764 | ||
|  | 5      1.48671951473429788965e-006 | ||
|  | 6      6.07588284982328608733e-009 | ||
|  | 7      9.13472040836459525705e-012 | ||
|  | 8      5.05227108353689273243e-015 | ||
|  | 9      1.0279773571668916523e-018 | ||
|  | 10     7.69459862670641993759e-023 | ||
|  | Standard normal mean = 0, standard deviation = 1 | ||
|  | Integral (area under the curve) from - infinity up to z. | ||
|  |   z    CDF | ||
|  | -10    7.61985302416059451083e-024 | ||
|  | -9     1.12858840595384222719e-019 | ||
|  | -8     6.22096057427182035917e-016 | ||
|  | -7     1.279812543885834962e-012 | ||
|  | -6     9.86587645037701399241e-010 | ||
|  | -5     2.86651571879194547129e-007 | ||
|  | -4     3.16712418331199717608e-005 | ||
|  | -3     0.00134989803163009566139 | ||
|  | -2     0.0227501319481792155242 | ||
|  | -1     0.158655253931457046468 | ||
|  | 0      0.5 | ||
|  | 1      0.841344746068542925777 | ||
|  | 2      0.977249868051820791415 | ||
|  | 3      0.998650101968369896532 | ||
|  | 4      0.999968328758166880021 | ||
|  | 5      0.999999713348428076465 | ||
|  | 6      0.999999999013412299576 | ||
|  | 7      0.999999999998720134897 | ||
|  | 8      0.999999999999999333866 | ||
|  | 9      1 | ||
|  | 10     1 | ||
|  | 
 | ||
|  | Standard normal distribution, mean = 0, standard deviation = 1 | ||
|  | maxdigits_10 is 36, digits10 is 34 | ||
|  | Probability distribution function values | ||
|  |   z    PDF | ||
|  | -10    7.69459862670641993759264402330435296e-023 | ||
|  | -9     1.02797735716689165230378750485667109e-018 | ||
|  | -8     5.0522710835368927324337437844893081e-015 | ||
|  | -7     9.13472040836459525705208369548147081e-012 | ||
|  | -6     6.07588284982328608733411870229841611e-009 | ||
|  | -5     1.48671951473429788965346931561839483e-006 | ||
|  | -4     0.00013383022576488536764006964663309418 | ||
|  | -3     0.00443184841193800752728870762098267733 | ||
|  | -2     0.0539909665131880628363703067407186609 | ||
|  | -1     0.241970724519143365327522587904240936 | ||
|  | 0      0.398942280401432702863218082711682655 | ||
|  | 1      0.241970724519143365327522587904240936 | ||
|  | 2      0.0539909665131880628363703067407186609 | ||
|  | 3      0.00443184841193800752728870762098267733 | ||
|  | 4      0.00013383022576488536764006964663309418 | ||
|  | 5      1.48671951473429788965346931561839483e-006 | ||
|  | 6      6.07588284982328608733411870229841611e-009 | ||
|  | 7      9.13472040836459525705208369548147081e-012 | ||
|  | 8      5.0522710835368927324337437844893081e-015 | ||
|  | 9      1.02797735716689165230378750485667109e-018 | ||
|  | 10     7.69459862670641993759264402330435296e-023 | ||
|  | Standard normal mean = 0, standard deviation = 1 | ||
|  | Integral (area under the curve) from - infinity up to z. | ||
|  |   z    CDF | ||
|  | -10    7.61985302416059451083278826816793623e-024 | ||
|  | -9     1.1285884059538422271881384555435713e-019 | ||
|  | -8     6.22096057427182035917417257601387863e-016 | ||
|  | -7     1.27981254388583496200054074948511201e-012 | ||
|  | -6     9.86587645037701399241244820583623953e-010 | ||
|  | -5     2.86651571879194547128505464808623238e-007 | ||
|  | -4     3.16712418331199717608064048146587766e-005 | ||
|  | -3     0.001349898031630095661392854111682027 | ||
|  | -2     0.0227501319481792155241528519127314212 | ||
|  | -1     0.158655253931457046467912164189328905 | ||
|  | 0      0.5 | ||
|  | 1      0.841344746068542925776512220181757584 | ||
|  | 2      0.977249868051820791414741051994496956 | ||
|  | 3      0.998650101968369896532351503992686048 | ||
|  | 4      0.999968328758166880021462930017150939 | ||
|  | 5      0.999999713348428076464813329948810861 | ||
|  | 6      0.999999999013412299575520592043176293 | ||
|  | 7      0.999999999998720134897212119540199637 | ||
|  | 8      0.999999999999999333866185224906075746 | ||
|  | 9      1 | ||
|  | 10     1 | ||
|  | 
 | ||
|  | Standard normal distribution, mean = 0, standard deviation = 1 | ||
|  | maxdigits_10 is 36, digits10 is 34 | ||
|  | Probability distribution function values | ||
|  |   z    PDF | ||
|  | -10    7.69459862670641993759264402330435296e-023 | ||
|  | -9     1.02797735716689165230378750485667109e-018 | ||
|  | -8     5.0522710835368927324337437844893081e-015 | ||
|  | -7     9.13472040836459525705208369548147081e-012 | ||
|  | -6     6.07588284982328608733411870229841611e-009 | ||
|  | -5     1.48671951473429788965346931561839483e-006 | ||
|  | -4     0.00013383022576488536764006964663309418 | ||
|  | -3     0.00443184841193800752728870762098267733 | ||
|  | -2     0.0539909665131880628363703067407186609 | ||
|  | -1     0.241970724519143365327522587904240936 | ||
|  | 0      0.398942280401432702863218082711682655 | ||
|  | 1      0.241970724519143365327522587904240936 | ||
|  | 2      0.0539909665131880628363703067407186609 | ||
|  | 3      0.00443184841193800752728870762098267733 | ||
|  | 4      0.00013383022576488536764006964663309418 | ||
|  | 5      1.48671951473429788965346931561839483e-006 | ||
|  | 6      6.07588284982328608733411870229841611e-009 | ||
|  | 7      9.13472040836459525705208369548147081e-012 | ||
|  | 8      5.0522710835368927324337437844893081e-015 | ||
|  | 9      1.02797735716689165230378750485667109e-018 | ||
|  | 10     7.69459862670641993759264402330435296e-023 | ||
|  | Standard normal mean = 0, standard deviation = 1 | ||
|  | Integral (area under the curve) from - infinity up to z. | ||
|  |   z    CDF | ||
|  | -10    7.61985302416059451083278826816793623e-024 | ||
|  | -9     1.1285884059538422271881384555435713e-019 | ||
|  | -8     6.22096057427182035917417257601387863e-016 | ||
|  | -7     1.27981254388583496200054074948511201e-012 | ||
|  | -6     9.86587645037701399241244820583623953e-010 | ||
|  | -5     2.86651571879194547128505464808623238e-007 | ||
|  | -4     3.16712418331199717608064048146587766e-005 | ||
|  | -3     0.001349898031630095661392854111682027 | ||
|  | -2     0.0227501319481792155241528519127314212 | ||
|  | -1     0.158655253931457046467912164189328905 | ||
|  | 0      0.5 | ||
|  | 1      0.841344746068542925776512220181757584 | ||
|  | 2      0.977249868051820791414741051994496956 | ||
|  | 3      0.998650101968369896532351503992686048 | ||
|  | 4      0.999968328758166880021462930017150939 | ||
|  | 5      0.999999713348428076464813329948810861 | ||
|  | 6      0.999999999013412299575520592043176293 | ||
|  | 7      0.999999999998720134897212119540199637 | ||
|  | 8      0.999999999999999333866185224906075746 | ||
|  | 9      1 | ||
|  | 10     1 | ||
|  | 
 | ||
|  | MSVC 2013 64-bit | ||
|  | 1> | ||
|  | 1>  Example: Normal distribution tables. | ||
|  | 1> | ||
|  | 1>  Standard normal distribution, mean = 0, standard deviation = 1 | ||
|  | 1>  maxdigits_10 is 9, digits10 is 6 | ||
|  | 1>  Probability distribution function values | ||
|  | 1>    z    PDF | ||
|  | 1>  -10    7.69459863e-023 | ||
|  | 1>  -9     1.02797736e-018 | ||
|  | 1>  -8     5.05227108e-015 | ||
|  | 1>  -7     9.13472041e-012 | ||
|  | 1>  -6     6.07588285e-009 | ||
|  | 1>  -5     1.48671951e-006 | ||
|  | 1>  -4     0.000133830226 | ||
|  | 1>  -3     0.00443184841 | ||
|  | 1>  -2     0.0539909665 | ||
|  | 1>  -1     0.241970725 | ||
|  | 1>  0      0.39894228 | ||
|  | 1>  1      0.241970725 | ||
|  | 1>  2      0.0539909665 | ||
|  | 1>  3      0.00443184841 | ||
|  | 1>  4      0.000133830226 | ||
|  | 1>  5      1.48671951e-006 | ||
|  | 1>  6      6.07588285e-009 | ||
|  | 1>  7      9.13472041e-012 | ||
|  | 1>  8      5.05227108e-015 | ||
|  | 1>  9      1.02797736e-018 | ||
|  | 1>  10     7.69459863e-023 | ||
|  | 1>  Standard normal mean = 0, standard deviation = 1 | ||
|  | 1>  Integral (area under the curve) from - infinity up to z. | ||
|  | 1>    z    CDF | ||
|  | 1>  -10    7.61985302e-024 | ||
|  | 1>  -9     1.12858841e-019 | ||
|  | 1>  -8     6.22096057e-016 | ||
|  | 1>  -7     1.27981254e-012 | ||
|  | 1>  -6     9.86587645e-010 | ||
|  | 1>  -5     2.86651572e-007 | ||
|  | 1>  -4     3.16712418e-005 | ||
|  | 1>  -3     0.00134989803 | ||
|  | 1>  -2     0.0227501319 | ||
|  | 1>  -1     0.158655254 | ||
|  | 1>  0      0.5 | ||
|  | 1>  1      0.841344746 | ||
|  | 1>  2      0.977249868 | ||
|  | 1>  3      0.998650102 | ||
|  | 1>  4      0.999968329 | ||
|  | 1>  5      0.999999713 | ||
|  | 1>  6      0.999999999 | ||
|  | 1>  7      1 | ||
|  | 1>  8      1 | ||
|  | 1>  9      1 | ||
|  | 1>  10     1 | ||
|  | 1> | ||
|  | 1>  Standard normal distribution, mean = 0, standard deviation = 1 | ||
|  | 1>  maxdigits_10 is 17, digits10 is 15 | ||
|  | 1>  Probability distribution function values | ||
|  | 1>    z    PDF | ||
|  | 1>  -10    7.6945986267064199e-023 | ||
|  | 1>  -9     1.0279773571668917e-018 | ||
|  | 1>  -8     5.0522710835368927e-015 | ||
|  | 1>  -7     9.1347204083645953e-012 | ||
|  | 1>  -6     6.0758828498232861e-009 | ||
|  | 1>  -5     1.4867195147342979e-006 | ||
|  | 1>  -4     0.00013383022576488537 | ||
|  | 1>  -3     0.0044318484119380075 | ||
|  | 1>  -2     0.053990966513188063 | ||
|  | 1>  -1     0.24197072451914337 | ||
|  | 1>  0      0.3989422804014327 | ||
|  | 1>  1      0.24197072451914337 | ||
|  | 1>  2      0.053990966513188063 | ||
|  | 1>  3      0.0044318484119380075 | ||
|  | 1>  4      0.00013383022576488537 | ||
|  | 1>  5      1.4867195147342979e-006 | ||
|  | 1>  6      6.0758828498232861e-009 | ||
|  | 1>  7      9.1347204083645953e-012 | ||
|  | 1>  8      5.0522710835368927e-015 | ||
|  | 1>  9      1.0279773571668917e-018 | ||
|  | 1>  10     7.6945986267064199e-023 | ||
|  | 1>  Standard normal mean = 0, standard deviation = 1 | ||
|  | 1>  Integral (area under the curve) from - infinity up to z. | ||
|  | 1>    z    CDF | ||
|  | 1>  -10    7.6198530241605813e-024 | ||
|  | 1>  -9     1.1285884059538408e-019 | ||
|  | 1>  -8     6.2209605742718292e-016 | ||
|  | 1>  -7     1.2798125438858352e-012 | ||
|  | 1>  -6     9.8658764503770161e-010 | ||
|  | 1>  -5     2.8665157187919439e-007 | ||
|  | 1>  -4     3.1671241833119979e-005 | ||
|  | 1>  -3     0.0013498980316300957 | ||
|  | 1>  -2     0.022750131948179219 | ||
|  | 1>  -1     0.15865525393145707 | ||
|  | 1>  0      0.5 | ||
|  | 1>  1      0.84134474606854293 | ||
|  | 1>  2      0.97724986805182079 | ||
|  | 1>  3      0.9986501019683699 | ||
|  | 1>  4      0.99996832875816688 | ||
|  | 1>  5      0.99999971334842808 | ||
|  | 1>  6      0.9999999990134123 | ||
|  | 1>  7      0.99999999999872013 | ||
|  | 1>  8      0.99999999999999933 | ||
|  | 1>  9      1 | ||
|  | 1>  10     1 | ||
|  | 1> | ||
|  | 1>  Standard normal distribution, mean = 0, standard deviation = 1 | ||
|  | 1>  maxdigits_10 is 17, digits10 is 15 | ||
|  | 1>  Probability distribution function values | ||
|  | 1>    z    PDF | ||
|  | 1>  -10    7.6945986267064199e-023 | ||
|  | 1>  -9     1.0279773571668917e-018 | ||
|  | 1>  -8     5.0522710835368927e-015 | ||
|  | 1>  -7     9.1347204083645953e-012 | ||
|  | 1>  -6     6.0758828498232861e-009 | ||
|  | 1>  -5     1.4867195147342979e-006 | ||
|  | 1>  -4     0.00013383022576488537 | ||
|  | 1>  -3     0.0044318484119380075 | ||
|  | 1>  -2     0.053990966513188063 | ||
|  | 1>  -1     0.24197072451914337 | ||
|  | 1>  0      0.3989422804014327 | ||
|  | 1>  1      0.24197072451914337 | ||
|  | 1>  2      0.053990966513188063 | ||
|  | 1>  3      0.0044318484119380075 | ||
|  | 1>  4      0.00013383022576488537 | ||
|  | 1>  5      1.4867195147342979e-006 | ||
|  | 1>  6      6.0758828498232861e-009 | ||
|  | 1>  7      9.1347204083645953e-012 | ||
|  | 1>  8      5.0522710835368927e-015 | ||
|  | 1>  9      1.0279773571668917e-018 | ||
|  | 1>  10     7.6945986267064199e-023 | ||
|  | 1>  Standard normal mean = 0, standard deviation = 1 | ||
|  | 1>  Integral (area under the curve) from - infinity up to z. | ||
|  | 1>    z    CDF | ||
|  | 1>  -10    7.6198530241605813e-024 | ||
|  | 1>  -9     1.1285884059538408e-019 | ||
|  | 1>  -8     6.2209605742718292e-016 | ||
|  | 1>  -7     1.2798125438858352e-012 | ||
|  | 1>  -6     9.8658764503770161e-010 | ||
|  | 1>  -5     2.8665157187919439e-007 | ||
|  | 1>  -4     3.1671241833119979e-005 | ||
|  | 1>  -3     0.0013498980316300957 | ||
|  | 1>  -2     0.022750131948179219 | ||
|  | 1>  -1     0.15865525393145707 | ||
|  | 1>  0      0.5 | ||
|  | 1>  1      0.84134474606854293 | ||
|  | 1>  2      0.97724986805182079 | ||
|  | 1>  3      0.9986501019683699 | ||
|  | 1>  4      0.99996832875816688 | ||
|  | 1>  5      0.99999971334842808 | ||
|  | 1>  6      0.9999999990134123 | ||
|  | 1>  7      0.99999999999872013 | ||
|  | 1>  8      0.99999999999999933 | ||
|  | 1>  9      1 | ||
|  | 1>  10     1 | ||
|  | 
 | ||
|  | 
 | ||
|  | */ |