mirror of
				https://github.com/saitohirga/WSJT-X.git
				synced 2025-10-27 11:00:32 -04:00 
			
		
		
		
	
		
			
	
	
		
			448 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
		
		
			
		
	
	
			448 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
|  | // Copyright Christopher Kormanyos 2013.
 | ||
|  | // Copyright Paul A. Bristow 2013.
 | ||
|  | // Copyright John Maddock 2013.
 | ||
|  | 
 | ||
|  | // Distributed under the Boost Software License, Version 1.0.
 | ||
|  | // (See accompanying file LICENSE_1_0.txt or
 | ||
|  | // copy at http://www.boost.org/LICENSE_1_0.txt).
 | ||
|  | 
 | ||
|  | #ifdef _MSC_VER
 | ||
|  | #  pragma warning (disable : 4512) // assignment operator could not be generated.
 | ||
|  | #  pragma warning (disable : 4996) // assignment operator could not be generated.
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  | #include <iostream>
 | ||
|  | #include <limits>
 | ||
|  | #include <vector>
 | ||
|  | #include <algorithm>
 | ||
|  | #include <iomanip>
 | ||
|  | #include <iterator>
 | ||
|  | 
 | ||
|  | // Weisstein, Eric W. "Bessel Function Zeros." From MathWorld--A Wolfram Web Resource.
 | ||
|  | // http://mathworld.wolfram.com/BesselFunctionZeros.html
 | ||
|  | // Test values can be calculated using [@wolframalpha.com WolframAplha]
 | ||
|  | // See also http://dlmf.nist.gov/10.21
 | ||
|  | 
 | ||
|  | //[bessel_zero_example_1
 | ||
|  | 
 | ||
|  | /*`This example demonstrates calculating zeros of the Bessel, Neumann and Airy functions.
 | ||
|  | It also shows how Boost.Math and Boost.Multiprecision can be combined to provide | ||
|  | a many decimal digit precision. For 50 decimal digit precision we need to include | ||
|  | */ | ||
|  | 
 | ||
|  |   #include <boost/multiprecision/cpp_dec_float.hpp>
 | ||
|  | 
 | ||
|  | /*`and a `typedef` for `float_type` may be convenient
 | ||
|  | (allowing a quick switch to re-compute at built-in `double` or other precision) | ||
|  | */ | ||
|  |   typedef boost::multiprecision::cpp_dec_float_50 float_type; | ||
|  | 
 | ||
|  | //`To use the functions for finding zeros of the functions we need
 | ||
|  | 
 | ||
|  |   #include <boost/math/special_functions/bessel.hpp>
 | ||
|  | 
 | ||
|  | //`This file includes the forward declaration signatures for the zero-finding functions:
 | ||
|  | 
 | ||
|  | //  #include <boost/math/special_functions/math_fwd.hpp>
 | ||
|  | 
 | ||
|  | /*`but more details are in the full documentation, for example at
 | ||
|  | [@http://www.boost.org/doc/libs/1_53_0/libs/math/doc/sf_and_dist/html/math_toolkit/special/bessel/bessel_over.html Boost.Math Bessel functions]
 | ||
|  | */ | ||
|  | 
 | ||
|  | /*`This example shows obtaining both a single zero of the Bessel function,
 | ||
|  | and then placing multiple zeros into a container like `std::vector` by providing an iterator. | ||
|  | The signature of the single value function is: | ||
|  | 
 | ||
|  |   template <class T> | ||
|  |   inline typename detail::bessel_traits<T, T, policies::policy<> >::result_type | ||
|  |     cyl_bessel_j_zero(T v,  // Floating-point value for Jv.
 | ||
|  |     int m); // start index.
 | ||
|  | 
 | ||
|  | The result type is controlled by the floating-point type of parameter `v` | ||
|  | (but subject to the usual __precision_policy and __promotion_policy). | ||
|  | 
 | ||
|  | The signature of multiple zeros function is: | ||
|  | 
 | ||
|  |   template <class T, class OutputIterator> | ||
|  |   inline OutputIterator cyl_bessel_j_zero(T v, // Floating-point value for Jv.
 | ||
|  |                                 int start_index, // 1-based start index.
 | ||
|  |                                 unsigned number_of_zeros, | ||
|  |                                 OutputIterator out_it); // iterator into container for zeros.
 | ||
|  | 
 | ||
|  | There is also a version which allows control of the __policy_section for error handling and precision. | ||
|  | 
 | ||
|  |   template <class T, class OutputIterator, class Policy> | ||
|  |   inline OutputIterator cyl_bessel_j_zero(T v, // Floating-point value for Jv.
 | ||
|  |                                 int start_index, // 1-based start index.
 | ||
|  |                                 unsigned number_of_zeros, | ||
|  |                                 OutputIterator out_it, | ||
|  |                                 const Policy& pol); // iterator into container for zeros.
 | ||
|  | 
 | ||
|  | */ | ||
|  | //]  [/bessel_zero_example_1]
 | ||
|  | 
 | ||
|  | //[bessel_zero_example_iterator_1]
 | ||
|  | /*`We use the `cyl_bessel_j_zero` output iterator parameter `out_it`
 | ||
|  | to create a sum of 1/zeros[super 2] by defining a custom output iterator: | ||
|  | */ | ||
|  | 
 | ||
|  | template <class T> | ||
|  | struct output_summation_iterator | ||
|  | { | ||
|  |    output_summation_iterator(T* p) : p_sum(p) | ||
|  |    {} | ||
|  |    output_summation_iterator& operator*() | ||
|  |    { return *this; } | ||
|  |     output_summation_iterator& operator++() | ||
|  |    { return *this; } | ||
|  |    output_summation_iterator& operator++(int) | ||
|  |    { return *this; } | ||
|  |    output_summation_iterator& operator = (T const& val) | ||
|  |    { | ||
|  |      *p_sum += 1./ (val * val); // Summing 1/zero^2.
 | ||
|  |      return *this; | ||
|  |    } | ||
|  | private: | ||
|  |    T* p_sum; | ||
|  | }; | ||
|  | 
 | ||
|  | 
 | ||
|  | //] [/bessel_zero_example_iterator_1]
 | ||
|  | 
 | ||
|  | int main() | ||
|  | { | ||
|  |   try | ||
|  |   { | ||
|  | //[bessel_zero_example_2]
 | ||
|  | 
 | ||
|  | /*`[tip It is always wise to place code using Boost.Math inside try'n'catch blocks;
 | ||
|  | this will ensure that helpful error messages can be shown when exceptional conditions arise.] | ||
|  | 
 | ||
|  | First, evaluate a single Bessel zero. | ||
|  | 
 | ||
|  | The precision is controlled by the float-point type of template parameter `T` of `v` | ||
|  | so this example has `double` precision, at least 15 but up to 17 decimal digits (for the common 64-bit double). | ||
|  | */ | ||
|  |     double root = boost::math::cyl_bessel_j_zero(0.0, 1); | ||
|  |     // Displaying with default precision of 6 decimal digits:
 | ||
|  |     std::cout << "boost::math::cyl_bessel_j_zero(0.0, 1) " << root << std::endl; // 2.40483
 | ||
|  |     // And with all the guaranteed (15) digits:
 | ||
|  |     std::cout.precision(std::numeric_limits<double>::digits10); | ||
|  |     std::cout << "boost::math::cyl_bessel_j_zero(0.0, 1) " << root << std::endl; // 2.40482555769577
 | ||
|  | /*`But note that because the parameter `v` controls the precision of the result,
 | ||
|  | `v` [*must be a floating-point type]. | ||
|  | So if you provide an integer type, say 0, rather than 0.0, then it will fail to compile thus: | ||
|  | `` | ||
|  |     root = boost::math::cyl_bessel_j_zero(0, 1); | ||
|  | `` | ||
|  | with this error message | ||
|  | `` | ||
|  |   error C2338: Order must be a floating-point type. | ||
|  | `` | ||
|  | 
 | ||
|  | Optionally, we can use a policy to ignore errors, C-style, returning some value | ||
|  | perhaps infinity or NaN, or the best that can be done. (See __user_error_handling). | ||
|  | 
 | ||
|  | To create a (possibly unwise!) policy that ignores all errors: | ||
|  | */ | ||
|  | 
 | ||
|  |   typedef boost::math::policies::policy | ||
|  |     < | ||
|  |       boost::math::policies::domain_error<boost::math::policies::ignore_error>, | ||
|  |       boost::math::policies::overflow_error<boost::math::policies::ignore_error>, | ||
|  |       boost::math::policies::underflow_error<boost::math::policies::ignore_error>, | ||
|  |       boost::math::policies::denorm_error<boost::math::policies::ignore_error>, | ||
|  |       boost::math::policies::pole_error<boost::math::policies::ignore_error>, | ||
|  |       boost::math::policies::evaluation_error<boost::math::policies::ignore_error> | ||
|  |     > ignore_all_policy; | ||
|  | 
 | ||
|  |     double inf = std::numeric_limits<double>::infinity(); | ||
|  |     double nan = std::numeric_limits<double>::quiet_NaN(); | ||
|  | 
 | ||
|  |     std::cout << "boost::math::cyl_bessel_j_zero(-1.0, 0) " << std::endl; | ||
|  |     double dodgy_root = boost::math::cyl_bessel_j_zero(-1.0, 0, ignore_all_policy()); | ||
|  |     std::cout << "boost::math::cyl_bessel_j_zero(-1.0, 1) " << dodgy_root << std::endl; // 1.#QNAN
 | ||
|  |     double inf_root = boost::math::cyl_bessel_j_zero(inf, 1, ignore_all_policy()); | ||
|  |     std::cout << "boost::math::cyl_bessel_j_zero(inf, 1) " << inf_root << std::endl; // 1.#QNAN
 | ||
|  |     double nan_root = boost::math::cyl_bessel_j_zero(nan, 1, ignore_all_policy()); | ||
|  |     std::cout << "boost::math::cyl_bessel_j_zero(nan, 1) " << nan_root << std::endl; // 1.#QNAN
 | ||
|  | 
 | ||
|  | /*`Another version of `cyl_bessel_j_zero` allows calculation of multiple zeros with one call,
 | ||
|  | placing the results in a container, often `std::vector`. | ||
|  | For example, generate five `double` roots of J[sub v] for integral order 2. | ||
|  | 
 | ||
|  | showing the same results as column J[sub 2](x) in table 1 of | ||
|  | [@ http://mathworld.wolfram.com/BesselFunctionZeros.html Wolfram Bessel Function Zeros].
 | ||
|  | 
 | ||
|  | */ | ||
|  |     unsigned int n_roots = 5U; | ||
|  |     std::vector<double> roots; | ||
|  |     boost::math::cyl_bessel_j_zero(2.0, 1, n_roots, std::back_inserter(roots)); | ||
|  |     std::copy(roots.begin(), | ||
|  |               roots.end(), | ||
|  |               std::ostream_iterator<double>(std::cout, "\n")); | ||
|  | 
 | ||
|  | /*`Or generate 50 decimal digit roots of J[sub v] for non-integral order `v = 71/19`.
 | ||
|  | 
 | ||
|  | We set the precision of the output stream and show trailing zeros to display a fixed 50 decimal digits. | ||
|  | */ | ||
|  |     std::cout.precision(std::numeric_limits<float_type>::digits10); // 50 decimal digits.
 | ||
|  |     std::cout << std::showpoint << std::endl; // Show trailing zeros.
 | ||
|  | 
 | ||
|  |     float_type x = float_type(71) / 19; | ||
|  |     float_type r = boost::math::cyl_bessel_j_zero(x, 1); // 1st root.
 | ||
|  |     std::cout << "x = " << x << ", r = " << r << std::endl; | ||
|  | 
 | ||
|  |     r = boost::math::cyl_bessel_j_zero(x, 20U); // 20th root.
 | ||
|  |     std::cout << "x = " << x << ", r = " << r << std::endl; | ||
|  | 
 | ||
|  |     std::vector<float_type> zeros; | ||
|  |     boost::math::cyl_bessel_j_zero(x, 1, 3, std::back_inserter(zeros)); | ||
|  | 
 | ||
|  |     std::cout << "cyl_bessel_j_zeros" << std::endl; | ||
|  |     // Print the roots to the output stream.
 | ||
|  |     std::copy(zeros.begin(), zeros.end(), | ||
|  |               std::ostream_iterator<float_type>(std::cout, "\n")); | ||
|  | 
 | ||
|  | /*`The Neumann function zeros are evaluated very similarly:
 | ||
|  | */ | ||
|  |     using boost::math::cyl_neumann_zero; | ||
|  | 
 | ||
|  |     double zn = cyl_neumann_zero(2., 1); | ||
|  | 
 | ||
|  |     std::cout << "cyl_neumann_zero(2., 1) = " << std::endl; | ||
|  |     //double zn0 = zn;
 | ||
|  |     //    std::cout << "zn0 = " << std::endl;
 | ||
|  |     //    std::cout << zn0 << std::endl;
 | ||
|  |     //
 | ||
|  |     std::cout << zn << std::endl; | ||
|  |     //  std::cout << cyl_neumann_zero(2., 1) << std::endl;
 | ||
|  | 
 | ||
|  |     std::vector<float> nzeros(3); // Space for 3 zeros.
 | ||
|  |     cyl_neumann_zero<float>(2.F, 1, nzeros.size(), nzeros.begin()); | ||
|  | 
 | ||
|  |     std::cout << "cyl_neumann_zero<float>(2.F, 1, " << std::endl; | ||
|  |     // Print the zeros to the output stream.
 | ||
|  |     std::copy(nzeros.begin(), nzeros.end(), | ||
|  |               std::ostream_iterator<float>(std::cout, "\n")); | ||
|  | 
 | ||
|  |     std::cout << cyl_neumann_zero(static_cast<float_type>(220)/100, 1) << std::endl; | ||
|  |     // 3.6154383428745996706772556069431792744372398748422
 | ||
|  | 
 | ||
|  | /*`Finally we show how the output iterator can be used to compute a sum of zeros.
 | ||
|  | 
 | ||
|  | (See [@http://dx.doi.org/10.1017/S2040618500034067 Ian N. Sneddon, Infinite Sums of Bessel Zeros],
 | ||
|  | page 150 equation 40). | ||
|  | */ | ||
|  | //] [/bessel_zero_example_2]
 | ||
|  | 
 | ||
|  |     { | ||
|  | //[bessel_zero_example_iterator_2]
 | ||
|  | /*`The sum is calculated for many values, converging on the analytical exact value of `1/8`.
 | ||
|  | */ | ||
|  |     using boost::math::cyl_bessel_j_zero; | ||
|  |     double nu = 1.; | ||
|  |     double sum = 0; | ||
|  |     output_summation_iterator<double> it(&sum);  // sum of 1/zeros^2
 | ||
|  |     cyl_bessel_j_zero(nu, 1, 10000, it); | ||
|  | 
 | ||
|  |     double s = 1/(4 * (nu + 1)); // 0.125 = 1/8 is exact analytical solution.
 | ||
|  |     std::cout << std::setprecision(6) << "nu = " << nu << ", sum = " << sum | ||
|  |       << ", exact = " << s << std::endl; | ||
|  |     // nu = 1.00000, sum = 0.124990, exact = 0.125000
 | ||
|  | //] [/bessel_zero_example_iterator_2]
 | ||
|  |     } | ||
|  |   } | ||
|  |   catch (std::exception& ex) | ||
|  |   { | ||
|  |     std::cout << "Thrown exception " << ex.what() << std::endl; | ||
|  |   } | ||
|  | 
 | ||
|  | //[bessel_zero_example_iterator_3]
 | ||
|  | 
 | ||
|  | /*`Examples below show effect of 'bad' arguments that throw a `domain_error` exception.
 | ||
|  | */ | ||
|  |   try | ||
|  |   { // Try a negative rank m.
 | ||
|  |     std::cout << "boost::math::cyl_bessel_j_zero(-1.F, -1) " << std::endl; | ||
|  |     float dodgy_root = boost::math::cyl_bessel_j_zero(-1.F, -1); | ||
|  |     std::cout << "boost::math::cyl_bessel_j_zero(-1.F, -1) " << dodgy_root << std::endl; | ||
|  |     // Throw exception Error in function boost::math::cyl_bessel_j_zero<double>(double, int):
 | ||
|  |     // Order argument is -1, but must be >= 0 !
 | ||
|  |   } | ||
|  |   catch (std::exception& ex) | ||
|  |   { | ||
|  |     std::cout << "Throw exception " << ex.what() << std::endl; | ||
|  |   } | ||
|  | 
 | ||
|  | /*`[note The type shown is the type [*after promotion],
 | ||
|  | using __precision_policy and __promotion_policy, from `float` to `double` in this case.] | ||
|  | 
 | ||
|  | In this example the promotion goes: | ||
|  | 
 | ||
|  | # Arguments are `float` and `int`.
 | ||
|  | # Treat `int` "as if" it were a `double`, so arguments are `float` and `double`.
 | ||
|  | # Common type is `double` - so that's the precision we want (and the type that will be returned).
 | ||
|  | # Evaluate internally as `long double` for full `double` precision.
 | ||
|  | 
 | ||
|  | See full code for other examples that promote from `double` to `long double`. | ||
|  | 
 | ||
|  | */ | ||
|  | 
 | ||
|  | //] [/bessel_zero_example_iterator_3]
 | ||
|  |     try | ||
|  |   { // order v = inf
 | ||
|  |      std::cout << "boost::math::cyl_bessel_j_zero(infF, 1) " << std::endl; | ||
|  |      float infF = std::numeric_limits<float>::infinity(); | ||
|  |      float inf_root = boost::math::cyl_bessel_j_zero(infF, 1); | ||
|  |       std::cout << "boost::math::cyl_bessel_j_zero(infF, 1) " << inf_root << std::endl; | ||
|  |      //  boost::math::cyl_bessel_j_zero(-1.F, -1) 
 | ||
|  |      //Thrown exception Error in function boost::math::cyl_bessel_j_zero<double>(double, int):
 | ||
|  |      // Requested the -1'th zero, but the rank must be positive !
 | ||
|  |   } | ||
|  |   catch (std::exception& ex) | ||
|  |   { | ||
|  |     std::cout << "Thrown exception " << ex.what() << std::endl; | ||
|  |   } | ||
|  |   try | ||
|  |   { // order v = inf
 | ||
|  |      double inf = std::numeric_limits<double>::infinity(); | ||
|  |      double inf_root = boost::math::cyl_bessel_j_zero(inf, 1); | ||
|  |      std::cout << "boost::math::cyl_bessel_j_zero(inf, 1) " << inf_root << std::endl; | ||
|  |      // Throw exception Error in function boost::math::cyl_bessel_j_zero<long double>(long double, unsigned):
 | ||
|  |      // Order argument is 1.#INF, but must be finite >= 0 !
 | ||
|  |   } | ||
|  |   catch (std::exception& ex) | ||
|  |   { | ||
|  |     std::cout << "Thrown exception " << ex.what() << std::endl; | ||
|  |   } | ||
|  | 
 | ||
|  |   try | ||
|  |   { // order v = NaN
 | ||
|  |      double nan = std::numeric_limits<double>::quiet_NaN(); | ||
|  |      double nan_root = boost::math::cyl_bessel_j_zero(nan, 1); | ||
|  |      std::cout << "boost::math::cyl_bessel_j_zero(nan, 1) " << nan_root << std::endl; | ||
|  |      // Throw exception Error in function boost::math::cyl_bessel_j_zero<long double>(long double, unsigned):
 | ||
|  |      // Order argument is 1.#QNAN, but must be finite >= 0 !
 | ||
|  |   } | ||
|  |   catch (std::exception& ex) | ||
|  |   { | ||
|  |     std::cout << "Thrown exception " << ex.what() << std::endl; | ||
|  |   } | ||
|  | 
 | ||
|  |   try | ||
|  |   {   // Try a negative m.
 | ||
|  |     double dodgy_root = boost::math::cyl_bessel_j_zero(0.0, -1); | ||
|  |     //  warning C4146: unary minus operator applied to unsigned type, result still unsigned.
 | ||
|  |     std::cout << "boost::math::cyl_bessel_j_zero(0.0, -1) " << dodgy_root << std::endl; | ||
|  |     //  boost::math::cyl_bessel_j_zero(0.0, -1) 6.74652e+009
 | ||
|  |     // This *should* fail because m is unreasonably large.
 | ||
|  | 
 | ||
|  |   } | ||
|  |   catch (std::exception& ex) | ||
|  |   { | ||
|  |     std::cout << "Thrown exception " << ex.what() << std::endl; | ||
|  |   } | ||
|  | 
 | ||
|  |   try | ||
|  |   { // m = inf
 | ||
|  |      double inf = std::numeric_limits<double>::infinity(); | ||
|  |      double inf_root = boost::math::cyl_bessel_j_zero(0.0, inf); | ||
|  |      // warning C4244: 'argument' : conversion from 'double' to 'int', possible loss of data.
 | ||
|  |      std::cout << "boost::math::cyl_bessel_j_zero(0.0, inf) " << inf_root << std::endl; | ||
|  |      // Throw exception Error in function boost::math::cyl_bessel_j_zero<long double>(long double, int):
 | ||
|  |      // Requested the 0'th zero, but must be > 0 !
 | ||
|  | 
 | ||
|  |   } | ||
|  |   catch (std::exception& ex) | ||
|  |   { | ||
|  |     std::cout << "Thrown exception " << ex.what() << std::endl; | ||
|  |   } | ||
|  | 
 | ||
|  |   try | ||
|  |   { // m = NaN
 | ||
|  |      std::cout << "boost::math::cyl_bessel_j_zero(0.0, nan) " << std::endl ; | ||
|  |      double nan = std::numeric_limits<double>::quiet_NaN(); | ||
|  |      double nan_root = boost::math::cyl_bessel_j_zero(0.0, nan); | ||
|  |      // warning C4244: 'argument' : conversion from 'double' to 'int', possible loss of data.
 | ||
|  |      std::cout << nan_root << std::endl; | ||
|  |      // Throw exception Error in function boost::math::cyl_bessel_j_zero<long double>(long double, int):
 | ||
|  |      // Requested the 0'th zero, but must be > 0 !
 | ||
|  |   } | ||
|  |   catch (std::exception& ex) | ||
|  |   { | ||
|  |     std::cout << "Thrown exception " << ex.what() << std::endl; | ||
|  |   } | ||
|  | 
 | ||
|  |  } // int main()
 | ||
|  | 
 | ||
|  | /*
 | ||
|  | Mathematica: Table[N[BesselJZero[71/19, n], 50], {n, 1, 20, 1}] | ||
|  | 
 | ||
|  | 7.2731751938316489503185694262290765588963196701623 | ||
|  | 10.724858308883141732536172745851416647110749599085 | ||
|  | 14.018504599452388106120459558042660282427471931581 | ||
|  | 17.25249845917041718216248716654977734919590383861 | ||
|  | 20.456678874044517595180234083894285885460502077814 | ||
|  | 23.64363089714234522494551422714731959985405172504 | ||
|  | 26.819671140255087745421311470965019261522390519297 | ||
|  | 29.988343117423674742679141796661432043878868194142 | ||
|  | 33.151796897690520871250862469973445265444791966114 | ||
|  | 36.3114160002162074157243540350393860813165201842 | ||
|  | 39.468132467505236587945197808083337887765967032029 | ||
|  | 42.622597801391236474855034831297954018844433480227 | ||
|  | 45.775281464536847753390206207806726581495950012439 | ||
|  | 48.926530489173566198367766817478553992471739894799 | ||
|  | 52.076607045343002794279746041878924876873478063472 | ||
|  | 55.225712944912571393594224327817265689059002890192 | ||
|  | 58.374006101538886436775188150439025201735151418932 | ||
|  | 61.521611873000965273726742659353136266390944103571 | ||
|  | 64.66863105379093036834648221487366079456596628716 | ||
|  | 67.815145619696290925556791375555951165111460585458 | ||
|  | 
 | ||
|  | Mathematica: Table[N[BesselKZero[2, n], 50], {n, 1, 5, 1}] | ||
|  | n | | ||
|  | 1 | 3.3842417671495934727014260185379031127323883259329 | ||
|  | 2 | 6.7938075132682675382911671098369487124493222183854 | ||
|  | 3 | 10.023477979360037978505391792081418280789658279097 | ||
|  | 
 | ||
|  | 
 | ||
|  | */ | ||
|  | 
 | ||
|  |  /*
 | ||
|  | [bessel_zero_output] | ||
|  | 
 | ||
|  |   boost::math::cyl_bessel_j_zero(0.0, 1) 2.40483 | ||
|  |   boost::math::cyl_bessel_j_zero(0.0, 1) 2.40482555769577 | ||
|  |   boost::math::cyl_bessel_j_zero(-1.0, 1) 1.#QNAN | ||
|  |   boost::math::cyl_bessel_j_zero(inf, 1) 1.#QNAN | ||
|  |   boost::math::cyl_bessel_j_zero(nan, 1) 1.#QNAN | ||
|  |   5.13562230184068 | ||
|  |   8.41724414039986 | ||
|  |   11.6198411721491 | ||
|  |   14.7959517823513 | ||
|  |   17.9598194949878 | ||
|  | 
 | ||
|  |   x = 3.7368421052631578947368421052631578947368421052632, r = 7.2731751938316489503185694262290765588963196701623 | ||
|  |   x = 3.7368421052631578947368421052631578947368421052632, r = 67.815145619696290925556791375555951165111460585458 | ||
|  |   7.2731751938316489503185694262290765588963196701623 | ||
|  |   10.724858308883141732536172745851416647110749599085 | ||
|  |   14.018504599452388106120459558042660282427471931581 | ||
|  |   cyl_neumann_zero(2., 1) = 3.3842417671495935000000000000000000000000000000000 | ||
|  |   3.3842418193817139000000000000000000000000000000000 | ||
|  |   6.7938075065612793000000000000000000000000000000000 | ||
|  |   10.023477554321289000000000000000000000000000000000 | ||
|  |   3.6154383428745996706772556069431792744372398748422 | ||
|  |   nu = 1.00000, sum = 0.124990, exact = 0.125000 | ||
|  |   Throw exception Error in function boost::math::cyl_bessel_j_zero<double>(double, int): Order argument is -1, but must be >= 0 ! | ||
|  |   Throw exception Error in function boost::math::cyl_bessel_j_zero<long double>(long double, int): Order argument is 1.#INF, but must be finite >= 0 ! | ||
|  |   Throw exception Error in function boost::math::cyl_bessel_j_zero<long double>(long double, int): Order argument is 1.#QNAN, but must be finite >= 0 ! | ||
|  |   Throw exception Error in function boost::math::cyl_bessel_j_zero<long double>(long double, int): Requested the -1'th zero, but must be > 0 ! | ||
|  |   Throw exception Error in function boost::math::cyl_bessel_j_zero<long double>(long double, int): Requested the -2147483648'th zero, but must be > 0 ! | ||
|  |   Throw exception Error in function boost::math::cyl_bessel_j_zero<long double>(long double, int): Requested the -2147483648'th zero, but must be > 0 ! | ||
|  | 
 | ||
|  | 
 | ||
|  | ] [/bessel_zero_output] | ||
|  | */ | ||
|  | 
 |