mirror of
				https://github.com/saitohirga/WSJT-X.git
				synced 2025-10-27 11:00:32 -04:00 
			
		
		
		
	
		
			
	
	
		
			873 lines
		
	
	
		
			31 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
		
		
			
		
	
	
			873 lines
		
	
	
		
			31 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
|  | // Copyright Paul A. Bristow 2015
 | ||
|  | 
 | ||
|  | // Use, modification and distribution are subject to the
 | ||
|  | // Boost Software License, Version 1.0.
 | ||
|  | // (See accompanying file LICENSE_1_0.txt
 | ||
|  | // or copy at http://www.boost.org/LICENSE_1_0.txt)
 | ||
|  | 
 | ||
|  | // Comparison of finding roots using TOMS748, Newton-Raphson, Halley & Schroder algorithms.
 | ||
|  | // root_n_finding_algorithms.cpp  Generalised for nth root version.
 | ||
|  | 
 | ||
|  | // http://en.wikipedia.org/wiki/Cube_root
 | ||
|  | 
 | ||
|  | // Note that this file contains Quickbook mark-up as well as code
 | ||
|  | // and comments, don't change any of the special comment mark-ups!
 | ||
|  | // This program also writes files in Quickbook tables mark-up format.
 | ||
|  | 
 | ||
|  | #include <boost/cstdlib.hpp>
 | ||
|  | #include <boost/config.hpp>
 | ||
|  | #include <boost/array.hpp>
 | ||
|  | #include <boost/type_traits/is_floating_point.hpp>
 | ||
|  | #include <boost/math/concepts/real_concept.hpp>
 | ||
|  | #include <boost/math/tools/roots.hpp>
 | ||
|  | 
 | ||
|  | //using boost::math::policies::policy;
 | ||
|  | //using boost::math::tools::eps_tolerance; // Binary functor for specified number of bits.
 | ||
|  | //using boost::math::tools::bracket_and_solve_root;
 | ||
|  | //using boost::math::tools::toms748_solve;
 | ||
|  | //using boost::math::tools::halley_iterate; 
 | ||
|  | //using boost::math::tools::newton_raphson_iterate;
 | ||
|  | //using boost::math::tools::schroder_iterate;
 | ||
|  | 
 | ||
|  | #include <boost/math/special_functions/next.hpp> // For float_distance.
 | ||
|  | #include <boost/math/special_functions/pow.hpp> // For pow<N>.
 | ||
|  | #include <boost/math/tools/tuple.hpp> // for tuple and make_tuple.
 | ||
|  | 
 | ||
|  | #include <boost/multiprecision/cpp_bin_float.hpp> // is binary.
 | ||
|  | using boost::multiprecision::cpp_bin_float_100; | ||
|  | using boost::multiprecision::cpp_bin_float_50; | ||
|  | 
 | ||
|  | #include <boost/timer/timer.hpp>
 | ||
|  | #include <boost/system/error_code.hpp>
 | ||
|  | #include <boost/preprocessor/stringize.hpp>
 | ||
|  | 
 | ||
|  | // STL
 | ||
|  | #include <iostream>
 | ||
|  | #include <iomanip>
 | ||
|  | #include <string>
 | ||
|  | #include <vector>
 | ||
|  | #include <limits>
 | ||
|  | #include <fstream> // std::ofstream
 | ||
|  | #include <cmath>
 | ||
|  | #include <typeinfo> // for type name using typid(thingy).name();
 | ||
|  | 
 | ||
|  | #ifdef __FILE__
 | ||
|  |   std::string sourcefilename = __FILE__; | ||
|  | #else
 | ||
|  |   std::string sourcefilename(""); | ||
|  | #endif
 | ||
|  | 
 | ||
|  |   std::string chop_last(std::string s) | ||
|  |   { | ||
|  |      std::string::size_type pos = s.find_last_of("\\/"); | ||
|  |      if(pos != std::string::npos) | ||
|  |         s.erase(pos); | ||
|  |      else if(s.empty()) | ||
|  |         abort(); | ||
|  |      else | ||
|  |         s.erase(); | ||
|  |      return s; | ||
|  |   } | ||
|  | 
 | ||
|  |   std::string make_root() | ||
|  |   { | ||
|  |      std::string result; | ||
|  |      if(sourcefilename.find_first_of(":") != std::string::npos) | ||
|  |      { | ||
|  |         result = chop_last(sourcefilename); // lose filename part
 | ||
|  |         result = chop_last(result);   // lose /example/
 | ||
|  |         result = chop_last(result);   // lose /math/
 | ||
|  |         result = chop_last(result);   // lose /libs/
 | ||
|  |      } | ||
|  |      else | ||
|  |      { | ||
|  |         result = chop_last(sourcefilename); // lose filename part
 | ||
|  |         if(result.empty()) | ||
|  |            result = "."; | ||
|  |         result += "/../../.."; | ||
|  |      } | ||
|  |      return result; | ||
|  |   } | ||
|  | 
 | ||
|  |   std::string short_file_name(std::string s) | ||
|  |   { | ||
|  |      std::string::size_type pos = s.find_last_of("\\/"); | ||
|  |      if(pos != std::string::npos) | ||
|  |         s.erase(0, pos + 1); | ||
|  |      return s; | ||
|  |   } | ||
|  | 
 | ||
|  |   std::string boost_root = make_root(); | ||
|  | 
 | ||
|  | 
 | ||
|  | std::string fp_hardware; // Any hardware features like SEE or AVX
 | ||
|  | 
 | ||
|  | const std::string roots_name = "libs/math/doc/roots/"; | ||
|  | 
 | ||
|  | const std::string full_roots_name(boost_root + "/libs/math/doc/roots/"); | ||
|  | 
 | ||
|  | const std::size_t nooftypes = 4; | ||
|  | const std::size_t noofalgos = 4; | ||
|  | const std::size_t noofroots = 3; | ||
|  | 
 | ||
|  | double digits_accuracy = 1.0; // 1 == maximum possible accuracy.
 | ||
|  | 
 | ||
|  | std::stringstream ss; | ||
|  | 
 | ||
|  | std::ofstream fout; | ||
|  | 
 | ||
|  | std::vector<std::string> algo_names = | ||
|  | { | ||
|  |   "TOMS748", "Newton", "Halley", "Schr'''ö'''der" | ||
|  | }; | ||
|  | 
 | ||
|  | std::vector<std::string> names = | ||
|  | { | ||
|  |   "float", "double", "long double", "cpp_bin_float50" | ||
|  | }; | ||
|  | 
 | ||
|  | uintmax_t iters; // Global as value of iterations is not returned.
 | ||
|  | 
 | ||
|  | struct root_info | ||
|  | { // for a floating-point type, float, double ...
 | ||
|  |   std::size_t max_digits10; // for type.
 | ||
|  |   std::string full_typename; // for type from type_id.name().
 | ||
|  |   std::string short_typename; // for type "float", "double", "cpp_bin_float_50" ....
 | ||
|  |   std::size_t bin_digits;  // binary in floating-point type numeric_limits<T>::digits;  
 | ||
|  |   int get_digits; // fraction of maximum possible accuracy required.
 | ||
|  |   // = digits * digits_accuracy
 | ||
|  |   // Vector of values (4) for each algorithm, TOMS748, Newton, Halley & Schroder.
 | ||
|  |   //std::vector< boost::int_least64_t> times;  converted to int.
 | ||
|  |   std::vector<int> times; // arbirary units (ticks).
 | ||
|  |   //boost::int_least64_t min_time = std::numeric_limits<boost::int_least64_t>::max(); // Used to normalize times (as int).
 | ||
|  |   std::vector<double> normed_times; | ||
|  |   int min_time = (std::numeric_limits<int>::max)(); // Used to normalize times.
 | ||
|  |   std::vector<uintmax_t> iterations; | ||
|  |   std::vector<long int> distances; | ||
|  |   std::vector<cpp_bin_float_100> full_results; | ||
|  | }; // struct root_info
 | ||
|  | 
 | ||
|  | std::vector<root_info> root_infos;  // One element for each floating-point type used.
 | ||
|  | 
 | ||
|  | inline std::string build_test_name(const char* type_name, const char* test_name) | ||
|  | { | ||
|  |   std::string result(BOOST_COMPILER); | ||
|  |   result += "|"; | ||
|  |   result += BOOST_STDLIB; | ||
|  |   result += "|"; | ||
|  |   result += BOOST_PLATFORM; | ||
|  |   result += "|"; | ||
|  |   result += type_name; | ||
|  |   result += "|"; | ||
|  |   result += test_name; | ||
|  | #if defined(_DEBUG) || !defined(NDEBUG)
 | ||
|  |   result += "|"; | ||
|  |   result += " debug"; | ||
|  | #else
 | ||
|  |   result += "|"; | ||
|  |   result += " release"; | ||
|  | #endif
 | ||
|  |   result += "|"; | ||
|  |   return result; | ||
|  | } // std::string build_test_name
 | ||
|  | 
 | ||
|  | // Algorithms //////////////////////////////////////////////
 | ||
|  | 
 | ||
|  | // No derivatives - using TOMS748 internally.
 | ||
|  | 
 | ||
|  | template <int N, typename T = double> | ||
|  | struct nth_root_functor_noderiv | ||
|  | { //  Nth root of x using only function - no derivatives.
 | ||
|  |   nth_root_functor_noderiv(T const& to_find_root_of) : a(to_find_root_of) | ||
|  |   { // Constructor just stores value a to find root of.
 | ||
|  |   } | ||
|  |   T operator()(T const& x) | ||
|  |   { | ||
|  |     using boost::math::pow; | ||
|  |     T fx = pow<N>(x) -a; // Difference (estimate x^n - a).
 | ||
|  |     return fx; | ||
|  |   } | ||
|  | private: | ||
|  |   T a; // to be 'cube_rooted'.
 | ||
|  | }; // template <int N, class T> struct nth_root_functor_noderiv
 | ||
|  | 
 | ||
|  | template <int N, class T = double> | ||
|  | T nth_root_noderiv(T x) | ||
|  | { // return Nth root of x using bracket_and_solve (using NO derivatives).
 | ||
|  |   using namespace std;  // Help ADL of std functions.
 | ||
|  |   using namespace boost::math::tools; // For bracket_and_solve_root.
 | ||
|  | 
 | ||
|  |   typedef double guess_type; | ||
|  | 
 | ||
|  |   int exponent; | ||
|  |   frexp(static_cast<guess_type>(x), &exponent); // Get exponent of z (ignore mantissa).
 | ||
|  |   T guess = static_cast<T>(ldexp(static_cast<guess_type>(1.), exponent / N)); // Rough guess is to divide the exponent by n.
 | ||
|  |   //T min = static_cast<T>(ldexp(static_cast<guess_type>(1.) / 2, exponent / N)); // Minimum possible value is half our guess.
 | ||
|  |   //T max = static_cast<T>(ldexp(static_cast<guess_type>(2.), exponent / N)); // Maximum possible value is twice our guess.
 | ||
|  | 
 | ||
|  |   T factor = 2; // How big steps to take when searching.
 | ||
|  | 
 | ||
|  |   const boost::uintmax_t maxit = 50; // Limit to maximum iterations.
 | ||
|  |   boost::uintmax_t it = maxit; // Initally our chosen max iterations, but updated with actual.
 | ||
|  |   bool is_rising = true; // So if result if guess^3 is too low, then try increasing guess.
 | ||
|  |   // Some fraction of digits is used to control how accurate to try to make the result.
 | ||
|  |   int get_digits = std::numeric_limits<T>::digits - 2; | ||
|  |   eps_tolerance<T> tol(get_digits); // Set the tolerance.
 | ||
|  |   std::pair<T, T> r; | ||
|  |   r =  bracket_and_solve_root(nth_root_functor_noderiv<N, T>(x), guess, factor, is_rising, tol, it); | ||
|  |   iters = it; | ||
|  |   T result = r.first + (r.second - r.first) / 2;  // Midway between brackets.
 | ||
|  |   return result; | ||
|  | } // template <class T> T nth_root_noderiv(T x)
 | ||
|  | 
 | ||
|  | // Using 1st derivative only Newton-Raphson
 | ||
|  | 
 | ||
|  | template <int N, class T = double> | ||
|  | struct nth_root_functor_1deriv | ||
|  | { // Functor also returning 1st derviative.
 | ||
|  |   BOOST_STATIC_ASSERT_MSG(boost::is_integral<T>::value == false, "Only floating-point type types can be used!"); | ||
|  |   BOOST_STATIC_ASSERT_MSG((N > 0) == true, "root N must be > 0!"); | ||
|  | 
 | ||
|  |   nth_root_functor_1deriv(T const& to_find_root_of) : a(to_find_root_of) | ||
|  |   { // Constructor stores value a to find root of, for example:
 | ||
|  |   } | ||
|  |   std::pair<T, T> operator()(T const& x) | ||
|  |   { // Return both f(x) and f'(x).
 | ||
|  |     using boost::math::pow; // // Compile-time integral power.
 | ||
|  |     T p = pow<N - 1>(x); | ||
|  |     return std::make_pair(p * x - a, N * p); // 'return' both fx and dx.
 | ||
|  |   } | ||
|  | 
 | ||
|  | private: | ||
|  |   T a; // to be 'nth_rooted'.
 | ||
|  | }; // struct nthroot__functor_1deriv
 | ||
|  | 
 | ||
|  | template <int N, class T = double> | ||
|  | T nth_root_1deriv(T x) | ||
|  | { // return nth root of x using 1st derivative and Newton_Raphson.
 | ||
|  |   using namespace std;  // Help ADL of std functions.
 | ||
|  |   using namespace boost::math::tools; // For newton_raphson_iterate.
 | ||
|  | 
 | ||
|  |   BOOST_STATIC_ASSERT_MSG(boost::is_integral<T>::value == false, "Only floating-point type types can be used!"); | ||
|  |   BOOST_STATIC_ASSERT_MSG((N > 0) == true, "root N must be > 0!"); | ||
|  |   BOOST_STATIC_ASSERT_MSG((N > 1000) == false, "root N is too big!"); | ||
|  | 
 | ||
|  |   typedef double guess_type; | ||
|  | 
 | ||
|  |   int exponent; | ||
|  |   frexp(static_cast<guess_type>(x), &exponent); // Get exponent of z (ignore mantissa).
 | ||
|  |   T guess = static_cast<T>(ldexp(static_cast<guess_type>(1.), exponent / N)); // Rough guess is to divide the exponent by n.
 | ||
|  |   T min = static_cast<T>(ldexp(static_cast<guess_type>(1.) / 2, exponent / N)); // Minimum possible value is half our guess.
 | ||
|  |   T max = static_cast<T>(ldexp(static_cast<guess_type>(2.), exponent / N)); // Maximum possible value is twice our guess.
 | ||
|  | 
 | ||
|  |   int digits = std::numeric_limits<T>::digits; // Maximum possible binary digits accuracy for type T.
 | ||
|  |   int get_digits = static_cast<int>(digits * 0.6); | ||
|  |   const boost::uintmax_t maxit = 20; | ||
|  |   boost::uintmax_t it = maxit; | ||
|  |   T result = newton_raphson_iterate(nth_root_functor_1deriv<N, T>(x), guess, min, max, get_digits, it); | ||
|  |   iters = it; | ||
|  |   return result; | ||
|  | } // T nth_root_1_deriv  Newton-Raphson
 | ||
|  | 
 | ||
|  | // Using 1st and 2nd derivatives with Halley algorithm.
 | ||
|  | 
 | ||
|  | template <int N, class T = double> | ||
|  | struct nth_root_functor_2deriv | ||
|  | { // Functor returning both 1st and 2nd derivatives.
 | ||
|  |   BOOST_STATIC_ASSERT_MSG(boost::is_integral<T>::value == false, "Only floating-point type types can be used!"); | ||
|  |   BOOST_STATIC_ASSERT_MSG((N > 0) == true, "root N must be > 0!"); | ||
|  | 
 | ||
|  |   nth_root_functor_2deriv(T const& to_find_root_of) : a(to_find_root_of) | ||
|  |   { // Constructor stores value a to find root of, for example:
 | ||
|  |   } | ||
|  | 
 | ||
|  |   // using boost::math::tuple; // to return three values.
 | ||
|  |   std::tuple<T, T, T> operator()(T const& x) | ||
|  |   { // Return f(x), f'(x) and f''(x).
 | ||
|  |     using boost::math::pow; // Compile-time integral power.
 | ||
|  |     T p = pow<N - 2>(x); | ||
|  | 
 | ||
|  |     return std::make_tuple(p * x * x - a, p * x * N, p * N * (N - 1)); // 'return' fx, dx and d2x.
 | ||
|  |   } | ||
|  | private: | ||
|  |   T a; // to be 'nth_rooted'.
 | ||
|  | }; | ||
|  | 
 | ||
|  | template <int N, class T = double> | ||
|  | T nth_root_2deriv(T x) | ||
|  | { // return nth root of x using 1st and 2nd derivatives and Halley.
 | ||
|  | 
 | ||
|  |   using namespace std;  // Help ADL of std functions.
 | ||
|  |   using namespace boost::math::tools; // For halley_iterate.
 | ||
|  | 
 | ||
|  |   BOOST_STATIC_ASSERT_MSG(boost::is_integral<T>::value == false, "Only floating-point type types can be used!"); | ||
|  |   BOOST_STATIC_ASSERT_MSG((N > 0) == true, "root N must be > 0!"); | ||
|  |   BOOST_STATIC_ASSERT_MSG((N > 1000) == false, "root N is too big!"); | ||
|  | 
 | ||
|  |   typedef double guess_type; | ||
|  | 
 | ||
|  |   int exponent; | ||
|  |   frexp(static_cast<guess_type>(x), &exponent); // Get exponent of z (ignore mantissa).
 | ||
|  |   T guess = static_cast<T>(ldexp(static_cast<guess_type>(1.), exponent / N)); // Rough guess is to divide the exponent by n.
 | ||
|  |   T min = static_cast<T>(ldexp(static_cast<guess_type>(1.) / 2, exponent / N)); // Minimum possible value is half our guess.
 | ||
|  |   T max = static_cast<T>(ldexp(static_cast<guess_type>(2.), exponent / N)); // Maximum possible value is twice our guess.
 | ||
|  | 
 | ||
|  |   int digits = std::numeric_limits<T>::digits; // Maximum possible binary digits accuracy for type T.
 | ||
|  |   int get_digits = static_cast<int>(digits * 0.4); | ||
|  |   const boost::uintmax_t maxit = 20; | ||
|  |   boost::uintmax_t it = maxit; | ||
|  |   T result = halley_iterate(nth_root_functor_2deriv<N, T>(x), guess, min, max, get_digits, it); | ||
|  |   iters = it; | ||
|  | 
 | ||
|  |   return result; | ||
|  | } // nth_2deriv Halley
 | ||
|  | 
 | ||
|  | template <int N, class T = double> | ||
|  | T nth_root_2deriv_s(T x) | ||
|  | { // return nth root of x using 1st and 2nd derivatives and Schroder.
 | ||
|  | 
 | ||
|  |   using namespace std;  // Help ADL of std functions.
 | ||
|  |   using namespace boost::math::tools; // For schroder_iterate.
 | ||
|  | 
 | ||
|  |   BOOST_STATIC_ASSERT_MSG(boost::is_integral<T>::value == false, "Only floating-point type types can be used!"); | ||
|  |   BOOST_STATIC_ASSERT_MSG((N > 0) == true, "root N must be > 0!"); | ||
|  |   BOOST_STATIC_ASSERT_MSG((N > 1000) == false, "root N is too big!"); | ||
|  | 
 | ||
|  |   typedef double guess_type; | ||
|  | 
 | ||
|  |   int exponent; | ||
|  |   frexp(static_cast<guess_type>(x), &exponent); // Get exponent of z (ignore mantissa).
 | ||
|  |   T guess = static_cast<T>(ldexp(static_cast<guess_type>(1.), exponent / N)); // Rough guess is to divide the exponent by n.
 | ||
|  |   T min = static_cast<T>(ldexp(static_cast<guess_type>(1.) / 2, exponent / N)); // Minimum possible value is half our guess.
 | ||
|  |   T max = static_cast<T>(ldexp(static_cast<guess_type>(2.), exponent / N)); // Maximum possible value is twice our guess.
 | ||
|  | 
 | ||
|  |   int get_digits = static_cast<int>(std::numeric_limits<T>::digits * 0.4); | ||
|  |   const boost::uintmax_t maxit = 20; | ||
|  |   boost::uintmax_t it = maxit; | ||
|  |   T result = schroder_iterate(nth_root_functor_2deriv<N, T>(x), guess, min, max, get_digits, it); | ||
|  |   iters = it; | ||
|  | 
 | ||
|  |   return result; | ||
|  | } // T nth_root_2deriv_s Schroder
 | ||
|  | 
 | ||
|  | //////////////////////////////////////////////////////// end of algorithms - perhaps in a separate .hpp?
 | ||
|  | 
 | ||
|  | //! Print 4 floating-point types info: max_digits10, digits and required accuracy digits as a Quickbook table.
 | ||
|  | int table_type_info(double digits_accuracy) | ||
|  | { | ||
|  |   std::string qbk_name = full_roots_name; // Prefix by boost_root file.
 | ||
|  | 
 | ||
|  |   qbk_name += "type_info_table"; | ||
|  |   std::stringstream ss; | ||
|  |   ss.precision(3); | ||
|  |   ss << "_" << digits_accuracy * 100; | ||
|  |   qbk_name += ss.str(); | ||
|  | 
 | ||
|  | #ifdef _MSC_VER
 | ||
|  |   qbk_name += "_msvc.qbk"; | ||
|  | #else // assume GCC
 | ||
|  |   qbk_name += "_gcc.qbk"; | ||
|  | #endif
 | ||
|  | 
 | ||
|  |   // Example: type_info_table_100_msvc.qbk
 | ||
|  |   fout.open(qbk_name, std::ios_base::out); | ||
|  | 
 | ||
|  |   if (fout.is_open()) | ||
|  |   { | ||
|  |     std::cout << "Output type table to " << qbk_name << std::endl; | ||
|  |   } | ||
|  |   else | ||
|  |   { // Failed to open.
 | ||
|  |     std::cout << " Open file " << qbk_name << " for output failed!" << std::endl; | ||
|  |     std::cout << "errno " << errno << std::endl; | ||
|  |     return errno; | ||
|  |   } | ||
|  | 
 | ||
|  |   fout << | ||
|  |     "[/" | ||
|  |     << qbk_name | ||
|  |     << "\n" | ||
|  |     "Copyright 2015 Paul A. Bristow.""\n" | ||
|  |     "Copyright 2015 John Maddock.""\n" | ||
|  |     "Distributed under the Boost Software License, Version 1.0.""\n" | ||
|  |     "(See accompanying file LICENSE_1_0.txt or copy at""\n" | ||
|  |     "http://www.boost.org/LICENSE_1_0.txt).""\n" | ||
|  |     "]""\n" | ||
|  |     << std::endl; | ||
|  | 
 | ||
|  |   fout << "[h6 Fraction of maximum possible bits of accuracy required is " << digits_accuracy << ".]\n" << std::endl; | ||
|  | 
 | ||
|  |   std::string table_id("type_info"); | ||
|  |   table_id += ss.str(); // Fraction digits accuracy.
 | ||
|  | 
 | ||
|  | #ifdef _MSC_VER
 | ||
|  |   table_id += "_msvc"; | ||
|  | #else // assume GCC
 | ||
|  |   table_id += "_gcc"; | ||
|  | #endif
 | ||
|  | 
 | ||
|  |   fout << "[table:" << table_id << " Digits for float, double, long double and cpp_bin_float_50\n" | ||
|  |     << "[[type name] [max_digits10] [binary digits] [required digits]]\n";// header.
 | ||
|  | 
 | ||
|  |   // For all fout types:
 | ||
|  | 
 | ||
|  |   fout  << "[[" << "float" << "]" | ||
|  |     << "[" << std::numeric_limits<float>::max_digits10 << "]"  // max_digits10
 | ||
|  |     << "[" << std::numeric_limits<float>::digits << "]"// < "Binary digits 
 | ||
|  |     << "[" << static_cast<int>(std::numeric_limits<float>::digits * digits_accuracy) << "]]\n"; // Accuracy digits.
 | ||
|  | 
 | ||
|  |   fout << "[[" << "float" << "]" | ||
|  |     << "[" << std::numeric_limits<double>::max_digits10 << "]"  // max_digits10
 | ||
|  |     << "[" << std::numeric_limits<double>::digits << "]"// < "Binary digits 
 | ||
|  |     << "[" << static_cast<int>(std::numeric_limits<double>::digits * digits_accuracy) << "]]\n"; // Accuracy digits.
 | ||
|  | 
 | ||
|  |   fout << "[[" << "long double" << "]" | ||
|  |     << "[" << std::numeric_limits<long double>::max_digits10 << "]"  // max_digits10
 | ||
|  |     << "[" << std::numeric_limits<long double>::digits << "]"// < "Binary digits 
 | ||
|  |     << "[" << static_cast<int>(std::numeric_limits<long double>::digits * digits_accuracy) << "]]\n"; // Accuracy digits.
 | ||
|  | 
 | ||
|  |   fout << "[[" << "cpp_bin_float_50" << "]" | ||
|  |     << "[" << std::numeric_limits<cpp_bin_float_50>::max_digits10 << "]"  // max_digits10
 | ||
|  |     << "[" << std::numeric_limits<cpp_bin_float_50>::digits << "]"// < "Binary digits 
 | ||
|  |     << "[" << static_cast<int>(std::numeric_limits<cpp_bin_float_50>::digits * digits_accuracy) << "]]\n"; // Accuracy digits.
 | ||
|  | 
 | ||
|  |   fout << "] [/table table_id_msvc] \n" << std::endl; // End of table.
 | ||
|  | 
 | ||
|  |   fout.close(); | ||
|  |   return 0; | ||
|  | } // type_table
 | ||
|  | 
 | ||
|  | //! Evaluate root N timing for each algorithm, and for one floating-point type T. 
 | ||
|  | template <int N, typename T> | ||
|  | int test_root(cpp_bin_float_100 big_value, cpp_bin_float_100 answer, const char* type_name, std::size_t type_no) | ||
|  | { | ||
|  |   std::size_t max_digits = 2 + std::numeric_limits<T>::digits * 3010 / 10000; | ||
|  |   // For new versions use max_digits10
 | ||
|  |   // std::cout.precision(std::numeric_limits<T>::max_digits10);
 | ||
|  |   std::cout.precision(max_digits); | ||
|  |   std::cout << std::showpoint << std::endl; // Show trailing zeros too.
 | ||
|  | 
 | ||
|  |   root_infos.push_back(root_info());  | ||
|  | 
 | ||
|  |   root_infos[type_no].max_digits10 = max_digits; | ||
|  |   root_infos[type_no].full_typename = typeid(T).name(); // Full typename.
 | ||
|  |   root_infos[type_no].short_typename = type_name; // Short typename.
 | ||
|  |   root_infos[type_no].bin_digits = std::numeric_limits<T>::digits; | ||
|  |   root_infos[type_no].get_digits = static_cast<int>(std::numeric_limits<T>::digits * digits_accuracy); | ||
|  | 
 | ||
|  |   T to_root = static_cast<T>(big_value); | ||
|  | 
 | ||
|  |   T result; // root
 | ||
|  |   T sum = 0; | ||
|  |   T ans = static_cast<T>(answer); | ||
|  | 
 | ||
|  |   using boost::timer::nanosecond_type; | ||
|  |   using boost::timer::cpu_times; | ||
|  |   using boost::timer::cpu_timer; | ||
|  | 
 | ||
|  |   int eval_count = boost::is_floating_point<T>::value ? 10000000 : 100000; // To give a sufficiently stable timing for the fast built-in types,
 | ||
|  |   //int eval_count = 1000000; // To give a sufficiently stable timing for the fast built-in types,
 | ||
|  |   // This takes an inconveniently long time for multiprecision cpp_bin_float_50 etc  types.
 | ||
|  | 
 | ||
|  |   cpu_times now; // Holds wall, user and system times.
 | ||
|  | 
 | ||
|  |   { // Evaluate times etc for each algorithm.
 | ||
|  |     //algorithm_names.push_back("TOMS748"); // 
 | ||
|  |     cpu_timer ti; // Can start, pause, resume and stop, and read elapsed.
 | ||
|  |     ti.start(); | ||
|  |     for (long i = 0; i < eval_count; ++i) | ||
|  |     { | ||
|  |       result = nth_root_noderiv<N, T>(to_root); // 
 | ||
|  |       sum += result; | ||
|  |     } | ||
|  |     now = ti.elapsed(); | ||
|  |     int time = static_cast<int>(now.user / eval_count); | ||
|  |     root_infos[type_no].times.push_back(time); // CPU time taken.
 | ||
|  |     if (time < root_infos[type_no].min_time) | ||
|  |     { | ||
|  |       root_infos[type_no].min_time = time; | ||
|  |     } | ||
|  |     ti.stop(); | ||
|  |     long int distance = static_cast<int>(boost::math::float_distance<T>(result, ans)); | ||
|  |     root_infos[type_no].distances.push_back(distance); | ||
|  |     root_infos[type_no].iterations.push_back(iters); // 
 | ||
|  |     root_infos[type_no].full_results.push_back(result); | ||
|  |   } | ||
|  |   { | ||
|  |     // algorithm_names.push_back("Newton"); // algorithm
 | ||
|  |     cpu_timer ti; // Can start, pause, resume and stop, and read elapsed.
 | ||
|  |     ti.start(); | ||
|  |     for (long i = 0; i < eval_count; ++i) | ||
|  |     { | ||
|  |       result = nth_root_1deriv<N, T>(to_root); // 
 | ||
|  |       sum += result; | ||
|  |     } | ||
|  |     now = ti.elapsed(); | ||
|  |     int time = static_cast<int>(now.user / eval_count); | ||
|  |     root_infos[type_no].times.push_back(time); // CPU time taken.
 | ||
|  |     if (time < root_infos[type_no].min_time) | ||
|  |     { | ||
|  |       root_infos[type_no].min_time = time; | ||
|  |     } | ||
|  | 
 | ||
|  |     ti.stop(); | ||
|  |     long int distance = static_cast<int>(boost::math::float_distance<T>(result, ans)); | ||
|  |     root_infos[type_no].distances.push_back(distance); | ||
|  |     root_infos[type_no].iterations.push_back(iters); //
 | ||
|  |     root_infos[type_no].full_results.push_back(result); | ||
|  |   } | ||
|  |   { | ||
|  |     //algorithm_names.push_back("Halley"); // algorithm
 | ||
|  |     cpu_timer ti; // Can start, pause, resume and stop, and read elapsed.
 | ||
|  |     ti.start(); | ||
|  |     for (long i = 0; i < eval_count; ++i) | ||
|  |     { | ||
|  |       result = nth_root_2deriv<N>(to_root); // 
 | ||
|  |       sum += result; | ||
|  |     } | ||
|  |     now = ti.elapsed(); | ||
|  |     int time = static_cast<int>(now.user / eval_count); | ||
|  |     root_infos[type_no].times.push_back(time); // CPU time taken.
 | ||
|  |     ti.stop(); | ||
|  |     if (time < root_infos[type_no].min_time) | ||
|  |     { | ||
|  |       root_infos[type_no].min_time = time; | ||
|  |     } | ||
|  |     long int distance = static_cast<int>(boost::math::float_distance<T>(result, ans)); | ||
|  |     root_infos[type_no].distances.push_back(distance); | ||
|  |     root_infos[type_no].iterations.push_back(iters); // 
 | ||
|  |     root_infos[type_no].full_results.push_back(result); | ||
|  |   } | ||
|  |   { | ||
|  |     // algorithm_names.push_back("Schroder"); // algorithm
 | ||
|  |     cpu_timer ti; // Can start, pause, resume and stop, and read elapsed.
 | ||
|  |     ti.start(); | ||
|  |     for (long i = 0; i < eval_count; ++i) | ||
|  |     { | ||
|  |       result = nth_root_2deriv_s<N>(to_root); // 
 | ||
|  |       sum += result; | ||
|  |     } | ||
|  |     now = ti.elapsed(); | ||
|  |     int time = static_cast<int>(now.user / eval_count); | ||
|  |     root_infos[type_no].times.push_back(time); // CPU time taken.
 | ||
|  |     if (time < root_infos[type_no].min_time) | ||
|  |     { | ||
|  |       root_infos[type_no].min_time = time; | ||
|  |     } | ||
|  |     ti.stop(); | ||
|  |     long int distance = static_cast<int>(boost::math::float_distance<T>(result, ans)); | ||
|  |     root_infos[type_no].distances.push_back(distance); | ||
|  |     root_infos[type_no].iterations.push_back(iters); // 
 | ||
|  |     root_infos[type_no].full_results.push_back(result); | ||
|  |   } | ||
|  |   for (size_t i = 0; i != root_infos[type_no].times.size(); i++) // For each time.
 | ||
|  |   { // Normalize times.
 | ||
|  |     root_infos[type_no].normed_times.push_back(static_cast<double>(root_infos[type_no].times[i]) / root_infos[type_no].min_time); | ||
|  |   } | ||
|  | 
 | ||
|  |   std::cout << "Accumulated result was: " << sum << std::endl; | ||
|  | 
 | ||
|  |   return 4;  // eval_count of how many algorithms used.
 | ||
|  | } // test_root
 | ||
|  | 
 | ||
|  | /*! Fill array of times, interations, etc for Nth root for all 4 types,
 | ||
|  |  and write a table of results in Quickbook format. | ||
|  |  */ | ||
|  | template <int N> | ||
|  | void table_root_info(cpp_bin_float_100 full_value) | ||
|  | { | ||
|  |    using std::abs; | ||
|  |   std::cout << nooftypes << " floating-point types tested:" << std::endl; | ||
|  | #if defined(_DEBUG) || !defined(NDEBUG)
 | ||
|  |   std::cout << "Compiled in debug mode." << std::endl; | ||
|  | #else
 | ||
|  |   std::cout << "Compiled in optimise mode." << std::endl; | ||
|  | #endif
 | ||
|  |   std::cout << "FP hardware " << fp_hardware << std::endl; | ||
|  |   // Compute the 'right' answer for root N at 100 decimal digits.
 | ||
|  |   cpp_bin_float_100 full_answer = nth_root_noderiv<N, cpp_bin_float_100>(full_value); | ||
|  | 
 | ||
|  |   int type_count = 0; | ||
|  |   root_infos.clear(); // Erase any previous data.
 | ||
|  |   // Fill the elements of the array for each floating-point type.
 | ||
|  | 
 | ||
|  |   type_count = test_root<N, float>(full_value, full_answer, "float", 0); | ||
|  |   type_count = test_root<N, double>(full_value, full_answer, "double", 1); | ||
|  |   type_count = test_root<N, long double>(full_value, full_answer, "long double", 2); | ||
|  |   type_count = test_root<N, cpp_bin_float_50>(full_value, full_answer, "cpp_bin_float_50", 3); | ||
|  | 
 | ||
|  |   // Use info from 4 floating point types to
 | ||
|  | 
 | ||
|  |   // Prepare Quickbook table for a single root
 | ||
|  |   // with columns of times, iterations, distances repeated for various floating-point types,
 | ||
|  |   // and 4 rows for each algorithm.
 | ||
|  | 
 | ||
|  |   std::stringstream table_info; | ||
|  |   table_info.precision(3); | ||
|  |   table_info << "[table:root_" << N << " " << N << "th root(" << static_cast<float>(full_value) << ") for float, double, long double and cpp_bin_float_50 types"; | ||
|  |   if (fp_hardware != "") | ||
|  |   { | ||
|  |     table_info << ", using " << fp_hardware; | ||
|  |   } | ||
|  |   table_info << std::endl; | ||
|  | 
 | ||
|  |   fout << table_info.str() | ||
|  |     << "[[][float][][][] [][double][][][] [][long d][][][] [][cpp50][][]]\n" | ||
|  |     << "[[Algo     ]"; | ||
|  |   for (size_t tp = 0; tp != nooftypes; tp++) | ||
|  |   { // For all types:
 | ||
|  |     fout << "[Its]" << "[Times]" << "[Norm]" << "[Dis]" << "[ ]"; | ||
|  |   } | ||
|  |   fout << "]" << std::endl; | ||
|  | 
 | ||
|  |   // Row for all algorithms.
 | ||
|  |   for (std::size_t algo = 0; algo != noofalgos; algo++) | ||
|  |   { | ||
|  |     fout << "[[" << std::left << std::setw(9) << algo_names[algo] << "]"; | ||
|  |     for (size_t tp = 0; tp != nooftypes; tp++) | ||
|  |     { // For all types:
 | ||
|  |       fout | ||
|  |         << "[" << std::right << std::showpoint | ||
|  |         << std::setw(3) << std::setprecision(2) << root_infos[tp].iterations[algo] << "][" | ||
|  |         << std::setw(5) << std::setprecision(5) << root_infos[tp].times[algo] << "]["; | ||
|  |       fout << std::setw(3) << std::setprecision(3); | ||
|  |         double normed_time = root_infos[tp].normed_times[algo]; | ||
|  |         if (abs(normed_time - 1.00) <= 0.05) | ||
|  |         { // At or near the best time, so show as blue.
 | ||
|  |           fout << "[role blue " << normed_time << "]"; | ||
|  |         } | ||
|  |         else if (abs(normed_time) > 4.) | ||
|  |         { // markedly poor so show as red.
 | ||
|  |           fout << "[role red " << normed_time << "]"; | ||
|  |         } | ||
|  |         else | ||
|  |         { // Not the best, so normal black.
 | ||
|  |           fout << normed_time; | ||
|  |         } | ||
|  |         fout << "][" | ||
|  |         << std::setw(3) << std::setprecision(2) << root_infos[tp].distances[algo] << "][ ]"; | ||
|  |     } // tp
 | ||
|  |     fout << "]" << std::endl; | ||
|  |   } // for algo
 | ||
|  |   fout << "] [/end of table root]\n"; | ||
|  | } // void table_root_info
 | ||
|  | 
 | ||
|  | /*! Output program header, table of type info, and tables for 4 algorithms and 4 floating-point types,
 | ||
|  |  for Nth root required digits_accuracy. | ||
|  |  */ | ||
|  | 
 | ||
|  | int roots_tables(cpp_bin_float_100 full_value, double digits_accuracy) | ||
|  | { | ||
|  |   ::digits_accuracy = digits_accuracy; | ||
|  |   // Save globally so that it is available to root-finding algorithms. Ugly :-(
 | ||
|  | 
 | ||
|  | #if defined(_DEBUG) || !defined(NDEBUG)
 | ||
|  |   std::string debug_or_optimize("Compiled in debug mode."); | ||
|  | #else
 | ||
|  |      std::string debug_or_optimize("Compiled in optimise mode."); | ||
|  | #endif
 | ||
|  | 
 | ||
|  |   // Create filename for roots_table
 | ||
|  |   std::string qbk_name = full_roots_name; | ||
|  |   qbk_name += "roots_table"; | ||
|  | 
 | ||
|  |   std::stringstream ss; | ||
|  |   ss.precision(3); | ||
|  |   // ss << "_" << N // now put all the tables in one .qbk file?
 | ||
|  |     ss << "_" << digits_accuracy * 100 | ||
|  |     << std::flush; | ||
|  |   // Assume only save optimize mode runs, so don't add any  _DEBUG info.
 | ||
|  |   qbk_name += ss.str(); | ||
|  | 
 | ||
|  | #ifdef _MSC_VER
 | ||
|  |   qbk_name += "_msvc"; | ||
|  | #else // assume GCC
 | ||
|  |   qbk_name += "_gcc"; | ||
|  | #endif 
 | ||
|  |   if (fp_hardware != "") | ||
|  |   { | ||
|  |     qbk_name += fp_hardware; | ||
|  |   } | ||
|  |   qbk_name += ".qbk"; | ||
|  | 
 | ||
|  |   fout.open(qbk_name, std::ios_base::out); | ||
|  | 
 | ||
|  |   if (fout.is_open()) | ||
|  |   { | ||
|  |     std::cout << "Output root table to " << qbk_name << std::endl; | ||
|  |   } | ||
|  |   else | ||
|  |   { // Failed to open.
 | ||
|  |     std::cout << " Open file " << qbk_name << " for output failed!" << std::endl; | ||
|  |     std::cout << "errno " << errno << std::endl; | ||
|  |     return errno; | ||
|  |   } | ||
|  | 
 | ||
|  |   fout << | ||
|  |     "[/" | ||
|  |     << qbk_name | ||
|  |     << "\n" | ||
|  |     "Copyright 2015 Paul A. Bristow.""\n" | ||
|  |     "Copyright 2015 John Maddock.""\n" | ||
|  |     "Distributed under the Boost Software License, Version 1.0.""\n" | ||
|  |     "(See accompanying file LICENSE_1_0.txt or copy at""\n" | ||
|  |     "http://www.boost.org/LICENSE_1_0.txt).""\n" | ||
|  |     "]""\n" | ||
|  |     << std::endl; | ||
|  | 
 | ||
|  |   // Print out the program/compiler/stdlib/platform names as a Quickbook comment:
 | ||
|  |   fout << "\n[h6 Program " << sourcefilename << ",\n " | ||
|  |     << BOOST_COMPILER << ", " | ||
|  |     << BOOST_STDLIB << ", " | ||
|  |     << BOOST_PLATFORM << "\n" | ||
|  |     << debug_or_optimize  | ||
|  |     << ((fp_hardware != "") ? ", " + fp_hardware : "") | ||
|  |     << "]" // [h6 close].
 | ||
|  |     << std::endl; | ||
|  | 
 | ||
|  |   fout << "Fraction of full accuracy " << digits_accuracy << std::endl; | ||
|  | 
 | ||
|  |   table_root_info<5>(full_value); | ||
|  |   table_root_info<7>(full_value); | ||
|  |   table_root_info<11>(full_value); | ||
|  | 
 | ||
|  |   fout.close(); | ||
|  | 
 | ||
|  |   //   table_type_info(digits_accuracy);
 | ||
|  | 
 | ||
|  |   return 0; | ||
|  | } // roots_tables
 | ||
|  | 
 | ||
|  | 
 | ||
|  | int main() | ||
|  | { | ||
|  |   using namespace boost::multiprecision; | ||
|  |   using namespace boost::math; | ||
|  | 
 | ||
|  | 
 | ||
|  |   try | ||
|  |   { | ||
|  |     std::cout << "Tests run with " << BOOST_COMPILER << ", " | ||
|  |       << BOOST_STDLIB << ", " << BOOST_PLATFORM << ", "; | ||
|  | 
 | ||
|  | // How to: Configure Visual C++ Projects to Target 64-Bit Platforms
 | ||
|  | // https://msdn.microsoft.com/en-us/library/9yb4317s.aspx
 | ||
|  | 
 | ||
|  | #ifdef _M_X64 // Defined for compilations that target x64 processors.
 | ||
|  |     std::cout << "X64 " << std::endl; | ||
|  |     fp_hardware += "_X64"; | ||
|  | #else
 | ||
|  | #  ifdef _M_IX86
 | ||
|  |      std::cout << "X32 " << std::endl; | ||
|  |      fp_hardware += "_X86"; | ||
|  | #  endif
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  | #ifdef _M_AMD64
 | ||
|  |     std::cout << "AMD64 " << std::endl; | ||
|  |  //   fp_hardware += "_AMD64";
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  | // https://msdn.microsoft.com/en-us/library/7t5yh4fd.aspx  
 | ||
|  | // /arch (x86) options /arch:[IA32|SSE|SSE2|AVX|AVX2]
 | ||
|  | // default is to use SSE and SSE2 instructions by default.
 | ||
|  | // https://msdn.microsoft.com/en-us/library/jj620901.aspx
 | ||
|  | // /arch (x64) options /arch:AVX and /arch:AVX2
 | ||
|  | 
 | ||
|  | // MSVC doesn't bother to set these SSE macros!
 | ||
|  | // http://stackoverflow.com/questions/18563978/sse-sse2-is-enabled-control-in-visual-studio
 | ||
|  | // https://msdn.microsoft.com/en-us/library/b0084kay.aspx  predefined macros.
 | ||
|  | 
 | ||
|  | // But some of these macros are *not* defined by MSVC, 
 | ||
|  | // unlike AVX (but *are* defined by GCC and Clang). 
 | ||
|  | // So the macro code above does define them.
 | ||
|  | #if (defined(_M_AMD64) || defined (_M_X64))
 | ||
|  | #ifndef _M_X64
 | ||
|  | #  define _M_X64
 | ||
|  | #endif
 | ||
|  | #ifndef __SSE2__
 | ||
|  | #  define __SSE2__
 | ||
|  | #endif
 | ||
|  | #else
 | ||
|  | #  ifdef _M_IX86_FP // Expands to an integer literal value indicating which /arch compiler option was used:
 | ||
|  |     std::cout << "Floating-point _M_IX86_FP = " << _M_IX86_FP << std::endl; | ||
|  | #  if (_M_IX86_FP == 2) // 2 if /arch:SSE2, /arch:AVX or /arch:AVX2 
 | ||
|  | #    define __SSE2__ // x32
 | ||
|  | #  elif (_M_IX86_FP == 1) // 1 if /arch:SSE was used.
 | ||
|  | #    define __SSE__ // x32
 | ||
|  | #  elif (_M_IX86_FP == 0) // 0 if /arch:IA32 was used.
 | ||
|  | #    define _X32 // No special FP instructions.
 | ||
|  | #  endif
 | ||
|  | # endif
 | ||
|  | #endif
 | ||
|  | // Set the fp_hardware that is used in the .qbk filename.
 | ||
|  | #ifdef __AVX2__
 | ||
|  |     std::cout << "Floating-point AVX2 " << std::endl; | ||
|  |     fp_hardware += "_AVX2"; | ||
|  | #  else 
 | ||
|  | #    ifdef __AVX__
 | ||
|  |     std::cout << "Floating-point AVX " << std::endl; | ||
|  |     fp_hardware += "_AVX"; | ||
|  | #    else
 | ||
|  | #      ifdef __SSE2__
 | ||
|  |     std::cout << "Floating-point SSE2 " << std::endl; | ||
|  |     fp_hardware += "_SSE2"; | ||
|  | #      else
 | ||
|  | #        ifdef __SSE__
 | ||
|  |     std::cout << "Floating-point SSE " << std::endl; | ||
|  |     fp_hardware += "_SSE"; | ||
|  | #        endif
 | ||
|  | #      endif
 | ||
|  | #   endif
 | ||
|  | # endif
 | ||
|  | 
 | ||
|  | #ifdef _M_IX86
 | ||
|  |     std::cout << "Floating-point X86 _M_IX86 = " << _M_IX86 << std::endl; | ||
|  |     // https://msdn.microsoft.com/en-us/library/aa273918%28v=vs.60%29.aspx#_predir_table_1..3
 | ||
|  |     // 600 = Pentium Pro
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  | #ifdef _MSC_FULL_VER
 | ||
|  |     std::cout << "Floating-point _MSC_FULL_VER " << _MSC_FULL_VER << std::endl; | ||
|  | #endif
 | ||
|  | 
 | ||
|  | #ifdef __MSVC_RUNTIME_CHECKS
 | ||
|  |     std::cout << "Runtime __MSVC_RUNTIME_CHECKS " << std::endl; | ||
|  | #endif
 | ||
|  | 
 | ||
|  |     BOOST_MATH_CONTROL_FP; | ||
|  | 
 | ||
|  |     cpp_bin_float_100 full_value("28."); | ||
|  |     // Compute full answer to more than precision of tests.
 | ||
|  |     //T value = 28.; // integer (exactly representable as floating-point)
 | ||
|  |     // whose cube root is *not* exactly representable.
 | ||
|  |     // Wolfram Alpha command N[28 ^ (1 / 3), 100] computes cube root to 100 decimal digits.
 | ||
|  |     // 3.036588971875662519420809578505669635581453977248111123242141654169177268411884961770250390838097895
 | ||
|  | 
 | ||
|  |     std::cout.precision(100); | ||
|  |     std::cout << "value " << full_value << std::endl; | ||
|  |    // std::cout << ",\n""answer = " << full_answer << std::endl;
 | ||
|  |     std::cout.precision(6); | ||
|  |    // cbrt cpp_bin_float_100 full_answer("3.036588971875662519420809578505669635581453977248111123242141654169177268411884961770250390838097895");
 | ||
|  | 
 | ||
|  |     // Output the table of types, maxdigits10 and digits and required digits for some accuracies.
 | ||
|  | 
 | ||
|  |     // Output tables for some roots at full accuracy.
 | ||
|  |     roots_tables(full_value, 1.); | ||
|  | 
 | ||
|  |     // Output tables for some roots at less accuracy.
 | ||
|  |     //roots_tables(full_value, 0.75);
 | ||
|  | 
 | ||
|  |     return boost::exit_success; | ||
|  |   } | ||
|  |   catch (std::exception ex) | ||
|  |   { | ||
|  |     std::cout << "exception thrown: " << ex.what() << std::endl; | ||
|  |     return boost::exit_failure; | ||
|  |   } | ||
|  | } // int main()
 | ||
|  | 
 | ||
|  | /*
 | ||
|  | 
 | ||
|  | */ |