mirror of
				https://github.com/saitohirga/WSJT-X.git
				synced 2025-11-03 21:40:52 -05:00 
			
		
		
		
	
		
			
	
	
		
			97 lines
		
	
	
		
			2.8 KiB
		
	
	
	
		
			Fortran
		
	
	
	
	
	
		
		
			
		
	
	
			97 lines
		
	
	
		
			2.8 KiB
		
	
	
	
		
			Fortran
		
	
	
	
	
	
| 
								 | 
							
								subroutine geodist(Eplat,Eplon,Stlat,Stlon,Az,Baz,Dist)
							 | 
						||
| 
								 | 
							
								  implicit none
							 | 
						||
| 
								 | 
							
								  real eplat, eplon, stlat, stlon, az, baz, dist
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								! JHT: In actual fact, I use the first two arguments for "My Location",
							 | 
						||
| 
								 | 
							
								!     the second two for "His location"; West longitude is positive.
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								!      Taken directly from:
							 | 
						||
| 
								 | 
							
								!      Thomas, P.D., 1970, Spheroidal geodesics, reference systems,
							 | 
						||
| 
								 | 
							
								!      & local geometry, U.S. Naval Oceanographi!Office SP-138,
							 | 
						||
| 
								 | 
							
								!      165 pp.
							 | 
						||
| 
								 | 
							
								!      assumes North Latitude and East Longitude are positive
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								!      EpLat, EpLon = End point Lat/Long
							 | 
						||
| 
								 | 
							
								!      Stlat, Stlon = Start point lat/long
							 | 
						||
| 
								 | 
							
								!      Az, BAz = direct & reverse azimuith
							 | 
						||
| 
								 | 
							
								!      Dist = Dist (km); Deg = central angle, discarded
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  real BOA, F, P1R, P2R, L1R, L2R, DLR, T1R, T2R, TM,          &
							 | 
						||
| 
								 | 
							
								       DTM, STM, CTM, SDTM,CDTM, KL, KK, SDLMR, L,                &
							 | 
						||
| 
								 | 
							
								       CD, DL, SD, T, U, V, D, X, E, Y, A, FF64, TDLPM,           &
							 | 
						||
| 
								 | 
							
								       HAPBR, HAMBR, A1M2, A2M1
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  real AL,BL,D2R,Pi2
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  data AL/6378206.4/              ! Clarke 1866 ellipsoid
							 | 
						||
| 
								 | 
							
								  data BL/6356583.8/
							 | 
						||
| 
								 | 
							
								!      real pi /3.14159265359/
							 | 
						||
| 
								 | 
							
								  data D2R/0.01745329251994/      ! degrees to radians conversion factor
							 | 
						||
| 
								 | 
							
								  data Pi2/6.28318530718/
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								  BOA = BL/AL
							 | 
						||
| 
								 | 
							
								  F = 1.0 - BOA
							 | 
						||
| 
								 | 
							
								! Convert st/end pts to radians
							 | 
						||
| 
								 | 
							
								  P1R = Eplat * D2R
							 | 
						||
| 
								 | 
							
								  P2R = Stlat * D2R
							 | 
						||
| 
								 | 
							
								  L1R = Eplon * D2R
							 | 
						||
| 
								 | 
							
								  L2R = StLon * D2R
							 | 
						||
| 
								 | 
							
								  DLR = L2R - L1R                 ! DLR = Delta Long in Rads
							 | 
						||
| 
								 | 
							
								  T1R = ATan(BOA * Tan(P1R))
							 | 
						||
| 
								 | 
							
								  T2R = ATan(BOA * Tan(P2R))
							 | 
						||
| 
								 | 
							
								  TM = (T1R + T2R) / 2.0
							 | 
						||
| 
								 | 
							
								  DTM = (T2R - T1R) / 2.0
							 | 
						||
| 
								 | 
							
								  STM = Sin(TM)
							 | 
						||
| 
								 | 
							
								  CTM = Cos(TM)
							 | 
						||
| 
								 | 
							
								  SDTM = Sin(DTM)
							 | 
						||
| 
								 | 
							
								  CDTM = Cos(DTM)
							 | 
						||
| 
								 | 
							
								  KL = STM * CDTM
							 | 
						||
| 
								 | 
							
								  KK = SDTM * CTM
							 | 
						||
| 
								 | 
							
								  SDLMR = Sin(DLR/2.0)
							 | 
						||
| 
								 | 
							
								  L = SDTM * SDTM + SDLMR * SDLMR * (CDTM * CDTM - STM * STM)
							 | 
						||
| 
								 | 
							
								  CD = 1.0 - 2.0 * L
							 | 
						||
| 
								 | 
							
								  DL = ACos(CD)
							 | 
						||
| 
								 | 
							
								  SD = Sin(DL)
							 | 
						||
| 
								 | 
							
								  T = DL/SD
							 | 
						||
| 
								 | 
							
								  U = 2.0 * KL * KL / (1.0 - L)
							 | 
						||
| 
								 | 
							
								  V = 2.0 * KK * KK / L
							 | 
						||
| 
								 | 
							
								  D = 4.0 * T * T
							 | 
						||
| 
								 | 
							
								  X = U + V
							 | 
						||
| 
								 | 
							
								  E = -2.0 * CD
							 | 
						||
| 
								 | 
							
								  Y = U - V
							 | 
						||
| 
								 | 
							
								  A = -D * E
							 | 
						||
| 
								 | 
							
								  FF64 = F * F / 64.0
							 | 
						||
| 
								 | 
							
								  Dist = AL*SD*(T -(F/4.0)*(T*X-Y)+FF64*(X*(A+(T-(A+E)                 &
							 | 
						||
| 
								 | 
							
								       /2.0)*X)+Y*(-2.0*D+E*Y)+D*X*Y))/1000.0
							 | 
						||
| 
								 | 
							
								  TDLPM = Tan((DLR+(-((E*(4.0-X)+2.0*Y)*((F/2.0)*T+FF64*               &
							 | 
						||
| 
								 | 
							
								       (32.0*T+(A-20.0*T)*X-2.0*(D+2.0)*Y))/4.0)*Tan(DLR)))/2.0)
							 | 
						||
| 
								 | 
							
								  HAPBR = ATan2(SDTM,(CTM*TDLPM))
							 | 
						||
| 
								 | 
							
								  HAMBR = Atan2(CDTM,(STM*TDLPM))
							 | 
						||
| 
								 | 
							
								  A1M2 = Pi2 + HAMBR - HAPBR
							 | 
						||
| 
								 | 
							
								  A2M1 = Pi2 - HAMBR - HAPBR
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								1 If ((A1M2 .ge. 0.0) .AND. (A1M2 .lt. Pi2)) GOTO 5
							 | 
						||
| 
								 | 
							
								  If (A1M2 .lt. Pi2) GOTO 4
							 | 
						||
| 
								 | 
							
								  A1M2 = A1M2 - Pi2
							 | 
						||
| 
								 | 
							
								  GOTO 1
							 | 
						||
| 
								 | 
							
								4 A1M2 = A1M2 + Pi2
							 | 
						||
| 
								 | 
							
								  GOTO 1
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								! All of this gens the proper az, baz (forward and back azimuth)
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								5 If ((A2M1 .ge. 0.0) .AND. (A2M1 .lt. Pi2)) GOTO 9
							 | 
						||
| 
								 | 
							
								  If (A2M1 .lt. Pi2) GOTO 8
							 | 
						||
| 
								 | 
							
								  A2M1 = A2M1 - Pi2
							 | 
						||
| 
								 | 
							
								  GOTO 5
							 | 
						||
| 
								 | 
							
								8 A2M1 = A2M1 + Pi2
							 | 
						||
| 
								 | 
							
								  GOTO 5
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								9 Az = A1M2 / D2R
							 | 
						||
| 
								 | 
							
								  BAZ = A2M1 / D2R
							 | 
						||
| 
								 | 
							
								
							 | 
						||
| 
								 | 
							
								!Fix the mirrored coords here.
							 | 
						||
| 
								 | 
							
								  
							 | 
						||
| 
								 | 
							
								  az = 360.0 - az
							 | 
						||
| 
								 | 
							
								  baz = 360.0 - baz
							 | 
						||
| 
								 | 
							
								end subroutine geodist
							 |