mirror of
				https://github.com/saitohirga/WSJT-X.git
				synced 2025-10-31 04:50:34 -04:00 
			
		
		
		
	
		
			
	
	
		
			389 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
		
		
			
		
	
	
			389 lines
		
	
	
		
			22 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
|  | // Copyright 2014 Marco Guazzone (marco.guazzone@gmail.com).
 | ||
|  | //
 | ||
|  | // Use, modification and distribution are subject to the
 | ||
|  | // Boost Software License, Version 1.0.
 | ||
|  | // (See accompanying file LICENSE_1_0.txt
 | ||
|  | // or copy at http://www.boost.org/LICENSE_1_0.txt)
 | ||
|  | //
 | ||
|  | 
 | ||
|  | #include <algorithm>
 | ||
|  | #include <boost/math/tools/test.hpp>
 | ||
|  | #include <boost/math/concepts/real_concept.hpp>
 | ||
|  | #include <boost/math/distributions/complement.hpp>
 | ||
|  | #include <boost/math/distributions/hyperexponential.hpp>
 | ||
|  | #include <boost/math/tools/precision.hpp>
 | ||
|  | 
 | ||
|  | #define BOOST_TEST_MAIN
 | ||
|  | #include <boost/test/unit_test.hpp>
 | ||
|  | #include <boost/test/floating_point_comparison.hpp>
 | ||
|  | 
 | ||
|  | #include <cstddef>
 | ||
|  | #include <iostream>
 | ||
|  | #include <vector>
 | ||
|  | 
 | ||
|  | #define BOOST_MATH_HYPEREXP_CHECK_CLOSE_COLLECTIONS(T, actual, expected, tol) \
 | ||
|  |     do {                                                                      \ | ||
|  |         std::vector<T> x = (actual);                                          \ | ||
|  |         std::vector<T> y = (expected);                                        \ | ||
|  |         BOOST_CHECK_EQUAL( x.size(), y.size() );                              \ | ||
|  |         const std::size_t n = x.size();                                       \ | ||
|  |         for (std::size_t i = 0; i < n; ++i)                                   \ | ||
|  |         {                                                                     \ | ||
|  |             BOOST_CHECK_CLOSE( x[i], y[i], tol );                             \ | ||
|  |         }                                                                     \ | ||
|  |     } while(false) | ||
|  | 
 | ||
|  | #ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
 | ||
|  | typedef boost::mpl::list<float, double, long double, boost::math::concepts::real_concept> test_types; | ||
|  | #else
 | ||
|  | typedef boost::mpl::list<float, double> test_types; | ||
|  | #endif
 | ||
|  | 
 | ||
|  | template <typename RealT> | ||
|  | RealT make_tolerance() | ||
|  | { | ||
|  |     // Tolerance is 100eps expressed as a persentage (as required by Boost.Build):
 | ||
|  |     return boost::math::tools::epsilon<RealT>() * 100 * 100; | ||
|  | } | ||
|  | 
 | ||
|  | BOOST_AUTO_TEST_CASE_TEMPLATE(klass, RealT, test_types) | ||
|  | { | ||
|  |     const RealT tol = make_tolerance<RealT>(); | ||
|  | 
 | ||
|  |     boost::math::hyperexponential_distribution<RealT> dist; | ||
|  |     BOOST_CHECK_EQUAL(dist.num_phases(), 1); | ||
|  |     BOOST_CHECK_CLOSE(dist.probabilities()[0], static_cast<RealT>(1L), tol); | ||
|  |     BOOST_CHECK_CLOSE(dist.rates()[0], static_cast<RealT>(1L), tol); | ||
|  | 
 | ||
|  |     const RealT probs[] = { static_cast<RealT>(0.2L), static_cast<RealT>(0.3L), static_cast<RealT>(0.5L) }; | ||
|  |     const RealT rates[] = { static_cast<RealT>(0.5L), static_cast<RealT>(1.0L), static_cast<RealT>(1.5L) }; | ||
|  |     const std::size_t n = sizeof(probs) / sizeof(RealT); | ||
|  | 
 | ||
|  |     boost::math::hyperexponential_distribution<RealT> dist_it(probs, probs+n, rates, rates+n); | ||
|  |     BOOST_CHECK_EQUAL(dist_it.num_phases(), n); | ||
|  |     BOOST_MATH_HYPEREXP_CHECK_CLOSE_COLLECTIONS(RealT, dist_it.probabilities(), std::vector<RealT>(probs, probs+n), tol); | ||
|  |     BOOST_MATH_HYPEREXP_CHECK_CLOSE_COLLECTIONS(RealT, dist_it.rates(), std::vector<RealT>(rates, rates+n), tol); | ||
|  |      | ||
|  |     boost::math::hyperexponential_distribution<RealT> dist_r(probs, rates); | ||
|  |     BOOST_CHECK_EQUAL(dist_r.num_phases(), n); | ||
|  |     BOOST_MATH_HYPEREXP_CHECK_CLOSE_COLLECTIONS(RealT, dist_r.probabilities(), std::vector<RealT>(probs, probs+n), tol); | ||
|  |     BOOST_MATH_HYPEREXP_CHECK_CLOSE_COLLECTIONS(RealT, dist_r.rates(), std::vector<RealT>(rates, rates+n), tol); | ||
|  |      | ||
|  | #if !defined(BOOST_NO_CXX11_HDR_INITIALIZER_LIST) && !(defined(BOOST_GCC_VERSION) && (BOOST_GCC_VERSION < 40500))
 | ||
|  |     boost::math::hyperexponential_distribution<RealT> dist_il = {{static_cast<RealT>(0.2L), static_cast<RealT>(0.3L), static_cast<RealT>(0.5L)}, {static_cast<RealT>(0.5L), static_cast<RealT>(1.0L), static_cast<RealT>(1.5L)}}; | ||
|  |     BOOST_CHECK_EQUAL(dist_il.num_phases(), n); | ||
|  |     BOOST_MATH_HYPEREXP_CHECK_CLOSE_COLLECTIONS(RealT, dist_il.probabilities(), std::vector<RealT>(probs, probs+n), tol); | ||
|  |     BOOST_MATH_HYPEREXP_CHECK_CLOSE_COLLECTIONS(RealT, dist_il.rates(), std::vector<RealT>(rates, rates+n), tol); | ||
|  | 
 | ||
|  |     boost::math::hyperexponential_distribution<RealT> dist_n_r = { static_cast<RealT>(0.5L), static_cast<RealT>(1.0L), static_cast<RealT>(1.5L) }; | ||
|  |     BOOST_CHECK_EQUAL(dist_n_r.num_phases(), n); | ||
|  |     BOOST_MATH_HYPEREXP_CHECK_CLOSE_COLLECTIONS(RealT, dist_n_r.probabilities(), std::vector<RealT>(n, static_cast<RealT>(1.0L / 3.0L)), tol); | ||
|  |     BOOST_MATH_HYPEREXP_CHECK_CLOSE_COLLECTIONS(RealT, dist_n_r.rates(), std::vector<RealT>(rates, rates + n), tol); | ||
|  | #endif // BOOST_NO_CXX11_HDR_INITIALIZER_LIST
 | ||
|  | 
 | ||
|  |     boost::math::hyperexponential_distribution<RealT> dist_n_it(rates, rates+n); | ||
|  |     BOOST_CHECK_EQUAL(dist_n_it.num_phases(), n); | ||
|  |     BOOST_MATH_HYPEREXP_CHECK_CLOSE_COLLECTIONS(RealT, dist_n_it.probabilities(), std::vector<RealT>(n, static_cast<RealT>(1.0L/3.0L)), tol); | ||
|  |     BOOST_MATH_HYPEREXP_CHECK_CLOSE_COLLECTIONS(RealT, dist_n_it.rates(), std::vector<RealT>(rates, rates+n), tol); | ||
|  | 
 | ||
|  |     boost::math::hyperexponential_distribution<RealT> dist_n_r2(rates); | ||
|  |     BOOST_CHECK_EQUAL(dist_n_r2.num_phases(), n); | ||
|  |     BOOST_MATH_HYPEREXP_CHECK_CLOSE_COLLECTIONS(RealT, dist_n_r2.probabilities(), std::vector<RealT>(n, static_cast<RealT>(1.0L/3.0L)), tol); | ||
|  |     BOOST_MATH_HYPEREXP_CHECK_CLOSE_COLLECTIONS(RealT, dist_n_r2.rates(), std::vector<RealT>(rates, rates+n), tol); | ||
|  | } | ||
|  | 
 | ||
|  | BOOST_AUTO_TEST_CASE_TEMPLATE(range, RealT, test_types) | ||
|  | { | ||
|  |     const RealT tol = make_tolerance<RealT>(); | ||
|  | 
 | ||
|  |     const RealT probs[] = { static_cast<RealT>(0.2L), static_cast<RealT>(0.3L), static_cast<RealT>(0.5L) }; | ||
|  |     const RealT rates[] = { static_cast<RealT>(0.5L), static_cast<RealT>(1.0L), static_cast<RealT>(1.5L) }; | ||
|  |     const std::size_t n = sizeof(probs) / sizeof(RealT); | ||
|  | 
 | ||
|  |     boost::math::hyperexponential_distribution<RealT> dist(probs, probs+n, rates, rates+n); | ||
|  | 
 | ||
|  |     std::pair<RealT,RealT> res; | ||
|  |     res = boost::math::range(dist); | ||
|  | 
 | ||
|  |     BOOST_CHECK_CLOSE( res.first, static_cast<RealT>(0), tol ); | ||
|  |     if(std::numeric_limits<RealT>::has_infinity) | ||
|  |     { | ||
|  |        BOOST_CHECK_EQUAL(res.second, std::numeric_limits<RealT>::infinity()); | ||
|  |     } | ||
|  |     else | ||
|  |     { | ||
|  |        BOOST_CHECK_EQUAL(res.second, boost::math::tools::max_value<RealT>()); | ||
|  |     } | ||
|  | } | ||
|  | 
 | ||
|  | BOOST_AUTO_TEST_CASE_TEMPLATE(support, RealT, test_types) | ||
|  | { | ||
|  |     const RealT tol = make_tolerance<RealT>(); | ||
|  | 
 | ||
|  |     const RealT probs[] = { static_cast<RealT>(0.2L), static_cast<RealT>(0.3L), static_cast<RealT>(0.5L) }; | ||
|  |     const RealT rates[] = { static_cast<RealT>(0.5L), static_cast<RealT>(1), static_cast<RealT>(1.5L) }; | ||
|  |     const std::size_t n = sizeof(probs)/sizeof(RealT); | ||
|  | 
 | ||
|  |     boost::math::hyperexponential_distribution<RealT> dist(probs, probs+n, rates, rates+n); | ||
|  | 
 | ||
|  |     std::pair<RealT,RealT> res; | ||
|  |     res = boost::math::support(dist); | ||
|  | 
 | ||
|  |     BOOST_CHECK_CLOSE( res.first, boost::math::tools::min_value<RealT>(), tol ); | ||
|  |     BOOST_CHECK_CLOSE( res.second, boost::math::tools::max_value<RealT>(), tol ); | ||
|  | } | ||
|  | 
 | ||
|  | BOOST_AUTO_TEST_CASE_TEMPLATE(pdf, RealT, test_types) | ||
|  | { | ||
|  |     const RealT tol = make_tolerance<RealT>(); | ||
|  | 
 | ||
|  |     const RealT probs[] = { static_cast<RealT>(0.2L), static_cast<RealT>(0.3L), static_cast<RealT>(0.5L) }; | ||
|  |     const RealT rates[] = { static_cast<RealT>(0.5L), static_cast<RealT>(1), static_cast<RealT>(1.5) }; | ||
|  |     const std::size_t n = sizeof(probs)/sizeof(RealT); | ||
|  | 
 | ||
|  |     boost::math::hyperexponential_distribution<RealT> dist(probs, probs+n, rates, rates+n); | ||
|  | 
 | ||
|  |     // Mathematica: Table[N[PDF[HyperexponentialDistribution[{1/5, 3/10, 1/2}, {1/2, 1, 3/2}], x], 35], {x, 0, 4}]
 | ||
|  |     BOOST_CHECK_CLOSE( boost::math::pdf(dist, static_cast<RealT>(0)), static_cast<RealT>(1.15L), tol ); | ||
|  |     BOOST_CHECK_CLOSE( boost::math::pdf(dist, static_cast<RealT>(1)), static_cast<RealT>(0.33836451843401841053899743762056570L), tol ); | ||
|  |     BOOST_CHECK_CLOSE( boost::math::pdf(dist, static_cast<RealT>(2)), static_cast<RealT>(0.11472883036402599696225903724543774L), tol ); | ||
|  |     BOOST_CHECK_CLOSE( boost::math::pdf(dist, static_cast<RealT>(3)), static_cast<RealT>(0.045580883928883895659238122486617681L), tol ); | ||
|  |     BOOST_CHECK_CLOSE( boost::math::pdf(dist, static_cast<RealT>(4)), static_cast<RealT>(0.020887284122781292094799231452333314L), tol ); | ||
|  | } | ||
|  | 
 | ||
|  | BOOST_AUTO_TEST_CASE_TEMPLATE(cdf, RealT, test_types) | ||
|  | { | ||
|  |     const RealT tol = make_tolerance<RealT>(); | ||
|  | 
 | ||
|  |     const RealT probs[] = { static_cast<RealT>(0.2L), static_cast<RealT>(0.3L), static_cast<RealT>(0.5L) }; | ||
|  |     const RealT rates[] = { static_cast<RealT>(0.5L), static_cast<RealT>(1.0L), static_cast<RealT>(1.5L) }; | ||
|  |     const std::size_t n = sizeof(probs)/sizeof(RealT); | ||
|  | 
 | ||
|  |     boost::math::hyperexponential_distribution<RealT> dist(probs, probs+n, rates, rates+n); | ||
|  | 
 | ||
|  |     // Mathematica: Table[N[CDF[HyperexponentialDistribution[{1/5, 3/10, 1/2}, {1/2, 1, 3/2}], x], 35], {x, 0, 4}]
 | ||
|  |     BOOST_CHECK_CLOSE( boost::math::cdf(dist, static_cast<RealT>(0)), static_cast<RealT>(0), tol ); | ||
|  |     BOOST_CHECK_CLOSE( boost::math::cdf(dist, static_cast<RealT>(1)), static_cast<RealT>(0.65676495563182570433394272657131939L), tol ); | ||
|  |     BOOST_CHECK_CLOSE( boost::math::cdf(dist, static_cast<RealT>(2)), static_cast<RealT>(0.86092999261079575662302418965093162L), tol ); | ||
|  |     BOOST_CHECK_CLOSE( boost::math::cdf(dist, static_cast<RealT>(3)), static_cast<RealT>(0.93488334919083369807146961400871370L), tol ); | ||
|  |     BOOST_CHECK_CLOSE( boost::math::cdf(dist, static_cast<RealT>(4)), static_cast<RealT>(0.96619887559772402832156211090812241L), tol ); | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | BOOST_AUTO_TEST_CASE_TEMPLATE(quantile, RealT, test_types) | ||
|  | { | ||
|  |     const RealT tol = make_tolerance<RealT>(); | ||
|  | 
 | ||
|  |     const RealT probs[] = { static_cast<RealT>(0.2L), static_cast<RealT>(0.3L), static_cast<RealT>(0.5L) }; | ||
|  |     const RealT rates[] = { static_cast<RealT>(0.5L), static_cast<RealT>(1.0L), static_cast<RealT>(1.5L) }; | ||
|  |     const std::size_t n = sizeof(probs)/sizeof(RealT); | ||
|  | 
 | ||
|  |     boost::math::hyperexponential_distribution<RealT> dist(probs, probs+n, rates, rates+n); | ||
|  | 
 | ||
|  |     // Mathematica: Table[N[Quantile[HyperexponentialDistribution[{1/5, 3/10, 1/2}, {1/2, 1, 3/2}], p], 35], {p, {0.`35, 0.6567649556318257043339427265713193884067872189124925936717`35, 0.8609299926107957566230241896509316171726985139265620607067`35, 0.9348833491908336980714696140087136988562861627183715044229`35, 0.9661988755977240283215621109081224127091468307592751727719`35}}]
 | ||
|  |     BOOST_CHECK_CLOSE( boost::math::quantile(dist, static_cast<RealT>(0)), static_cast<RealT>(0), tol ); | ||
|  |     BOOST_CHECK_CLOSE( boost::math::quantile(dist, static_cast<RealT>(0.65676495563182570433394272657131939L)), static_cast<RealT>(1), tol ); | ||
|  |     BOOST_CHECK_CLOSE( boost::math::quantile(dist, static_cast<RealT>(0.86092999261079575662302418965093162L)), static_cast<RealT>(2), tol ); | ||
|  |     BOOST_CHECK_CLOSE( boost::math::quantile(dist, static_cast<RealT>(0.93488334919083369807146961400871370L)), static_cast<RealT>(3), tol ); | ||
|  |     BOOST_CHECK_CLOSE( boost::math::quantile(dist, static_cast<RealT>(0.96619887559772402832156211090812241L)), static_cast<RealT>(4), tol ); | ||
|  | } | ||
|  | 
 | ||
|  | BOOST_AUTO_TEST_CASE_TEMPLATE(ccdf, RealT, test_types) | ||
|  | { | ||
|  |     const RealT tol = make_tolerance<RealT>(); | ||
|  | 
 | ||
|  |     const RealT probs[] = { static_cast<RealT>(0.2L), static_cast<RealT>(0.3L), static_cast<RealT>(0.5L) }; | ||
|  |     const RealT rates[] = { static_cast<RealT>(0.5L), static_cast<RealT>(1.0L), static_cast<RealT>(1.5L) }; | ||
|  |     const std::size_t n = sizeof(probs)/sizeof(RealT); | ||
|  | 
 | ||
|  |     boost::math::hyperexponential_distribution<RealT> dist(probs, probs+n, rates, rates+n); | ||
|  | 
 | ||
|  |     // Mathematica: Table[N[SurvivalFunction[HyperexponentialDistribution[{1/5, 3/10, 1/2}, {1/2, 1, 3/2}], x], 35], {x, 0, 4}]
 | ||
|  |     BOOST_CHECK_CLOSE( boost::math::cdf(boost::math::complement(dist, static_cast<RealT>(0))), static_cast<RealT>(1), tol ); | ||
|  |     BOOST_CHECK_CLOSE( boost::math::cdf(boost::math::complement(dist, static_cast<RealT>(1))), static_cast<RealT>(0.34323504436817429566605727342868061L), tol ); | ||
|  |     BOOST_CHECK_CLOSE( boost::math::cdf(boost::math::complement(dist, static_cast<RealT>(2))), static_cast<RealT>(0.13907000738920424337697581034906838L), tol ); | ||
|  |     BOOST_CHECK_CLOSE( boost::math::cdf(boost::math::complement(dist, static_cast<RealT>(3))), static_cast<RealT>(0.065116650809166301928530385991286301L), tol ); | ||
|  |     BOOST_CHECK_CLOSE( boost::math::cdf(boost::math::complement(dist, static_cast<RealT>(4))), static_cast<RealT>(0.033801124402275971678437889091877587L), tol ); | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | BOOST_AUTO_TEST_CASE_TEMPLATE(cquantile, RealT, test_types) | ||
|  | { | ||
|  |     const RealT tol = make_tolerance<RealT>(); | ||
|  | 
 | ||
|  |     const RealT probs[] = { static_cast<RealT>(0.2L), static_cast<RealT>(0.3L), static_cast<RealT>(0.5L) }; | ||
|  |     const RealT rates[] = { static_cast<RealT>(0.5L), static_cast<RealT>(1.0L), static_cast<RealT>(1.5L) }; | ||
|  |     const std::size_t n = sizeof(probs) / sizeof(RealT); | ||
|  | 
 | ||
|  |     boost::math::hyperexponential_distribution<RealT> dist(probs, probs+n, rates, rates+n); | ||
|  | 
 | ||
|  |     // Mathematica: Table[N[InverseSurvivalFunction[HyperexponentialDistribution[{1/5, 3/10, 1/2}, {1/2, 1, 3/2}], p], 35], {p, {1.`35, 0.3432350443681742956660572734286806115932127810875074063283`35, 0.1390700073892042433769758103490683828273014860734379392933`35, 0.0651166508091663019285303859912863011437138372816284955771`35, 0.0338011244022759716784378890918775872908531692407248272281`35}}]
 | ||
|  |     BOOST_CHECK_CLOSE( boost::math::quantile(boost::math::complement(dist, static_cast<RealT>(1))), static_cast<RealT>(0), tol ); | ||
|  |     BOOST_CHECK_CLOSE( boost::math::quantile(boost::math::complement(dist, static_cast<RealT>(0.34323504436817429566605727342868061L))), static_cast<RealT>(1), tol ); | ||
|  |     BOOST_CHECK_CLOSE( boost::math::quantile(boost::math::complement(dist, static_cast<RealT>(0.13907000738920424337697581034906838L))), static_cast<RealT>(2), tol ); | ||
|  |     BOOST_CHECK_CLOSE( boost::math::quantile(boost::math::complement(dist, static_cast<RealT>(0.065116650809166301928530385991286301L))), static_cast<RealT>(3), tol ); | ||
|  |     BOOST_CHECK_CLOSE( boost::math::quantile(boost::math::complement(dist, static_cast<RealT>(0.033801124402275971678437889091877587L))), static_cast<RealT>(4), tol ); | ||
|  | } | ||
|  | 
 | ||
|  | BOOST_AUTO_TEST_CASE_TEMPLATE(mean, RealT, test_types) | ||
|  | { | ||
|  |     const RealT tol = make_tolerance<RealT>(); | ||
|  | 
 | ||
|  |     const RealT probs[] = { static_cast<RealT>(0.2L), static_cast<RealT>(0.3L), static_cast<RealT>(0.5L) }; | ||
|  |     const RealT rates[] = { static_cast<RealT>(0.5L), static_cast<RealT>(1.0L), static_cast<RealT>(1.5L) }; | ||
|  |     const std::size_t n = sizeof(probs) / sizeof(RealT); | ||
|  | 
 | ||
|  |     boost::math::hyperexponential_distribution<RealT> dist(probs, probs+n, rates, rates+n); | ||
|  | 
 | ||
|  |     // Mathematica: N[Mean[HyperexponentialDistribution[{1/5, 3/10, 1/2}, {1/2, 1, 3/2}]], 35]
 | ||
|  |     BOOST_CHECK_CLOSE( boost::math::mean(dist), static_cast<RealT>(1.0333333333333333333333333333333333L), tol ); | ||
|  | } | ||
|  | 
 | ||
|  | BOOST_AUTO_TEST_CASE_TEMPLATE(variance, RealT, test_types) | ||
|  | { | ||
|  |     const RealT tol = make_tolerance<RealT>(); | ||
|  | 
 | ||
|  |     const RealT probs[] = { static_cast<RealT>(0.2L), static_cast<RealT>(0.3L), static_cast<RealT>(0.5L) }; | ||
|  |     const RealT rates[] = { static_cast<RealT>(0.5L), static_cast<RealT>(1.0L), static_cast<RealT>(1.5L) }; | ||
|  |     const std::size_t n = sizeof(probs) / sizeof(RealT); | ||
|  | 
 | ||
|  |     boost::math::hyperexponential_distribution<RealT> dist(probs, probs+n, rates, rates+n); | ||
|  | 
 | ||
|  |     // Mathematica: N[Variance[HyperexponentialDistribution[{1/5, 3/10, 1/2}, {1/2, 1, 3/2}]], 35]
 | ||
|  |     BOOST_CHECK_CLOSE( boost::math::variance(dist), static_cast<RealT>(1.5766666666666666666666666666666667L), tol ); | ||
|  | } | ||
|  | 
 | ||
|  | BOOST_AUTO_TEST_CASE_TEMPLATE(kurtosis, RealT, test_types) | ||
|  | { | ||
|  |     const RealT tol = make_tolerance<RealT>(); | ||
|  | 
 | ||
|  |     const RealT probs[] = { static_cast<RealT>(0.2L), static_cast<RealT>(0.3L), static_cast<RealT>(0.5L) }; | ||
|  |     const RealT rates[] = { static_cast<RealT>(0.5L), static_cast<RealT>(1.0L), static_cast<RealT>(1.5L) }; | ||
|  |     const std::size_t n = sizeof(probs) / sizeof(RealT); | ||
|  | 
 | ||
|  |     boost::math::hyperexponential_distribution<RealT> dist(probs, probs+n, rates, rates+n); | ||
|  | 
 | ||
|  |     // Mathematica: N[Kurtosis[HyperexponentialDistribution[{1/5, 3/10, 1/2}, {1/2, 1, 3/2}]], 35]
 | ||
|  |     BOOST_CHECK_CLOSE( boost::math::kurtosis(dist), static_cast<RealT>(19.750738616808728416968743435138046L), tol ); | ||
|  |     // Mathematica: N[Kurtosis[HyperexponentialDistribution[{1/5, 3/10, 1/2}, {1/2, 1, 3/2}] - 3.`35], 35]
 | ||
|  |     BOOST_CHECK_CLOSE( boost::math::kurtosis_excess(dist), static_cast<RealT>(16.750738616808728416968743435138046L), tol ); | ||
|  | } | ||
|  | 
 | ||
|  | BOOST_AUTO_TEST_CASE_TEMPLATE(skewness, RealT, test_types) | ||
|  | { | ||
|  |     const RealT tol = make_tolerance<RealT>(); | ||
|  | 
 | ||
|  |     const RealT probs[] = { static_cast<RealT>(0.2L), static_cast<RealT>(0.3L), static_cast<RealT>(0.5L) }; | ||
|  |     const RealT rates[] = { static_cast<RealT>(0.5L), static_cast<RealT>(1.0L), static_cast<RealT>(1.5L) }; | ||
|  |     const std::size_t n = sizeof(probs) / sizeof(RealT); | ||
|  | 
 | ||
|  |     boost::math::hyperexponential_distribution<RealT> dist(probs, probs+n, rates, rates+n); | ||
|  | 
 | ||
|  |     // Mathematica: N[Skewness[HyperexponentialDistribution[{1/5, 3/10, 1/2}, {1/2, 1, 3/2}]], 35]
 | ||
|  |     BOOST_CHECK_CLOSE( boost::math::skewness(dist), static_cast<RealT>(3.1811387449963809211146099116375685L), tol ); | ||
|  | } | ||
|  | 
 | ||
|  | BOOST_AUTO_TEST_CASE_TEMPLATE(mode, RealT, test_types) | ||
|  | { | ||
|  |     const RealT tol = make_tolerance<RealT>(); | ||
|  | 
 | ||
|  |     const RealT probs[] = { static_cast<RealT>(0.2L), static_cast<RealT>(0.3L), static_cast<RealT>(0.5L) }; | ||
|  |     const RealT rates[] = { static_cast<RealT>(0.5L), static_cast<RealT>(1.0L), static_cast<RealT>(1.5L) }; | ||
|  |     const std::size_t n = sizeof(probs) / sizeof(RealT); | ||
|  | 
 | ||
|  |     boost::math::hyperexponential_distribution<RealT> dist(probs, probs+n, rates, rates+n); | ||
|  | 
 | ||
|  |     BOOST_CHECK_CLOSE( boost::math::mode(dist), static_cast<RealT>(0), tol ); | ||
|  | } | ||
|  | 
 | ||
|  | template <class T> | ||
|  | void f(T t) | ||
|  | { | ||
|  |    std::cout << typeid(t).name() << std::endl; | ||
|  | } | ||
|  | 
 | ||
|  | BOOST_AUTO_TEST_CASE(construct) | ||
|  | { | ||
|  |    boost::array<double, 3> da1 = { { 0.5, 1, 1.5 } }; | ||
|  |    boost::array<double, 3> da2 = { { 0.25, 0.5, 0.25 } }; | ||
|  |    std::vector<double> v1(da1.begin(), da1.end()); | ||
|  |    std::vector<double> v2(da2.begin(), da2.end()); | ||
|  | 
 | ||
|  |    std::vector<double> result_v; | ||
|  |    boost::math::hyperexponential he1(v2, v1); | ||
|  |    result_v = he1.rates(); | ||
|  |    BOOST_CHECK_EQUAL_COLLECTIONS(v1.begin(), v1.end(), result_v.begin(), result_v.end()); | ||
|  |    result_v = he1.probabilities(); | ||
|  |    BOOST_CHECK_EQUAL_COLLECTIONS(v2.begin(), v2.end(), result_v.begin(), result_v.end()); | ||
|  | 
 | ||
|  |    boost::math::hyperexponential he2(da2, da1); | ||
|  |    result_v = he2.rates(); | ||
|  |    BOOST_CHECK_EQUAL_COLLECTIONS(v1.begin(), v1.end(), result_v.begin(), result_v.end()); | ||
|  |    result_v = he2.probabilities(); | ||
|  |    BOOST_CHECK_EQUAL_COLLECTIONS(v2.begin(), v2.end(), result_v.begin(), result_v.end()); | ||
|  | 
 | ||
|  | #if !defined(BOOST_NO_CXX11_HDR_INITIALIZER_LIST) && !(defined(BOOST_GCC_VERSION) && (BOOST_GCC_VERSION < 40500))
 | ||
|  |    std::initializer_list<double> il = { 0.25, 0.5, 0.25 }; | ||
|  |    std::initializer_list<double> il2 = { 0.5, 1, 1.5 }; | ||
|  |    boost::math::hyperexponential he3(il, il2); | ||
|  |    result_v = he3.rates(); | ||
|  |    BOOST_CHECK_EQUAL_COLLECTIONS(v1.begin(), v1.end(), result_v.begin(), result_v.end()); | ||
|  |    result_v = he3.probabilities(); | ||
|  |    BOOST_CHECK_EQUAL_COLLECTIONS(v2.begin(), v2.end(), result_v.begin(), result_v.end()); | ||
|  | 
 | ||
|  |    boost::math::hyperexponential he4({ 0.25, 0.5, 0.25 }, { 0.5, 1.0, 1.5 }); | ||
|  |    result_v = he4.rates(); | ||
|  |    BOOST_CHECK_EQUAL_COLLECTIONS(v1.begin(), v1.end(), result_v.begin(), result_v.end()); | ||
|  |    result_v = he4.probabilities(); | ||
|  |    BOOST_CHECK_EQUAL_COLLECTIONS(v2.begin(), v2.end(), result_v.begin(), result_v.end()); | ||
|  | #endif
 | ||
|  | } | ||
|  | 
 | ||
|  | BOOST_AUTO_TEST_CASE_TEMPLATE(special_cases, RealT, test_types) | ||
|  | { | ||
|  |     const RealT tol = make_tolerance<RealT>(); | ||
|  | 
 | ||
|  |     // When the number of phases is 1, the hyperexponential distribution is an exponential distribution
 | ||
|  |     const RealT rates1[] = { static_cast<RealT>(0.5L) }; | ||
|  |     boost::math::hyperexponential_distribution<RealT> hexp1(rates1); | ||
|  |     boost::math::exponential_distribution<RealT> exp1(rates1[0]); | ||
|  |     BOOST_CHECK_CLOSE(boost::math::pdf(hexp1, static_cast<RealT>(1L)), boost::math::pdf(exp1, static_cast<RealT>(1L)), tol); | ||
|  |     BOOST_CHECK_CLOSE(boost::math::cdf(hexp1, static_cast<RealT>(1L)), boost::math::cdf(exp1, static_cast<RealT>(1L)), tol); | ||
|  |     BOOST_CHECK_CLOSE(boost::math::mean(hexp1), boost::math::mean(exp1), tol); | ||
|  |     BOOST_CHECK_CLOSE(boost::math::variance(hexp1), boost::math::variance(exp1), tol); | ||
|  |     BOOST_CHECK_CLOSE(boost::math::quantile(hexp1, static_cast<RealT>(0.25L)), boost::math::quantile(exp1, static_cast<RealT>(0.25L)), tol); | ||
|  |     BOOST_CHECK_CLOSE(boost::math::median(hexp1), boost::math::median(exp1), tol); | ||
|  |     BOOST_CHECK_CLOSE(boost::math::quantile(hexp1, static_cast<RealT>(0.75L)), boost::math::quantile(exp1, static_cast<RealT>(0.75L)), tol); | ||
|  |     BOOST_CHECK_CLOSE(boost::math::mode(hexp1), boost::math::mode(exp1), tol); | ||
|  | 
 | ||
|  |     // When a k-phase hyperexponential distribution has all rates equal to r, the distribution is an exponential distribution with rate r
 | ||
|  |     const RealT rate2 = static_cast<RealT>(0.5L); | ||
|  |     const RealT rates2[] = { rate2, rate2, rate2 }; | ||
|  |     boost::math::hyperexponential_distribution<RealT> hexp2(rates2); | ||
|  |     boost::math::exponential_distribution<RealT> exp2(rate2); | ||
|  |     BOOST_CHECK_CLOSE(boost::math::pdf(hexp2, static_cast<RealT>(1L)), boost::math::pdf(exp2, static_cast<RealT>(1L)), tol); | ||
|  |     BOOST_CHECK_CLOSE(boost::math::cdf(hexp2, static_cast<RealT>(1L)), boost::math::cdf(exp2, static_cast<RealT>(1L)), tol); | ||
|  |     BOOST_CHECK_CLOSE(boost::math::mean(hexp2), boost::math::mean(exp2), tol); | ||
|  |     BOOST_CHECK_CLOSE(boost::math::variance(hexp2), boost::math::variance(exp2), tol); | ||
|  |     BOOST_CHECK_CLOSE(boost::math::quantile(hexp2, static_cast<RealT>(0.25L)), boost::math::quantile(exp2, static_cast<RealT>(0.25L)), tol); | ||
|  |     BOOST_CHECK_CLOSE(boost::math::median(hexp2), boost::math::median(exp2), tol); | ||
|  |     BOOST_CHECK_CLOSE(boost::math::quantile(hexp2, static_cast<RealT>(0.75L)), boost::math::quantile(exp2, static_cast<RealT>(0.75L)), tol); | ||
|  |     BOOST_CHECK_CLOSE(boost::math::mode(hexp2), boost::math::mode(exp2), tol); | ||
|  | } | ||
|  | 
 | ||
|  | BOOST_AUTO_TEST_CASE_TEMPLATE(error_cases, RealT, test_types) | ||
|  | { | ||
|  |    typedef boost::math::hyperexponential_distribution<RealT> dist_t; | ||
|  |    boost::array<RealT, 2> probs = { { 1, 2 } }; | ||
|  |    boost::array<RealT, 3> probs2 = { { 1, 2, 3 } }; | ||
|  |    boost::array<RealT, 3> rates = { { 1, 2, 3 } }; | ||
|  |    BOOST_MATH_CHECK_THROW(dist_t(probs.begin(), probs.end(), rates.begin(), rates.end()), std::domain_error); | ||
|  |    BOOST_MATH_CHECK_THROW(dist_t(probs, rates), std::domain_error); | ||
|  |    rates[1] = 0; | ||
|  |    BOOST_MATH_CHECK_THROW(dist_t(probs2, rates), std::domain_error); | ||
|  |    rates[1] = -1; | ||
|  |    BOOST_MATH_CHECK_THROW(dist_t(probs2, rates), std::domain_error); | ||
|  |    BOOST_MATH_CHECK_THROW(dist_t(probs.begin(), probs.begin(), rates.begin(), rates.begin()), std::domain_error); | ||
|  |    BOOST_MATH_CHECK_THROW(dist_t(rates.begin(), rates.begin()), std::domain_error); | ||
|  | } |