mirror of
				https://github.com/saitohirga/WSJT-X.git
				synced 2025-10-31 04:50:34 -04:00 
			
		
		
		
	
		
			
	
	
		
			762 lines
		
	
	
		
			34 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
		
		
			
		
	
	
			762 lines
		
	
	
		
			34 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
|  | // Copyright Paul Bristow 2006, 2007.
 | ||
|  | // Copyright John Maddock 2006, 2007.
 | ||
|  | 
 | ||
|  | // Use, modification and distribution are subject to the
 | ||
|  | // Boost Software License, Version 1.0.
 | ||
|  | // (See accompanying file LICENSE_1_0.txt
 | ||
|  | // or copy at http://www.boost.org/LICENSE_1_0.txt)
 | ||
|  | 
 | ||
|  | // test_triangular.cpp
 | ||
|  | 
 | ||
|  | #include <pch.hpp>
 | ||
|  | 
 | ||
|  | #ifdef _MSC_VER
 | ||
|  | #  pragma warning(disable: 4127) // conditional expression is constant.
 | ||
|  | #  pragma warning(disable: 4305) // truncation from 'long double' to 'float'
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  | #include <boost/math/concepts/real_concept.hpp> // for real_concept
 | ||
|  | #define BOOST_TEST_MAIN
 | ||
|  | #include <boost/test/unit_test.hpp> // Boost.Test
 | ||
|  | #include <boost/test/floating_point_comparison.hpp>
 | ||
|  | 
 | ||
|  | #include <boost/math/distributions/triangular.hpp>
 | ||
|  | using boost::math::triangular_distribution; | ||
|  | #include <boost/math/tools/test.hpp>
 | ||
|  | #include <boost/math/special_functions/fpclassify.hpp>
 | ||
|  | #include "test_out_of_range.hpp"
 | ||
|  | 
 | ||
|  | #include <iostream>
 | ||
|  | #include <iomanip>
 | ||
|  | using std::cout; | ||
|  | using std::endl; | ||
|  | using std::scientific; | ||
|  | using std::fixed; | ||
|  | using std::left; | ||
|  | using std::right; | ||
|  | using std::setw; | ||
|  | using std::setprecision; | ||
|  | using std::showpos; | ||
|  | #include <limits>
 | ||
|  | using std::numeric_limits; | ||
|  | 
 | ||
|  | template <class RealType> | ||
|  | void check_triangular(RealType lower, RealType mode, RealType upper, RealType x, RealType p, RealType q, RealType tol) | ||
|  | { | ||
|  |   BOOST_CHECK_CLOSE_FRACTION( | ||
|  |     ::boost::math::cdf( | ||
|  |     triangular_distribution<RealType>(lower, mode, upper),   // distribution.
 | ||
|  |     x),  // random variable.
 | ||
|  |     p,    // probability.
 | ||
|  |     tol);   // tolerance.
 | ||
|  |   BOOST_CHECK_CLOSE_FRACTION( | ||
|  |     ::boost::math::cdf( | ||
|  |     complement( | ||
|  |     triangular_distribution<RealType>(lower, mode, upper), // distribution.
 | ||
|  |     x)),    // random variable.
 | ||
|  |     q,    // probability complement.
 | ||
|  |     tol);  // tolerance.
 | ||
|  |   BOOST_CHECK_CLOSE_FRACTION( | ||
|  |     ::boost::math::quantile( | ||
|  |     triangular_distribution<RealType>(lower,mode, upper),  // distribution.
 | ||
|  |     p),   // probability.
 | ||
|  |     x,  // random variable.
 | ||
|  |     tol);  // tolerance.
 | ||
|  |   BOOST_CHECK_CLOSE_FRACTION( | ||
|  |     ::boost::math::quantile( | ||
|  |     complement( | ||
|  |     triangular_distribution<RealType>(lower, mode, upper),  // distribution.
 | ||
|  |     q)),     // probability complement.
 | ||
|  |     x,                                             // random variable.
 | ||
|  |     tol);  // tolerance.
 | ||
|  | } // void check_triangular
 | ||
|  | 
 | ||
|  | template <class RealType> | ||
|  | void test_spots(RealType) | ||
|  | { | ||
|  |   // Basic sanity checks:
 | ||
|  |   //
 | ||
|  |   // Some test values were generated for the triangular distribution
 | ||
|  |   // using the online calculator at
 | ||
|  |   // http://espse.ed.psu.edu/edpsych/faculty/rhale/hale/507Mat/statlets/free/pdist.htm
 | ||
|  |   //
 | ||
|  |   // Tolerance is just over 5 epsilon expressed as a fraction:
 | ||
|  |   RealType tolerance = boost::math::tools::epsilon<RealType>() * 5; // 5 eps as a fraction.
 | ||
|  |   RealType tol5eps = boost::math::tools::epsilon<RealType>() * 5; // 5 eps as a fraction.
 | ||
|  | 
 | ||
|  |   cout << "Tolerance for type " << typeid(RealType).name()  << " is " << tolerance << "." << endl; | ||
|  | 
 | ||
|  |   using namespace std; // for ADL of std::exp;
 | ||
|  | 
 | ||
|  |   // Tests on construction
 | ||
|  |   // Default should be 0, 0, 1
 | ||
|  |   BOOST_CHECK_EQUAL(triangular_distribution<RealType>().lower(), -1); | ||
|  |   BOOST_CHECK_EQUAL(triangular_distribution<RealType>().mode(), 0); | ||
|  |   BOOST_CHECK_EQUAL(triangular_distribution<RealType>().upper(), 1); | ||
|  |   BOOST_CHECK_EQUAL(support(triangular_distribution<RealType>()).first, triangular_distribution<RealType>().lower()); | ||
|  |   BOOST_CHECK_EQUAL(support(triangular_distribution<RealType>()).second, triangular_distribution<RealType>().upper()); | ||
|  | 
 | ||
|  |   if (std::numeric_limits<RealType>::has_quiet_NaN == true) | ||
|  |   { | ||
|  |   BOOST_MATH_CHECK_THROW( // duff parameter lower.
 | ||
|  |     triangular_distribution<RealType>(static_cast<RealType>(std::numeric_limits<RealType>::quiet_NaN()), 0, 0), | ||
|  |     std::domain_error); | ||
|  | 
 | ||
|  |   BOOST_MATH_CHECK_THROW( // duff parameter mode.
 | ||
|  |     triangular_distribution<RealType>(0, static_cast<RealType>(std::numeric_limits<RealType>::quiet_NaN()), 0), | ||
|  |     std::domain_error); | ||
|  | 
 | ||
|  |   BOOST_MATH_CHECK_THROW( // duff parameter upper.
 | ||
|  |     triangular_distribution<RealType>(0, 0, static_cast<RealType>(std::numeric_limits<RealType>::quiet_NaN())), | ||
|  |     std::domain_error); | ||
|  |   } // quiet_NaN tests.
 | ||
|  | 
 | ||
|  |   BOOST_MATH_CHECK_THROW( // duff parameters upper < lower.
 | ||
|  |     triangular_distribution<RealType>(1, 0, -1), | ||
|  |     std::domain_error); | ||
|  | 
 | ||
|  |   BOOST_MATH_CHECK_THROW( // duff parameters upper == lower.
 | ||
|  |     triangular_distribution<RealType>(0, 0, 0), | ||
|  |     std::domain_error); | ||
|  |   BOOST_MATH_CHECK_THROW( // duff parameters mode < lower.
 | ||
|  |     triangular_distribution<RealType>(0, -1, 1), | ||
|  |     std::domain_error); | ||
|  | 
 | ||
|  |   BOOST_MATH_CHECK_THROW( // duff parameters mode > upper.
 | ||
|  |     triangular_distribution<RealType>(0, 2, 1), | ||
|  |     std::domain_error); | ||
|  | 
 | ||
|  |   // Tests for PDF
 | ||
|  |   // // triangular_distribution<RealType>() default is (0, 0, 1), mode == lower.
 | ||
|  |   BOOST_CHECK_CLOSE_FRACTION( // x == lower == mode
 | ||
|  |     pdf(triangular_distribution<RealType>(0, 0, 1), static_cast<RealType>(0)), | ||
|  |     static_cast<RealType>(2), | ||
|  |     tolerance); | ||
|  | 
 | ||
|  |   BOOST_CHECK_CLOSE_FRACTION( // x == upper
 | ||
|  |     pdf(triangular_distribution<RealType>(0, 0, 1), static_cast<RealType>(1)), | ||
|  |     static_cast<RealType>(0), | ||
|  |     tolerance); | ||
|  | 
 | ||
|  |   BOOST_CHECK_CLOSE_FRACTION( // x > upper
 | ||
|  |     pdf(triangular_distribution<RealType>(0, 0, 1), static_cast<RealType>(-1)), | ||
|  |     static_cast<RealType>(0), | ||
|  |     tolerance); | ||
|  |   BOOST_CHECK_CLOSE_FRACTION( // x < lower
 | ||
|  |     pdf(triangular_distribution<RealType>(0, 0, 1), static_cast<RealType>(2)), | ||
|  |     static_cast<RealType>(0), | ||
|  |     tolerance); | ||
|  | 
 | ||
|  |   BOOST_CHECK_CLOSE_FRACTION( // x < lower
 | ||
|  |     pdf(triangular_distribution<RealType>(0, 0, 1), static_cast<RealType>(2)), | ||
|  |     static_cast<RealType>(0), | ||
|  |     tolerance); | ||
|  | 
 | ||
|  |   // triangular_distribution<RealType>() (0, 1, 1) mode == upper
 | ||
|  |   BOOST_CHECK_CLOSE_FRACTION( // x == lower
 | ||
|  |     pdf(triangular_distribution<RealType>(0, 1, 1), static_cast<RealType>(0)), | ||
|  |     static_cast<RealType>(0), | ||
|  |     tolerance); | ||
|  | 
 | ||
|  |   BOOST_CHECK_CLOSE_FRACTION( // x == upper
 | ||
|  |     pdf(triangular_distribution<RealType>(0, 1, 1), static_cast<RealType>(1)), | ||
|  |     static_cast<RealType>(2), | ||
|  |     tolerance); | ||
|  | 
 | ||
|  |   BOOST_CHECK_CLOSE_FRACTION( // x > upper
 | ||
|  |     pdf(triangular_distribution<RealType>(0, 1, 1), static_cast<RealType>(-1)), | ||
|  |     static_cast<RealType>(0), | ||
|  |     tolerance); | ||
|  |   BOOST_CHECK_CLOSE_FRACTION( // x < lower
 | ||
|  |     pdf(triangular_distribution<RealType>(0, 1, 1), static_cast<RealType>(2)), | ||
|  |     static_cast<RealType>(0), | ||
|  |     tolerance); | ||
|  | 
 | ||
|  |   BOOST_CHECK_CLOSE_FRACTION( // x < middle so Wiki says special case pdf = 2 * x
 | ||
|  |     pdf(triangular_distribution<RealType>(0, 1, 1), static_cast<RealType>(0.25)), | ||
|  |     static_cast<RealType>(0.5), | ||
|  |     tolerance); | ||
|  | 
 | ||
|  |   BOOST_CHECK_CLOSE_FRACTION( // x < middle so Wiki says special case cdf = x * x
 | ||
|  |     cdf(triangular_distribution<RealType>(0, 1, 1), static_cast<RealType>(0.25)), | ||
|  |     static_cast<RealType>(0.25 * 0.25), | ||
|  |     tolerance); | ||
|  | 
 | ||
|  |   // triangular_distribution<RealType>() (0, 0.5, 1) mode == middle.
 | ||
|  |   BOOST_CHECK_CLOSE_FRACTION( // x == lower
 | ||
|  |     pdf(triangular_distribution<RealType>(0, 0.5, 1), static_cast<RealType>(0)), | ||
|  |     static_cast<RealType>(0), | ||
|  |     tolerance); | ||
|  | 
 | ||
|  |   BOOST_CHECK_CLOSE_FRACTION( // x == upper
 | ||
|  |     pdf(triangular_distribution<RealType>(0, 0.5, 1), static_cast<RealType>(1)), | ||
|  |     static_cast<RealType>(0), | ||
|  |     tolerance); | ||
|  | 
 | ||
|  |   BOOST_CHECK_CLOSE_FRACTION( // x > upper
 | ||
|  |     pdf(triangular_distribution<RealType>(0, 0.5, 1), static_cast<RealType>(-1)), | ||
|  |     static_cast<RealType>(0), | ||
|  |     tolerance); | ||
|  |   BOOST_CHECK_CLOSE_FRACTION( // x < lower
 | ||
|  |     pdf(triangular_distribution<RealType>(0, 0.5, 1), static_cast<RealType>(2)), | ||
|  |     static_cast<RealType>(0), | ||
|  |     tolerance); | ||
|  | 
 | ||
|  |   BOOST_CHECK_CLOSE_FRACTION( // x == mode
 | ||
|  |     pdf(triangular_distribution<RealType>(0, 0.5, 1), static_cast<RealType>(0.5)), | ||
|  |     static_cast<RealType>(2), | ||
|  |     tolerance); | ||
|  | 
 | ||
|  |   BOOST_CHECK_CLOSE_FRACTION( // x == half mode
 | ||
|  |     pdf(triangular_distribution<RealType>(0, 0.5, 1), static_cast<RealType>(0.25)), | ||
|  |     static_cast<RealType>(1), | ||
|  |     tolerance); | ||
|  |   BOOST_CHECK_CLOSE_FRACTION( // x == half mode
 | ||
|  |     pdf(triangular_distribution<RealType>(0, 0.5, 1), static_cast<RealType>(0.75)), | ||
|  |     static_cast<RealType>(1), | ||
|  |     tolerance); | ||
|  | 
 | ||
|  |   if(std::numeric_limits<RealType>::has_infinity) | ||
|  |   { // BOOST_CHECK tests for infinity using std::numeric_limits<>::infinity()
 | ||
|  |     // Note that infinity is not implemented for real_concept, so these tests
 | ||
|  |     // are only done for types, like built-in float, double.. that have infinity.
 | ||
|  |     // Note that these assume that  BOOST_MATH_OVERFLOW_ERROR_POLICY is NOT throw_on_error.
 | ||
|  |     // #define BOOST_MATH_OVERFLOW_ERROR_POLICY == throw_on_error would give a throw here.
 | ||
|  |     // #define BOOST_MATH_DOMAIN_ERROR_POLICY == throw_on_error IS defined, so the throw path
 | ||
|  |     // of error handling is tested below with BOOST_MATH_CHECK_THROW tests.
 | ||
|  | 
 | ||
|  |     BOOST_MATH_CHECK_THROW( // x == infinity NOT OK.
 | ||
|  |       pdf(triangular_distribution<RealType>(0, 0, 1), static_cast<RealType>(std::numeric_limits<RealType>::infinity())), | ||
|  |       std::domain_error); | ||
|  | 
 | ||
|  |     BOOST_MATH_CHECK_THROW( // x == minus infinity not OK too.
 | ||
|  |       pdf(triangular_distribution<RealType>(0, 0, 1), static_cast<RealType>(-std::numeric_limits<RealType>::infinity())), | ||
|  |       std::domain_error); | ||
|  |   } | ||
|  |   if(std::numeric_limits<RealType>::has_quiet_NaN) | ||
|  |   { // BOOST_CHECK tests for NaN using std::numeric_limits<>::has_quiet_NaN() - should throw.
 | ||
|  |     BOOST_MATH_CHECK_THROW( | ||
|  |       pdf(triangular_distribution<RealType>(0, 0, 1), static_cast<RealType>(std::numeric_limits<RealType>::quiet_NaN())), | ||
|  |       std::domain_error); | ||
|  |     BOOST_MATH_CHECK_THROW( | ||
|  |       pdf(triangular_distribution<RealType>(0, 0, 1), static_cast<RealType>(-std::numeric_limits<RealType>::quiet_NaN())), | ||
|  |       std::domain_error); | ||
|  |   } // test for x = NaN using std::numeric_limits<>::quiet_NaN()
 | ||
|  | 
 | ||
|  |   // cdf
 | ||
|  |   BOOST_CHECK_EQUAL( // x < lower
 | ||
|  |     cdf(triangular_distribution<RealType>(0, 1, 1), static_cast<RealType>(-1)), | ||
|  |     static_cast<RealType>(0) ); | ||
|  |   BOOST_CHECK_CLOSE_FRACTION( // x == lower
 | ||
|  |     cdf(triangular_distribution<RealType>(0, 1, 1), static_cast<RealType>(0)), | ||
|  |     static_cast<RealType>(0), | ||
|  |     tolerance); | ||
|  |   BOOST_CHECK_CLOSE_FRACTION( // x == upper
 | ||
|  |     cdf(triangular_distribution<RealType>(0, 1, 1), static_cast<RealType>(1)), | ||
|  |     static_cast<RealType>(1), | ||
|  |     tolerance); | ||
|  |    BOOST_CHECK_EQUAL( // x > upper
 | ||
|  |     cdf(triangular_distribution<RealType>(0, 1, 1), static_cast<RealType>(2)), | ||
|  |     static_cast<RealType>(1)); | ||
|  | 
 | ||
|  |   BOOST_CHECK_CLOSE_FRACTION( // x == mode
 | ||
|  |     cdf(triangular_distribution<RealType>(-1, 0, 1), static_cast<RealType>(0)), | ||
|  |     //static_cast<RealType>((mode - lower) / (upper - lower)),
 | ||
|  |     static_cast<RealType>(0.5),    // (0 --1) / (1 -- 1) = 0.5
 | ||
|  |     tolerance); | ||
|  |   BOOST_CHECK_CLOSE_FRACTION( | ||
|  |     cdf(triangular_distribution<RealType>(0, 1, 1), static_cast<RealType>(0.9L)), | ||
|  |     static_cast<RealType>(0.81L), | ||
|  |     tolerance); | ||
|  | 
 | ||
|  |   BOOST_CHECK_CLOSE_FRACTION( | ||
|  |     cdf(triangular_distribution<RealType>(-1, 0, 1), static_cast<RealType>(-1)), | ||
|  |     static_cast<RealType>(0), | ||
|  |     tolerance); | ||
|  |   BOOST_CHECK_CLOSE_FRACTION( | ||
|  |     cdf(triangular_distribution<RealType>(-1, 0, 1), static_cast<RealType>(-0.5L)), | ||
|  |     static_cast<RealType>(0.125L), | ||
|  |     tolerance); | ||
|  |   BOOST_CHECK_CLOSE_FRACTION( | ||
|  |     cdf(triangular_distribution<RealType>(-1, 0, 1), static_cast<RealType>(0)), | ||
|  |     static_cast<RealType>(0.5), | ||
|  |     tolerance); | ||
|  |   BOOST_CHECK_CLOSE_FRACTION( | ||
|  |     cdf(triangular_distribution<RealType>(-1, 0, 1), static_cast<RealType>(+0.5L)), | ||
|  |     static_cast<RealType>(0.875L), | ||
|  |     tolerance); | ||
|  |   BOOST_CHECK_CLOSE_FRACTION( | ||
|  |     cdf(triangular_distribution<RealType>(-1, 0, 1), static_cast<RealType>(1)), | ||
|  |     static_cast<RealType>(1), | ||
|  |     tolerance); | ||
|  | 
 | ||
|  |    // cdf complement
 | ||
|  |   BOOST_CHECK_EQUAL( // x < lower
 | ||
|  |     cdf(complement(triangular_distribution<RealType>(0, 0, 1), static_cast<RealType>(-1))), | ||
|  |     static_cast<RealType>(1)); | ||
|  |   BOOST_CHECK_EQUAL( // x == lower
 | ||
|  |     cdf(complement(triangular_distribution<RealType>(0, 0, 1), static_cast<RealType>(0))), | ||
|  |     static_cast<RealType>(1)); | ||
|  | 
 | ||
|  |   BOOST_CHECK_EQUAL( // x == mode
 | ||
|  |     cdf(complement(triangular_distribution<RealType>(-1, 0, 1), static_cast<RealType>(0))), | ||
|  |     static_cast<RealType>(0.5)); | ||
|  | 
 | ||
|  |   BOOST_CHECK_EQUAL( // x == mode
 | ||
|  |     cdf(complement(triangular_distribution<RealType>(0, 0, 1), static_cast<RealType>(0))), | ||
|  |     static_cast<RealType>(1)); | ||
|  |   BOOST_CHECK_EQUAL( // x == mode
 | ||
|  |     cdf(complement(triangular_distribution<RealType>(0, 1, 1), static_cast<RealType>(1))), | ||
|  |     static_cast<RealType>(0)); | ||
|  | 
 | ||
|  |   BOOST_CHECK_EQUAL( // x > upper
 | ||
|  |     cdf(complement(triangular_distribution<RealType>(0, 0, 1), static_cast<RealType>(2))), | ||
|  |     static_cast<RealType>(0)); | ||
|  |   BOOST_CHECK_EQUAL( // x == upper
 | ||
|  |     cdf(complement(triangular_distribution<RealType>(0, 0, 1), static_cast<RealType>(1))), | ||
|  |     static_cast<RealType>(0)); | ||
|  | 
 | ||
|  |   BOOST_CHECK_CLOSE_FRACTION( // x = -0.5
 | ||
|  |     cdf(complement(triangular_distribution<RealType>(-1, 0, 1), static_cast<RealType>(-0.5))), | ||
|  |     static_cast<RealType>(0.875L), | ||
|  |     tolerance); | ||
|  | 
 | ||
|  |   BOOST_CHECK_CLOSE_FRACTION( // x = +0.5
 | ||
|  |     cdf(complement(triangular_distribution<RealType>(-1, 0, 1), static_cast<RealType>(0.5))), | ||
|  |     static_cast<RealType>(0.125), | ||
|  |     tolerance); | ||
|  | 
 | ||
|  |   triangular_distribution<RealType> triang; // Using typedef == triangular_distribution<double> tristd;
 | ||
|  |   triangular_distribution<RealType> tristd(0, 0.5, 1); // 'Standard' triangular distribution.
 | ||
|  | 
 | ||
|  |   BOOST_CHECK_CLOSE_FRACTION( // median of Standard triangular is sqrt(mode/2) if c > 1/2 else 1 - sqrt((1-c)/2)
 | ||
|  |     median(tristd), | ||
|  |     static_cast<RealType>(0.5), | ||
|  |     tolerance); | ||
|  |   triangular_distribution<RealType> tri011(0, 1, 1); // Using default RealType double.
 | ||
|  |   triangular_distribution<RealType> tri0q1(0, 0.25, 1); // mode is near bottom.
 | ||
|  |   triangular_distribution<RealType> tri0h1(0, 0.5, 1); // Equilateral triangle - mode is the middle.
 | ||
|  |   triangular_distribution<RealType> trim12(-1, -0.5, 2); // mode is negative.
 | ||
|  | 
 | ||
|  |   BOOST_CHECK_CLOSE_FRACTION(cdf(tri0q1, 0.02L), static_cast<RealType>(0.0016L), tolerance); | ||
|  |   BOOST_CHECK_CLOSE_FRACTION(cdf(tri0q1, 0.5L), static_cast<RealType>(0.66666666666666666666666666666666666666666666667L), tolerance); | ||
|  |   BOOST_CHECK_CLOSE_FRACTION(cdf(tri0q1, 0.98L), static_cast<RealType>(0.9994666666666666666666666666666666666666666666L), tolerance); | ||
|  | 
 | ||
|  |   // quantile
 | ||
|  |   BOOST_CHECK_CLOSE_FRACTION(quantile(tri0q1, static_cast<RealType>(0.0016L)), static_cast<RealType>(0.02L), tol5eps); | ||
|  |   BOOST_CHECK_CLOSE_FRACTION(quantile(tri0q1, static_cast<RealType>(0.66666666666666666666666666666666666666666666667L)), static_cast<RealType>(0.5), tol5eps); | ||
|  |   BOOST_CHECK_CLOSE_FRACTION(quantile(complement(tri0q1, static_cast<RealType>(0.3333333333333333333333333333333333333333333333333L))), static_cast<RealType>(0.5), tol5eps); | ||
|  |   BOOST_CHECK_CLOSE_FRACTION(quantile(tri0q1, static_cast<RealType>(0.999466666666666666666666666666666666666666666666666L)), static_cast<RealType>(98) / 100, 10 * tol5eps); | ||
|  | 
 | ||
|  |   BOOST_CHECK_CLOSE_FRACTION(pdf(trim12, 0), static_cast<RealType>(0.533333333333333333333333333333333333333333333L), tol5eps); | ||
|  |   BOOST_CHECK_CLOSE_FRACTION(cdf(trim12, 0), static_cast<RealType>(0.466666666666666666666666666666666666666666667L), tol5eps); | ||
|  |   BOOST_CHECK_CLOSE_FRACTION(cdf(complement(trim12, 0)), static_cast<RealType>(1 - 0.466666666666666666666666666666666666666666667L), tol5eps); | ||
|  | 
 | ||
|  |   BOOST_CHECK_CLOSE_FRACTION(quantile(complement(tri0q1, static_cast<RealType>(1 - 0.999466666666666666666666666666666666666666666666L))), static_cast<RealType>(0.98L), 10 * tol5eps); | ||
|  |   BOOST_CHECK_CLOSE_FRACTION(quantile(complement(tri0h1, static_cast<RealType>(1))), static_cast<RealType>(0), tol5eps); | ||
|  |   BOOST_CHECK_CLOSE_FRACTION(quantile(complement(tri0h1, static_cast<RealType>(0.5))), static_cast<RealType>(0.5), tol5eps); // OK
 | ||
|  |   BOOST_CHECK_CLOSE_FRACTION(quantile(complement(tri0h1, static_cast<RealType>(1 - 0.02L))), static_cast<RealType>(0.1L), tol5eps); | ||
|  |   BOOST_CHECK_CLOSE_FRACTION(quantile(complement(tri0h1, static_cast<RealType>(1 - 0.98L))), static_cast<RealType>(0.9L), tol5eps); | ||
|  |   BOOST_CHECK_CLOSE_FRACTION(quantile(complement(tri0h1, 0)), static_cast<RealType>(1), tol5eps); | ||
|  | 
 | ||
|  |   RealType xs [] = {0, 0.01L, 0.02L, 0.05L, 0.1L, 0.2L, 0.3L, 0.4L, 0.5L, 0.6L, 0.7L, 0.8L, 0.9L, 0.95L, 0.98L, 0.99L, 1}; | ||
|  | 
 | ||
|  |   const triangular_distribution<RealType>& distr = triang; | ||
|  |   BOOST_CHECK_CLOSE_FRACTION(quantile(complement(distr, 1.)), static_cast<RealType>(-1), tol5eps); | ||
|  |   const triangular_distribution<RealType>* distp = &triang; | ||
|  |   BOOST_CHECK_CLOSE_FRACTION(quantile(complement(*distp, 1.)), static_cast<RealType>(-1), tol5eps); | ||
|  | 
 | ||
|  |   const triangular_distribution<RealType>* dists [] = {&tristd, &tri011, &tri0q1, &tri0h1, &trim12}; | ||
|  |   BOOST_CHECK_CLOSE_FRACTION(quantile(complement(*dists[1], 1.)), static_cast<RealType>(0), tol5eps); | ||
|  | 
 | ||
|  |    for (int i = 0; i < 5; i++) | ||
|  |   { | ||
|  |     const triangular_distribution<RealType>* const dist = dists[i]; | ||
|  |     // cout << "Distribution " << i << endl;
 | ||
|  |     BOOST_CHECK_CLOSE_FRACTION(quantile(*dists[i], 0.5L), quantile(complement(*dist, 0.5L)),  tol5eps); | ||
|  |     BOOST_CHECK_CLOSE_FRACTION(quantile(*dists[i], 0.98L), quantile(complement(*dist, 1.L - 0.98L)),tol5eps); | ||
|  |     BOOST_CHECK_CLOSE_FRACTION(quantile(*dists[i], 0.98L), quantile(complement(*dist, 1.L - 0.98L)),tol5eps); | ||
|  |   } // for i
 | ||
|  | 
 | ||
|  |    // quantile complement
 | ||
|  |   for (int i = 0; i < 5; i++) | ||
|  |   { | ||
|  |     const triangular_distribution<RealType>* const dist = dists[i]; | ||
|  |     //cout << "Distribution " << i << endl;
 | ||
|  |     BOOST_CHECK_EQUAL(quantile(complement(*dists[i], 1.)), quantile(*dists[i], 0.)); | ||
|  |     for (unsigned j = 0; j < sizeof(xs) /sizeof(RealType); j++) | ||
|  |     { | ||
|  |       RealType x = xs[j]; | ||
|  |       BOOST_CHECK_CLOSE_FRACTION(quantile(*dists[i], x), quantile(complement(*dist, 1 - x)),  tol5eps); | ||
|  |     } // for j
 | ||
|  |   } // for i
 | ||
|  | 
 | ||
|  | 
 | ||
|  |   check_triangular( | ||
|  |     static_cast<RealType>(0),       // lower
 | ||
|  |     static_cast<RealType>(0.5),     // mode
 | ||
|  |     static_cast<RealType>(1),       // upper
 | ||
|  |     static_cast<RealType>(0.5),     // x
 | ||
|  |     static_cast<RealType>(0.5),     // p
 | ||
|  |     static_cast<RealType>(1 - 0.5), // q
 | ||
|  |     tolerance); | ||
|  | 
 | ||
|  |   // Some Not-standard triangular tests.
 | ||
|  |   check_triangular( | ||
|  |     static_cast<RealType>(-1),    // lower
 | ||
|  |     static_cast<RealType>(0),     // mode
 | ||
|  |     static_cast<RealType>(1),     // upper
 | ||
|  |     static_cast<RealType>(0),     // x
 | ||
|  |     static_cast<RealType>(0.5),   // p
 | ||
|  |     static_cast<RealType>(1 - 0.5), // q = 1 - p
 | ||
|  |     tolerance); | ||
|  | 
 | ||
|  |   check_triangular( | ||
|  |     static_cast<RealType>(1),       // lower
 | ||
|  |     static_cast<RealType>(1),       // mode
 | ||
|  |     static_cast<RealType>(3),       // upper
 | ||
|  |     static_cast<RealType>(2),    // x
 | ||
|  |     static_cast<RealType>(0.75),     // p
 | ||
|  |     static_cast<RealType>(1 - 0.75), // q = 1 - p
 | ||
|  |     tolerance); | ||
|  | 
 | ||
|  |   check_triangular( | ||
|  |     static_cast<RealType>(-1),    // lower
 | ||
|  |     static_cast<RealType>(1),       // mode
 | ||
|  |     static_cast<RealType>(2),     // upper
 | ||
|  |     static_cast<RealType>(1),     // x
 | ||
|  |     static_cast<RealType>(0.66666666666666666666666666666666666666666667L),   // p
 | ||
|  |     static_cast<RealType>(0.33333333333333333333333333333333333333333333L), // q = 1 - p
 | ||
|  |     tolerance); | ||
|  |   tolerance = (std::max)( | ||
|  |     boost::math::tools::epsilon<RealType>(), | ||
|  |     static_cast<RealType>(boost::math::tools::epsilon<double>())) * 10; // 10 eps as a fraction.
 | ||
|  |   cout << "Tolerance (as fraction) for type " << typeid(RealType).name()  << " is " << tolerance << "." << endl; | ||
|  |    | ||
|  |     triangular_distribution<RealType> tridef; // (-1, 0, 1) // Default distribution.
 | ||
|  |     RealType x = static_cast<RealType>(0.5); | ||
|  |     using namespace std; // ADL of std names.
 | ||
|  |     // mean:
 | ||
|  |     BOOST_CHECK_CLOSE_FRACTION( | ||
|  |       mean(tridef), static_cast<RealType>(0), tolerance); | ||
|  |     // variance:
 | ||
|  |     BOOST_CHECK_CLOSE_FRACTION( | ||
|  |       variance(tridef), static_cast<RealType>(0.16666666666666666666666666666666666666666667L), tolerance); | ||
|  |     // was 0.0833333333333333333333333333333333333333333L
 | ||
|  | 
 | ||
|  |     // std deviation:
 | ||
|  |     BOOST_CHECK_CLOSE_FRACTION( | ||
|  |       standard_deviation(tridef), sqrt(variance(tridef)), tolerance); | ||
|  |     // hazard:
 | ||
|  |     BOOST_CHECK_CLOSE_FRACTION( | ||
|  |       hazard(tridef, x), pdf(tridef, x) / cdf(complement(tridef, x)), tolerance); | ||
|  |     // cumulative hazard:
 | ||
|  |     BOOST_CHECK_CLOSE_FRACTION( | ||
|  |       chf(tridef, x), -log(cdf(complement(tridef, x))), tolerance); | ||
|  |     // coefficient_of_variation:
 | ||
|  |     if (mean(tridef) != 0) | ||
|  |     { | ||
|  |       BOOST_CHECK_CLOSE_FRACTION( | ||
|  |         coefficient_of_variation(tridef), standard_deviation(tridef) / mean(tridef), tolerance); | ||
|  |     } | ||
|  |     // mode:
 | ||
|  |     BOOST_CHECK_CLOSE_FRACTION( | ||
|  |       mode(tridef), static_cast<RealType>(0), tolerance); | ||
|  |     // skewness:
 | ||
|  |     BOOST_CHECK_CLOSE_FRACTION( | ||
|  |       median(tridef), static_cast<RealType>(0), tolerance); | ||
|  |     // https://reference.wolfram.com/language/ref/Skewness.html  skewness{-1, 0, +1} = 0
 | ||
|  |     // skewness[triangulardistribution{-1, 0, +1}] does not compute a result.
 | ||
|  |     // skewness[triangulardistribution{0, +1}] result == 0
 | ||
|  |     // skewness[normaldistribution{0,1}] result == 0
 | ||
|  | 
 | ||
|  |     BOOST_CHECK_EQUAL( | ||
|  |       skewness(tridef), static_cast<RealType>(0)); | ||
|  |     // kurtosis:
 | ||
|  |     BOOST_CHECK_CLOSE_FRACTION( | ||
|  |       kurtosis_excess(tridef), kurtosis(tridef) - static_cast<RealType>(3L), tolerance); | ||
|  |     // kurtosis excess = kurtosis - 3;
 | ||
|  |     BOOST_CHECK_CLOSE_FRACTION( | ||
|  |       kurtosis_excess(tridef), static_cast<RealType>(-0.6), tolerance); // Constant value of -3/5 for all distributions.
 | ||
|  | 
 | ||
|  |   { | ||
|  |     triangular_distribution<RealType> tri01(0, 1, 1); //  Asymmetric 0, 1, 1 distribution.
 | ||
|  |     RealType x = static_cast<RealType>(0.5); | ||
|  |     using namespace std; // ADL of std names.
 | ||
|  |                          // mean:
 | ||
|  |     BOOST_CHECK_CLOSE_FRACTION( | ||
|  |       mean(tri01), static_cast<RealType>(0.66666666666666666666666666666666666666666666666667L), tolerance); | ||
|  |     // variance: N[variance[triangulardistribution{0, 1}, 1], 50]
 | ||
|  |     BOOST_CHECK_CLOSE_FRACTION( | ||
|  |       variance(tri01), static_cast<RealType>(0.055555555555555555555555555555555555555555555555556L), tolerance); | ||
|  |     // std deviation:
 | ||
|  |     BOOST_CHECK_CLOSE_FRACTION( | ||
|  |       standard_deviation(tri01), sqrt(variance(tri01)), tolerance); | ||
|  |     // hazard:
 | ||
|  |     BOOST_CHECK_CLOSE_FRACTION( | ||
|  |       hazard(tri01, x), pdf(tri01, x) / cdf(complement(tri01, x)), tolerance); | ||
|  |     // cumulative hazard:
 | ||
|  |     BOOST_CHECK_CLOSE_FRACTION( | ||
|  |       chf(tri01, x), -log(cdf(complement(tri01, x))), tolerance); | ||
|  |     // coefficient_of_variation:
 | ||
|  |     if (mean(tri01) != 0) | ||
|  |     { | ||
|  |       BOOST_CHECK_CLOSE_FRACTION( | ||
|  |         coefficient_of_variation(tri01), standard_deviation(tri01) / mean(tri01), tolerance); | ||
|  |     } | ||
|  |     // mode:
 | ||
|  |     BOOST_CHECK_CLOSE_FRACTION( | ||
|  |       mode(tri01), static_cast<RealType>(1), tolerance); | ||
|  |     // skewness:
 | ||
|  |     BOOST_CHECK_CLOSE_FRACTION( | ||
|  |       median(tri01), static_cast<RealType>(0.70710678118654752440084436210484903928483593768847L), tolerance); | ||
|  | 
 | ||
|  |     // https://reference.wolfram.com/language/ref/Skewness.html
 | ||
|  |     // N[skewness[triangulardistribution{0, 1}, 1], 50]
 | ||
|  |     BOOST_CHECK_CLOSE_FRACTION( | ||
|  |       skewness(tri01), static_cast<RealType>(-0.56568542494923801952067548968387923142786875015078L), tolerance); | ||
|  |     // kurtosis:
 | ||
|  |     BOOST_CHECK_CLOSE_FRACTION( | ||
|  |       kurtosis_excess(tri01), kurtosis(tri01) - static_cast<RealType>(3L), tolerance); | ||
|  |     // kurtosis excess = kurtosis - 3;
 | ||
|  |     BOOST_CHECK_CLOSE_FRACTION( | ||
|  |       kurtosis_excess(tri01), static_cast<RealType>(-0.6), tolerance); // Constant value of -3/5 for all distributions.
 | ||
|  |   } // tri01 tests
 | ||
|  | 
 | ||
|  |   if(std::numeric_limits<RealType>::has_infinity) | ||
|  |   { // BOOST_CHECK tests for infinity using std::numeric_limits<>::infinity()
 | ||
|  |     // Note that infinity is not implemented for real_concept, so these tests
 | ||
|  |     // are only done for types, like built-in float, double.. that have infinity.
 | ||
|  |     // Note that these assume that BOOST_MATH_OVERFLOW_ERROR_POLICY is NOT throw_on_error.
 | ||
|  |     // #define BOOST_MATH_OVERFLOW_ERROR_POLICY == throw_on_error would give a throw here.
 | ||
|  |     // #define BOOST_MATH_DOMAIN_ERROR_POLICY == throw_on_error IS defined, so the throw path
 | ||
|  |     // of error handling is tested below with BOOST_MATH_CHECK_THROW tests.
 | ||
|  | 
 | ||
|  |     using boost::math::policies::policy; | ||
|  |     using boost::math::policies::domain_error; | ||
|  |     using boost::math::policies::ignore_error; | ||
|  | 
 | ||
|  |     // Define a (bad?) policy to ignore domain errors ('bad' arguments):
 | ||
|  |     typedef policy<domain_error<ignore_error> > inf_policy; // domain error returns infinity.
 | ||
|  |     triangular_distribution<RealType, inf_policy> tridef_inf(-1, 0., 1); | ||
|  |     // But can't use BOOST_CHECK_EQUAL(?, quiet_NaN)
 | ||
|  |     using boost::math::isnan; | ||
|  |     BOOST_CHECK((isnan)(pdf(tridef_inf, std::numeric_limits<RealType>::infinity()))); | ||
|  |   } // test for infinity using std::numeric_limits<>::infinity()
 | ||
|  |   else | ||
|  |   { // real_concept case, does has_infinfity == false, so can't check it throws.
 | ||
|  |     // cout << std::numeric_limits<RealType>::infinity() << ' '
 | ||
|  |     // << (boost::math::fpclassify)(std::numeric_limits<RealType>::infinity()) << endl;
 | ||
|  |     // value of std::numeric_limits<RealType>::infinity() is zero, so FPclassify is zero,
 | ||
|  |     // so (boost::math::isfinite)(std::numeric_limits<RealType>::infinity()) does not detect infinity.
 | ||
|  |     // so these tests would never throw.
 | ||
|  |     //BOOST_MATH_CHECK_THROW(pdf(tridef, std::numeric_limits<RealType>::infinity()),  std::domain_error);
 | ||
|  |     //BOOST_MATH_CHECK_THROW(pdf(tridef, std::numeric_limits<RealType>::quiet_NaN()),  std::domain_error);
 | ||
|  |     // BOOST_MATH_CHECK_THROW(pdf(tridef, boost::math::tools::max_value<RealType>() * 2),  std::domain_error); // Doesn't throw.
 | ||
|  |     BOOST_CHECK_EQUAL(pdf(tridef, boost::math::tools::max_value<RealType>()), 0); | ||
|  |   } | ||
|  |   // Special cases:
 | ||
|  |   BOOST_CHECK(pdf(tridef, -1) == 0); | ||
|  |   BOOST_CHECK(pdf(tridef, 1) == 0); | ||
|  |   BOOST_CHECK(cdf(tridef, 0) == 0.5); | ||
|  |   BOOST_CHECK(pdf(tridef, 1) == 0); | ||
|  |   BOOST_CHECK(cdf(tridef, 1) == 1); | ||
|  |   BOOST_CHECK(cdf(complement(tridef, -1)) == 1); | ||
|  |   BOOST_CHECK(cdf(complement(tridef, 1)) == 0); | ||
|  |   BOOST_CHECK(quantile(tridef, 1) == 1); | ||
|  |   BOOST_CHECK(quantile(complement(tridef, 1)) == -1); | ||
|  | 
 | ||
|  |   BOOST_CHECK_EQUAL(support(trim12).first, trim12.lower()); | ||
|  |   BOOST_CHECK_EQUAL(support(trim12).second, trim12.upper()); | ||
|  | 
 | ||
|  |   // Error checks:
 | ||
|  |   if(std::numeric_limits<RealType>::has_quiet_NaN) | ||
|  |   { // BOOST_CHECK tests for quiet_NaN (not for real_concept, for example - see notes above).
 | ||
|  |     BOOST_MATH_CHECK_THROW(triangular_distribution<RealType>(0, std::numeric_limits<RealType>::quiet_NaN()), std::domain_error); | ||
|  |     BOOST_MATH_CHECK_THROW(triangular_distribution<RealType>(0, -std::numeric_limits<RealType>::quiet_NaN()), std::domain_error); | ||
|  |   } | ||
|  |   BOOST_MATH_CHECK_THROW(triangular_distribution<RealType>(1, 0), std::domain_error); // lower > upper!
 | ||
|  | 
 | ||
|  |   check_out_of_range<triangular_distribution<RealType> >(-1, 0, 1); | ||
|  | } // template <class RealType>void test_spots(RealType)
 | ||
|  | 
 | ||
|  | BOOST_AUTO_TEST_CASE( test_main ) | ||
|  | { | ||
|  |   //  double toleps = std::numeric_limits<double>::epsilon(); // 5 eps as a fraction.
 | ||
|  |   double tol5eps = std::numeric_limits<double>::epsilon() * 5; // 5 eps as a fraction.
 | ||
|  |   // double tol50eps = std::numeric_limits<double>::epsilon() * 50; // 50 eps as a fraction.
 | ||
|  |   double tol500eps = std::numeric_limits<double>::epsilon() * 500; // 500 eps as a fraction.
 | ||
|  | 
 | ||
|  |   // Check that can construct triangular distribution using the two convenience methods:
 | ||
|  |   using namespace boost::math; | ||
|  |   triangular triang; // Using typedef
 | ||
|  |   // == triangular_distribution<double> triang;
 | ||
|  | 
 | ||
|  |   BOOST_CHECK_EQUAL(triang.lower(), -1); // Check default.
 | ||
|  |   BOOST_CHECK_EQUAL(triang.mode(), 0); | ||
|  |   BOOST_CHECK_EQUAL(triang.upper(), 1); | ||
|  | 
 | ||
|  |   triangular tristd (0, 0.5, 1); // Using typedef
 | ||
|  | 
 | ||
|  |   BOOST_CHECK_EQUAL(tristd.lower(), 0); | ||
|  |   BOOST_CHECK_EQUAL(tristd.mode(), 0.5); | ||
|  |   BOOST_CHECK_EQUAL(tristd.upper(), 1); | ||
|  | 
 | ||
|  |   //cout << "X range from " << range(tristd).first << " to " << range(tristd).second << endl;
 | ||
|  |   //cout << "Supported from "<< support(tristd).first << ' ' << support(tristd).second << endl;
 | ||
|  | 
 | ||
|  |   BOOST_CHECK_EQUAL(support(tristd).first, tristd.lower()); | ||
|  |   BOOST_CHECK_EQUAL(support(tristd).second, tristd.upper()); | ||
|  | 
 | ||
|  |   triangular_distribution<> tri011(0, 1, 1); // Using default RealType double.
 | ||
|  |   // mode is upper
 | ||
|  |   BOOST_CHECK_EQUAL(tri011.lower(), 0); // Check defaults again.
 | ||
|  |   BOOST_CHECK_EQUAL(tri011.mode(), 1); // Check defaults again.
 | ||
|  |   BOOST_CHECK_EQUAL(tri011.upper(), 1); | ||
|  |   BOOST_CHECK_EQUAL(mode(tri011), 1); | ||
|  | 
 | ||
|  |   BOOST_CHECK_EQUAL(pdf(tri011, 0), 0); | ||
|  |   BOOST_CHECK_EQUAL(pdf(tri011, 0.1), 0.2); | ||
|  |   BOOST_CHECK_EQUAL(pdf(tri011, 0.5), 1); | ||
|  |   BOOST_CHECK_EQUAL(pdf(tri011, 0.9), 1.8); | ||
|  |   BOOST_CHECK_EQUAL(pdf(tri011, 1), 2); | ||
|  | 
 | ||
|  |   BOOST_CHECK_EQUAL(cdf(tri011, 0), 0); | ||
|  |   BOOST_CHECK_CLOSE_FRACTION(cdf(tri011, 0.1), 0.01, tol5eps); | ||
|  |   BOOST_CHECK_EQUAL(cdf(tri011, 0.5), 0.25); | ||
|  |   BOOST_CHECK_EQUAL(cdf(tri011, 0.9), 0.81); | ||
|  |   BOOST_CHECK_EQUAL(cdf(tri011, 1), 1); | ||
|  |   BOOST_CHECK_EQUAL(cdf(tri011, 9), 1); | ||
|  |   BOOST_CHECK_EQUAL(mean(tri011), 0.666666666666666666666666666666666666666666666666667); | ||
|  |   BOOST_CHECK_EQUAL(variance(tri011), 1./18.); | ||
|  | 
 | ||
|  |   triangular tri0h1(0, 0.5, 1); // Equilateral triangle - mode is the middle.
 | ||
|  |   BOOST_CHECK_EQUAL(tri0h1.lower(), 0); | ||
|  |   BOOST_CHECK_EQUAL(tri0h1.mode(), 0.5); | ||
|  |   BOOST_CHECK_EQUAL(tri0h1.upper(), 1); | ||
|  |   BOOST_CHECK_EQUAL(mean(tri0h1), 0.5); | ||
|  |   BOOST_CHECK_EQUAL(mode(tri0h1), 0.5); | ||
|  |   BOOST_CHECK_EQUAL(pdf(tri0h1, -1), 0); | ||
|  |   BOOST_CHECK_EQUAL(cdf(tri0h1, -1), 0); | ||
|  |   BOOST_CHECK_EQUAL(pdf(tri0h1, 1), 0); | ||
|  |   BOOST_CHECK_EQUAL(pdf(tri0h1, 999), 0); | ||
|  |   BOOST_CHECK_EQUAL(cdf(tri0h1, 999), 1); | ||
|  |   BOOST_CHECK_EQUAL(cdf(tri0h1, 1), 1); | ||
|  |   BOOST_CHECK_CLOSE_FRACTION(cdf(tri0h1, 0.1), 0.02, tol5eps); | ||
|  |   BOOST_CHECK_EQUAL(cdf(tri0h1, 0.5), 0.5); | ||
|  |   BOOST_CHECK_CLOSE_FRACTION(cdf(tri0h1, 0.9), 0.98, tol5eps); | ||
|  | 
 | ||
|  |   BOOST_CHECK_CLOSE_FRACTION(quantile(tri0h1, 0.), 0., tol5eps); | ||
|  |   BOOST_CHECK_CLOSE_FRACTION(quantile(tri0h1, 0.02), 0.1, tol5eps); | ||
|  |   BOOST_CHECK_CLOSE_FRACTION(quantile(tri0h1, 0.5), 0.5, tol5eps); | ||
|  |   BOOST_CHECK_CLOSE_FRACTION(quantile(tri0h1, 0.98), 0.9, tol5eps); | ||
|  |   BOOST_CHECK_CLOSE_FRACTION(quantile(tri0h1, 1.), 1., tol5eps); | ||
|  | 
 | ||
|  |   triangular tri0q1(0, 0.25, 1); // mode is near bottom.
 | ||
|  |   BOOST_CHECK_CLOSE_FRACTION(cdf(tri0q1, 0.02), 0.0016, tol5eps); | ||
|  |   BOOST_CHECK_CLOSE_FRACTION(cdf(tri0q1, 0.5), 0.66666666666666666666666666666666666666666666667, tol5eps); | ||
|  |   BOOST_CHECK_CLOSE_FRACTION(cdf(tri0q1, 0.98), 0.99946666666666661, tol5eps); | ||
|  | 
 | ||
|  |   BOOST_CHECK_CLOSE_FRACTION(quantile(tri0q1, 0.0016), 0.02, tol5eps); | ||
|  |   BOOST_CHECK_CLOSE_FRACTION(quantile(tri0q1, 0.66666666666666666666666666666666666666666666667), 0.5, tol5eps); | ||
|  |   BOOST_CHECK_CLOSE_FRACTION(quantile(complement(tri0q1, 0.3333333333333333333333333333333333333333333333333)), 0.5, tol5eps); | ||
|  |   BOOST_CHECK_CLOSE_FRACTION(quantile(tri0q1, 0.99946666666666661), 0.98, 10 * tol5eps); | ||
|  | 
 | ||
|  |   triangular trim12(-1, -0.5, 2); // mode is negative.
 | ||
|  |   BOOST_CHECK_CLOSE_FRACTION(pdf(trim12, 0), 0.533333333333333333333333333333333333333333333, tol5eps); | ||
|  |   BOOST_CHECK_CLOSE_FRACTION(cdf(trim12, 0), 0.466666666666666666666666666666666666666666667, tol5eps); | ||
|  |   BOOST_CHECK_CLOSE_FRACTION(cdf(complement(trim12, 0)), 1 - 0.466666666666666666666666666666666666666666667, tol5eps); | ||
|  | 
 | ||
|  |   BOOST_CHECK_CLOSE_FRACTION(quantile(complement(tri0q1, 1 - 0.99946666666666661)), 0.98, 10 * tol5eps); | ||
|  |   BOOST_CHECK_CLOSE_FRACTION(quantile(complement(tri0h1, 1.)), 0., tol5eps); | ||
|  |   BOOST_CHECK_CLOSE_FRACTION(quantile(complement(tri0h1, 0.5)), 0.5, tol5eps); // OK
 | ||
|  |   BOOST_CHECK_CLOSE_FRACTION(quantile(complement(tri0h1, 1. - 0.02)), 0.1, tol5eps); | ||
|  |   BOOST_CHECK_CLOSE_FRACTION(quantile(complement(tri0h1, 1. - 0.98)), 0.9, tol5eps); | ||
|  |   BOOST_CHECK_CLOSE_FRACTION(quantile(complement(tri0h1, 0)), 1., tol5eps); | ||
|  | 
 | ||
|  |   double xs [] = {0., 0.01, 0.02, 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 0.98, 0.99, 1.}; | ||
|  | 
 | ||
|  |   const triangular_distribution<double>& distr = tristd; | ||
|  |   BOOST_CHECK_CLOSE_FRACTION(quantile(complement(distr, 1.)), 0., tol5eps); | ||
|  |   const triangular_distribution<double>* distp = &tristd; | ||
|  |   BOOST_CHECK_CLOSE_FRACTION(quantile(complement(*distp, 1.)), 0., tol5eps); | ||
|  | 
 | ||
|  |   const triangular_distribution<double>* dists [] = {&tristd, &tri011, &tri0q1, &tri0h1, &trim12}; | ||
|  |   BOOST_CHECK_CLOSE_FRACTION(quantile(complement(*dists[1], 1.)), 0., tol5eps); | ||
|  | 
 | ||
|  |   for (int i = 0; i < 5; i++) | ||
|  |   { | ||
|  |     const triangular_distribution<double>* const dist = dists[i]; | ||
|  |     cout << "Distribution " << i << endl; | ||
|  |     BOOST_CHECK_EQUAL(quantile(complement(*dists[i], 1.)), quantile(*dists[i], 0.)); | ||
|  |     BOOST_CHECK_CLOSE_FRACTION(quantile(*dists[i], 0.5), quantile(complement(*dist, 0.5)),  tol5eps); // OK
 | ||
|  |     BOOST_CHECK_CLOSE_FRACTION(quantile(*dists[i], 0.98), quantile(complement(*dist, 1. - 0.98)),tol5eps); | ||
|  |     // cout << setprecision(17) <<  median(*dist) << endl;
 | ||
|  |   } | ||
|  | 
 | ||
|  |   cout << showpos << setprecision(2) << endl; | ||
|  | 
 | ||
|  |   //triangular_distribution<double>& dist = trim12;
 | ||
|  |   for (unsigned i = 0; i < sizeof(xs) /sizeof(double); i++) | ||
|  |   { | ||
|  |     double x = xs[i] * (trim12.upper() - trim12.lower()) + trim12.lower(); | ||
|  |     double dx = cdf(trim12, x); | ||
|  |     double cx = cdf(complement(trim12, x)); | ||
|  |     //cout << fixed << showpos << setprecision(3)
 | ||
|  |     //  << xs[i] << ", " << x << ",  " << pdf(trim12, x) << ",  " << dx << ",  " << cx << ",, " ;
 | ||
|  | 
 | ||
|  |     BOOST_CHECK_CLOSE_FRACTION(cx, 1 - dx, tol500eps); // cx == 1 - dx
 | ||
|  | 
 | ||
|  |     // << setprecision(2) << scientific << cr - x << ", " // difference x - quan(cdf)
 | ||
|  |     // << setprecision(3) << fixed
 | ||
|  |     // << quantile(trim12, dx) << ", "
 | ||
|  |     // << quantile(complement(trim12, 1 - dx)) << ", "
 | ||
|  |     // << quantile(complement(trim12, cx)) << ", "
 | ||
|  |     // << endl;
 | ||
|  |     BOOST_CHECK_CLOSE_FRACTION(quantile(trim12, dx), quantile(complement(trim12, 1 - dx)), tol500eps); | ||
|  |   } | ||
|  |   cout << endl; | ||
|  |   // Basic sanity-check spot values.
 | ||
|  |   // (Parameter value, arbitrarily zero, only communicates the floating point type).
 | ||
|  |   test_spots(0.0F); // Test float. OK at decdigits = 0 tolerance = 0.0001 %
 | ||
|  |   test_spots(0.0); // Test double. OK at decdigits 7, tolerance = 1e07 %
 | ||
|  |   #ifndef BOOST_MATH_NO_LONG_DOUBLE_MATH_FUNCTIONS
 | ||
|  |     test_spots(0.0L); // Test long double.
 | ||
|  |   #if !BOOST_WORKAROUND(__BORLANDC__, BOOST_TESTED_AT(0x0582))
 | ||
|  |     test_spots(boost::math::concepts::real_concept(0.)); // Test real concept.
 | ||
|  |   #endif
 | ||
|  |   #else
 | ||
|  |      std::cout << "<note>The long double tests have been disabled on this platform " | ||
|  |         "either because the long double overloads of the usual math functions are " | ||
|  |         "not available at all, or because they are too inaccurate for these tests " | ||
|  |         "to pass.</note>" << std::endl; | ||
|  |   #endif
 | ||
|  | 
 | ||
|  |    | ||
|  | } // BOOST_AUTO_TEST_CASE( test_main )
 | ||
|  | 
 | ||
|  | /*
 | ||
|  | 
 | ||
|  | Output: | ||
|  | 
 | ||
|  | Autorun "i:\boost-06-05-03-1300\libs\math\test\Math_test\debug\test_triangular.exe" | ||
|  | Running 1 test case... | ||
|  | Distribution 0 | ||
|  | Distribution 1 | ||
|  | Distribution 2 | ||
|  | Distribution 3 | ||
|  | Distribution 4 | ||
|  | Tolerance for type float is 5.96046e-007. | ||
|  | Tolerance for type double is 1.11022e-015. | ||
|  | Tolerance for type long double is 1.11022e-015. | ||
|  | Tolerance for type class boost::math::concepts::real_concept is 1.11022e-015. | ||
|  | *** No errors detected | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  | */ | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 |