mirror of
				https://github.com/saitohirga/WSJT-X.git
				synced 2025-10-31 04:50:34 -04:00 
			
		
		
		
	
		
			
	
	
		
			234 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
		
		
			
		
	
	
			234 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
|  | // Copyright John Maddock 2006.
 | ||
|  | // Copyright Paul A. Bristow 2007, 2009
 | ||
|  | //  Use, modification and distribution are subject to the
 | ||
|  | //  Boost Software License, Version 1.0. (See accompanying file
 | ||
|  | //  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
 | ||
|  | 
 | ||
|  | #include <boost/math/concepts/real_concept.hpp>
 | ||
|  | #include <boost/math/special_functions/math_fwd.hpp>
 | ||
|  | #define BOOST_TEST_MAIN
 | ||
|  | #include <boost/test/unit_test.hpp>
 | ||
|  | #include <boost/test/results_collector.hpp>
 | ||
|  | #include <boost/test/unit_test.hpp>
 | ||
|  | #include <boost/test/floating_point_comparison.hpp>
 | ||
|  | #include <boost/math/tools/stats.hpp>
 | ||
|  | #include <boost/math/tools/test.hpp>
 | ||
|  | #include <boost/math/constants/constants.hpp>
 | ||
|  | #include <boost/type_traits/is_floating_point.hpp>
 | ||
|  | #include <boost/array.hpp>
 | ||
|  | #include "functor.hpp"
 | ||
|  | 
 | ||
|  | #include "handle_test_result.hpp"
 | ||
|  | #include "table_type.hpp"
 | ||
|  | 
 | ||
|  | #ifndef SC_
 | ||
|  | #define SC_(x) static_cast<typename table_type<T>::type>(BOOST_JOIN(x, L))
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  | #define BOOST_CHECK_CLOSE_EX(a, b, prec, i) \
 | ||
|  |    {\ | ||
|  |       unsigned int failures = boost::unit_test::results_collector.results( boost::unit_test::framework::current_test_case().p_id ).p_assertions_failed;\ | ||
|  |       BOOST_CHECK_CLOSE(a, b, prec); \ | ||
|  |       if(failures != boost::unit_test::results_collector.results( boost::unit_test::framework::current_test_case().p_id ).p_assertions_failed)\ | ||
|  |       {\ | ||
|  |          std::cerr << "Failure was at row " << i << std::endl;\ | ||
|  |          std::cerr << std::setprecision(35); \ | ||
|  |          std::cerr << "{ " << data[i][0] << " , " << data[i][1] << " , " << data[i][2];\ | ||
|  |          std::cerr << " , " << data[i][3] << " , " << data[i][4] << " , " << data[i][5] << " } " << std::endl;\ | ||
|  |       }\ | ||
|  |    } | ||
|  | 
 | ||
|  | template <class Real, class T> | ||
|  | void do_test_gamma_2(const T& data, const char* type_name, const char* test_name) | ||
|  | { | ||
|  |    //
 | ||
|  |    // test gamma_p_inv(T, T) against data:
 | ||
|  |    //
 | ||
|  |    using namespace std; | ||
|  |    typedef Real                   value_type; | ||
|  | 
 | ||
|  |    std::cout << test_name << " with type " << type_name << std::endl; | ||
|  | 
 | ||
|  |    //
 | ||
|  |    // These sanity checks test for a round trip accuracy of one half
 | ||
|  |    // of the bits in T, unless T is type float, in which case we check
 | ||
|  |    // for just one decimal digit.  The problem here is the sensitivity
 | ||
|  |    // of the functions, not their accuracy.  This test data was generated
 | ||
|  |    // for the forward functions, which means that when it is used as
 | ||
|  |    // the input to the inverses then it is necessarily inexact.  This rounding
 | ||
|  |    // of the input is what makes the data unsuitable for use as an accuracy check,
 | ||
|  |    // and also demonstrates that you can't in general round-trip these functions.
 | ||
|  |    // It is however a useful sanity check.
 | ||
|  |    //
 | ||
|  |    value_type precision = static_cast<value_type>(ldexp(1.0, 1-boost::math::policies::digits<value_type, boost::math::policies::policy<> >()/2)) * 100; | ||
|  |    if(boost::math::policies::digits<value_type, boost::math::policies::policy<> >() < 50) | ||
|  |       precision = 1;   // 1% or two decimal digits, all we can hope for when the input is truncated to float
 | ||
|  | 
 | ||
|  |    for(unsigned i = 0; i < data.size(); ++i) | ||
|  |    { | ||
|  |       //
 | ||
|  |       // These inverse tests are thrown off if the output of the
 | ||
|  |       // incomplete gamma is too close to 1: basically there is insuffient
 | ||
|  |       // information left in the value we're using as input to the inverse
 | ||
|  |       // to be able to get back to the original value.
 | ||
|  |       //
 | ||
|  |       if(Real(data[i][5]) == 0) | ||
|  |          BOOST_CHECK_EQUAL(boost::math::gamma_p_inv(Real(data[i][0]), Real(data[i][5])), value_type(0)); | ||
|  |       else if((1 - Real(data[i][5]) > 0.001)  | ||
|  |          && (fabs(Real(data[i][5])) > 2 * boost::math::tools::min_value<value_type>())  | ||
|  |          && (fabs(Real(data[i][5])) > 2 * boost::math::tools::min_value<double>())) | ||
|  |       { | ||
|  |          value_type inv = boost::math::gamma_p_inv(Real(data[i][0]), Real(data[i][5])); | ||
|  |          BOOST_CHECK_CLOSE_EX(Real(data[i][1]), inv, precision, i); | ||
|  |       } | ||
|  |       else if(1 == Real(data[i][5])) | ||
|  |          BOOST_CHECK_EQUAL(boost::math::gamma_p_inv(Real(data[i][0]), Real(data[i][5])), std::numeric_limits<value_type>::has_infinity ? std::numeric_limits<value_type>::infinity() : boost::math::tools::max_value<value_type>()); | ||
|  |       else | ||
|  |       { | ||
|  |          // not enough bits in our input to get back to x, but we should be in
 | ||
|  |          // the same ball park:
 | ||
|  |          value_type inv = boost::math::gamma_p_inv(Real(data[i][0]), Real(data[i][5])); | ||
|  |          BOOST_CHECK_CLOSE_EX(Real(data[i][1]), inv, 100000, i); | ||
|  |       } | ||
|  | 
 | ||
|  |       if(Real(data[i][3]) == 0) | ||
|  |          BOOST_CHECK_EQUAL(boost::math::gamma_q_inv(Real(data[i][0]), Real(data[i][3])), std::numeric_limits<value_type>::has_infinity ? std::numeric_limits<value_type>::infinity() : boost::math::tools::max_value<value_type>()); | ||
|  |       else if((1 - Real(data[i][3]) > 0.001) && (fabs(Real(data[i][3])) > 2 * boost::math::tools::min_value<value_type>())) | ||
|  |       { | ||
|  |          value_type inv = boost::math::gamma_q_inv(Real(data[i][0]), Real(data[i][3])); | ||
|  |          BOOST_CHECK_CLOSE_EX(Real(data[i][1]), inv, precision, i); | ||
|  |       } | ||
|  |       else if(1 == Real(data[i][3])) | ||
|  |          BOOST_CHECK_EQUAL(boost::math::gamma_q_inv(Real(data[i][0]), Real(data[i][3])), value_type(0)); | ||
|  |       else if(fabs(Real(data[i][3])) > 2 * boost::math::tools::min_value<value_type>()) | ||
|  |       { | ||
|  |          // not enough bits in our input to get back to x, but we should be in
 | ||
|  |          // the same ball park:
 | ||
|  |          value_type inv = boost::math::gamma_q_inv(Real(data[i][0]), Real(data[i][3])); | ||
|  |          BOOST_CHECK_CLOSE_EX(Real(data[i][1]), inv, 100, i); | ||
|  |       } | ||
|  |    } | ||
|  |    std::cout << std::endl; | ||
|  | } | ||
|  | 
 | ||
|  | template <class Real, class T> | ||
|  | void do_test_gamma_inv(const T& data, const char* type_name, const char* test_name) | ||
|  | { | ||
|  | #if !(defined(ERROR_REPORTING_MODE) && !defined(GAMMAP_INV_FUNCTION_TO_TEST))
 | ||
|  |    typedef Real                   value_type; | ||
|  | 
 | ||
|  |    typedef value_type (*pg)(value_type, value_type); | ||
|  | #ifdef GAMMAP_INV_FUNCTION_TO_TEST
 | ||
|  |    pg funcp = GAMMAP_INV_FUNCTION_TO_TEST; | ||
|  | #elif defined(BOOST_MATH_NO_DEDUCED_FUNCTION_POINTERS)
 | ||
|  |    pg funcp = boost::math::gamma_p_inv<value_type, value_type>; | ||
|  | #else
 | ||
|  |    pg funcp = boost::math::gamma_p_inv; | ||
|  | #endif
 | ||
|  | 
 | ||
|  |    boost::math::tools::test_result<value_type> result; | ||
|  | 
 | ||
|  |    std::cout << "Testing " << test_name << " with type " << type_name | ||
|  |       << "\n~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\n"; | ||
|  | 
 | ||
|  |    //
 | ||
|  |    // test gamma_p_inv(T, T) against data:
 | ||
|  |    //
 | ||
|  |    result = boost::math::tools::test_hetero<Real>( | ||
|  |       data, | ||
|  |       bind_func<Real>(funcp, 0, 1), | ||
|  |       extract_result<Real>(2)); | ||
|  |    handle_test_result(result, data[result.worst()], result.worst(), type_name, "gamma_p_inv", test_name); | ||
|  |    //
 | ||
|  |    // test gamma_q_inv(T, T) against data:
 | ||
|  |    //
 | ||
|  | #ifdef GAMMAQ_INV_FUNCTION_TO_TEST
 | ||
|  |    funcp = GAMMAQ_INV_FUNCTION_TO_TEST; | ||
|  | #elif defined(BOOST_MATH_NO_DEDUCED_FUNCTION_POINTERS)
 | ||
|  |    funcp = boost::math::gamma_q_inv<value_type, value_type>; | ||
|  | #else
 | ||
|  |    funcp = boost::math::gamma_q_inv; | ||
|  | #endif
 | ||
|  |    result = boost::math::tools::test_hetero<Real>( | ||
|  |       data, | ||
|  |       bind_func<Real>(funcp, 0, 1), | ||
|  |       extract_result<Real>(3)); | ||
|  |    handle_test_result(result, data[result.worst()], result.worst(), type_name, "gamma_q_inv", test_name); | ||
|  | #endif
 | ||
|  | } | ||
|  | 
 | ||
|  | template <class T> | ||
|  | void test_gamma(T, const char* name) | ||
|  | { | ||
|  | #if !defined(TEST_UDT) && !defined(ERROR_REPORTING_MODE)
 | ||
|  |    //
 | ||
|  |    // The actual test data is rather verbose, so it's in a separate file
 | ||
|  |    //
 | ||
|  |    // First the data for the incomplete gamma function, each
 | ||
|  |    // row has the following 6 entries:
 | ||
|  |    // Parameter a, parameter z,
 | ||
|  |    // Expected tgamma(a, z), Expected gamma_q(a, z)
 | ||
|  |    // Expected tgamma_lower(a, z), Expected gamma_p(a, z)
 | ||
|  |    //
 | ||
|  | #  include "igamma_med_data.ipp"
 | ||
|  | 
 | ||
|  |    do_test_gamma_2<T>(igamma_med_data, name, "Running round trip sanity checks on incomplete gamma medium sized values"); | ||
|  | 
 | ||
|  | #  include "igamma_small_data.ipp"
 | ||
|  | 
 | ||
|  |    do_test_gamma_2<T>(igamma_small_data, name, "Running round trip sanity checks on incomplete gamma small values"); | ||
|  | 
 | ||
|  | #  include "igamma_big_data.ipp"
 | ||
|  | 
 | ||
|  |    do_test_gamma_2<T>(igamma_big_data, name, "Running round trip sanity checks on incomplete gamma large values"); | ||
|  | 
 | ||
|  | #endif
 | ||
|  | 
 | ||
|  | #  include "gamma_inv_data.ipp"
 | ||
|  | 
 | ||
|  |    do_test_gamma_inv<T>(gamma_inv_data, name, "incomplete gamma inverse(a, z) medium values"); | ||
|  | 
 | ||
|  | #  include "gamma_inv_big_data.ipp"
 | ||
|  | 
 | ||
|  |    do_test_gamma_inv<T>(gamma_inv_big_data, name, "incomplete gamma inverse(a, z) large values"); | ||
|  | 
 | ||
|  | #  include "gamma_inv_small_data.ipp"
 | ||
|  | 
 | ||
|  |    do_test_gamma_inv<T>(gamma_inv_small_data, name, "incomplete gamma inverse(a, z) small values"); | ||
|  | } | ||
|  | 
 | ||
|  | template <class T> | ||
|  | void test_spots(T, const char* type_name) | ||
|  | { | ||
|  |    std::cout << "Running spot checks for type " << type_name << std::endl; | ||
|  |    //
 | ||
|  |    // basic sanity checks, tolerance is 150 epsilon expressed as a percentage:
 | ||
|  |    //
 | ||
|  |    T tolerance = boost::math::tools::epsilon<T>() * 15000; | ||
|  |    if(tolerance < 1e-25f) | ||
|  |       tolerance = 1e-25f;  // limit of test data?
 | ||
|  |    BOOST_CHECK_CLOSE(::boost::math::gamma_q_inv(static_cast<T>(1)/100, static_cast<T>(1.0/128)), static_cast<T>(0.35767144525455121503672919307647515332256996883787L), tolerance); | ||
|  |    BOOST_CHECK_CLOSE(::boost::math::gamma_q_inv(static_cast<T>(1)/100, static_cast<T>(0.5)), static_cast<T>(4.4655350189103486773248562646452806745879516124613e-31L), tolerance*10); | ||
|  |    //
 | ||
|  |    // We can't test in this region against Mathworld's data as the results produced
 | ||
|  |    // by functions.wolfram.com appear to be in error, and do *not* round trip with
 | ||
|  |    // their own version of gamma_q.  Using our output from the inverse as input to 
 | ||
|  |    // their version of gamma_q *does* round trip however.  It should be pointed out
 | ||
|  |    // that the functions in this area are very sensitive with nearly infinite
 | ||
|  |    // first derivatives, it's also questionable how useful these functions are
 | ||
|  |    // in this part of the domain.
 | ||
|  |    //
 | ||
|  |    //BOOST_CHECK_CLOSE(::boost::math::gamma_q_inv(static_cast<T>(1e-2), static_cast<T>(1.0-1.0/128)), static_cast<T>(3.8106736649978161389878528903698068142257930575497e-181L), tolerance);
 | ||
|  |    //
 | ||
|  |    BOOST_CHECK_CLOSE(::boost::math::gamma_q_inv(static_cast<T>(0.5), static_cast<T>(1.0/128)), static_cast<T>(3.5379794687984498627918583429482809311448951189097L), tolerance); | ||
|  |    BOOST_CHECK_CLOSE(::boost::math::gamma_q_inv(static_cast<T>(0.5), static_cast<T>(1.0/2)), static_cast<T>(0.22746821155978637597125832348982469815821055329511L), tolerance); | ||
|  |    BOOST_CHECK_CLOSE(::boost::math::gamma_q_inv(static_cast<T>(0.5), static_cast<T>(1.0-1.0/128)), static_cast<T>(0.000047938431649305382237483273209405461203600840052182L), tolerance); | ||
|  |    BOOST_CHECK_CLOSE(::boost::math::gamma_q_inv(static_cast<T>(10), static_cast<T>(1.0/128)), static_cast<T>(19.221865946801723949866005318845155649972164294057L), tolerance); | ||
|  |    BOOST_CHECK_CLOSE(::boost::math::gamma_q_inv(static_cast<T>(10), static_cast<T>(1.0/2)), static_cast<T>(9.6687146147141311517500637401166726067778162022664L), tolerance); | ||
|  |    BOOST_CHECK_CLOSE(::boost::math::gamma_q_inv(static_cast<T>(10), static_cast<T>(1.0-1.0/128)), static_cast<T>(3.9754602513640844712089002210120603689809432130520L), tolerance); | ||
|  |    BOOST_CHECK_CLOSE(::boost::math::gamma_q_inv(static_cast<T>(10000), static_cast<T>(1.0/128)), static_cast<T>(10243.369973939134157953734588122880006091919872879L), tolerance); | ||
|  |    BOOST_CHECK_CLOSE(::boost::math::gamma_q_inv(static_cast<T>(10000), static_cast<T>(1.0/2)), static_cast<T>(9999.6666686420474237369661574633153551436435884101L), tolerance); | ||
|  |    BOOST_CHECK_CLOSE(::boost::math::gamma_q_inv(static_cast<T>(10000), static_cast<T>(1.0-1.0/128)), static_cast<T>(9759.8597223369324083191194574874497413261589080204L), tolerance); | ||
|  | } | ||
|  | 
 |