mirror of
				https://github.com/saitohirga/WSJT-X.git
				synced 2025-10-25 01:50:30 -04:00 
			
		
		
		
	
		
			
	
	
		
			167 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
		
		
			
		
	
	
			167 lines
		
	
	
		
			10 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
|  | //  (C) Copyright John Maddock 2007.
 | ||
|  | //  Use, modification and distribution are subject to the
 | ||
|  | //  Boost Software License, Version 1.0. (See accompanying file
 | ||
|  | //  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
 | ||
|  | 
 | ||
|  | #define BOOST_MATH_OVERFLOW_ERROR_POLICY ignore_error
 | ||
|  | #include <boost/math/concepts/real_concept.hpp>
 | ||
|  | #define BOOST_TEST_MAIN
 | ||
|  | #include <boost/test/unit_test.hpp>
 | ||
|  | #include <boost/test/floating_point_comparison.hpp>
 | ||
|  | #include <boost/math/special_functions/math_fwd.hpp>
 | ||
|  | #include <boost/math/distributions/normal.hpp>
 | ||
|  | #include <boost/type_traits/is_floating_point.hpp>
 | ||
|  | #include <boost/array.hpp>
 | ||
|  | #include "functor.hpp"
 | ||
|  | 
 | ||
|  | #include "handle_test_result.hpp"
 | ||
|  | #include "table_type.hpp"
 | ||
|  | #include "owens_t_T7.hpp"
 | ||
|  | 
 | ||
|  | 
 | ||
|  | template <class RealType> | ||
|  | void test_spot( | ||
|  |    RealType h,    //
 | ||
|  |    RealType a,    //
 | ||
|  |    RealType tol)   // Test tolerance
 | ||
|  | { | ||
|  |    BOOST_CHECK_CLOSE_FRACTION(owens_t(h, a), 3.89119302347013668966224771378e-2L, tol); | ||
|  | } | ||
|  | 
 | ||
|  | template <class RealType> // Any floating-point type RealType.
 | ||
|  | void test_spots(RealType) | ||
|  | { | ||
|  |    using namespace std; | ||
|  |    // Basic sanity checks, test data is as accurate as long double,
 | ||
|  |    // so set tolerance to a few epsilon expressed as a fraction.
 | ||
|  |    RealType tolerance = boost::math::tools::epsilon<RealType>() * 30; // most OK with 3 eps tolerance.
 | ||
|  |    cout << "Tolerance = " << tolerance << "." << endl; | ||
|  | 
 | ||
|  |    using  ::boost::math::owens_t; | ||
|  |    using ::boost::math::normal_distribution; | ||
|  |    BOOST_MATH_STD_USING // ADL of std names.
 | ||
|  | 
 | ||
|  |       // Checks of six sub-methods T1 to T6.
 | ||
|  |       BOOST_CHECK_CLOSE_FRACTION(owens_t(static_cast<RealType>(0.0625L), static_cast<RealType>(0.25L)), static_cast<RealType>(3.89119302347013668966224771378e-2L), tolerance);  // T1
 | ||
|  |    BOOST_CHECK_CLOSE_FRACTION(owens_t(static_cast<RealType>(6.5L), static_cast<RealType>(0.4375L)), static_cast<RealType>(2.00057730485083154100907167685E-11L), tolerance); // T2
 | ||
|  |    BOOST_CHECK_CLOSE_FRACTION(owens_t(static_cast<RealType>(7L), static_cast<RealType>(0.96875L)), static_cast<RealType>(6.39906271938986853083219914429E-13L), tolerance); // T3
 | ||
|  |    BOOST_CHECK_CLOSE_FRACTION(owens_t(static_cast<RealType>(4.78125L), static_cast<RealType>(0.0625L)), static_cast<RealType>(1.06329748046874638058307112826E-7L), tolerance); // T4
 | ||
|  |    BOOST_CHECK_CLOSE_FRACTION(owens_t(static_cast<RealType>(2.L), static_cast<RealType>(0.5L)), static_cast<RealType>(8.62507798552150713113488319155E-3L), tolerance); // T5
 | ||
|  |    BOOST_CHECK_CLOSE_FRACTION(owens_t(static_cast<RealType>(1.L), static_cast<RealType>(0.9999975L)), static_cast<RealType>(6.67418089782285927715589822405E-2L), tolerance); // T6
 | ||
|  |    //BOOST_CHECK_CLOSE_FRACTION(owens_t(static_cast<RealType>(L), static_cast<RealType>(L)), static_cast<RealType>(L), tolerance);
 | ||
|  | 
 | ||
|  |    //   BOOST_CHECK_CLOSE_FRACTION(owens_t(static_cast<RealType>(L), static_cast<RealType>(L)), static_cast<RealType>(L), tolerance);
 | ||
|  | 
 | ||
|  |    // Spots values using Mathematica 
 | ||
|  |    BOOST_CHECK_CLOSE_FRACTION(owens_t(static_cast<RealType>(6.5L), static_cast<RealType>(0.4375L)), static_cast<RealType>(2.00057730485083154100907167684918851101649922551817956120806662022118024594547E-11L), tolerance); | ||
|  |    BOOST_CHECK_CLOSE_FRACTION(owens_t(static_cast<RealType>(0.4375L), static_cast<RealType>(6.5L)), static_cast<RealType>(0.16540130125449396247498691826626273249659241838438244251206819782787761751256L), tolerance); | ||
|  |    BOOST_CHECK_CLOSE_FRACTION(owens_t(static_cast<RealType>(7.L), static_cast<RealType>(0.96875L)), static_cast<RealType>(6.39906271938986853083219914428916013764797190941459233223182225724846022843930e-13L), tolerance); | ||
|  |    BOOST_CHECK_CLOSE_FRACTION(owens_t(static_cast<RealType>(0.96875L), static_cast<RealType>(7.L)), static_cast<RealType>(0.08316748474602973770533230453272140919966614259525787470390475393923633179072L), tolerance); | ||
|  |    BOOST_CHECK_CLOSE_FRACTION(owens_t(static_cast<RealType>(4.78125L), static_cast<RealType>(0.0625L)), static_cast<RealType>(1.06329748046874638058307112826015825291136503488102191050906959246644942646701e-7L), tolerance); | ||
|  |    BOOST_CHECK_CLOSE_FRACTION(owens_t(static_cast<RealType>(0.0625L), static_cast<RealType>(4.78125L)), static_cast<RealType>(0.21571185819897989857261253680409017017649352928888660746045361855686569265171L), tolerance); | ||
|  |    BOOST_CHECK_CLOSE_FRACTION(owens_t(static_cast<RealType>(2.L), static_cast<RealType>(0.5L)), static_cast<RealType>(0.00862507798552150713113488319154637187875641190390854291100809449487812876461L), tolerance); | ||
|  |    BOOST_CHECK_CLOSE_FRACTION(owens_t(static_cast<RealType>(0.5L), static_cast<RealType>(2L)), static_cast<RealType>(0.14158060365397839346662819588111542648867283386549027383784843786494855594607L), tolerance); | ||
|  | 
 | ||
|  |    // check basic properties
 | ||
|  |    BOOST_CHECK_EQUAL(owens_t(static_cast<RealType>(0.5L), static_cast<RealType>(2L)), owens_t(static_cast<RealType>(-0.5L), static_cast<RealType>(2L))); | ||
|  |    BOOST_CHECK_EQUAL(owens_t(static_cast<RealType>(0.5L), static_cast<RealType>(2L)), -owens_t(static_cast<RealType>(0.5L), static_cast<RealType>(-2L))); | ||
|  |    BOOST_CHECK_EQUAL(owens_t(static_cast<RealType>(0.5L), static_cast<RealType>(2L)), -owens_t(static_cast<RealType>(-0.5L), static_cast<RealType>(-2L))); | ||
|  | 
 | ||
|  |    // Special relations from Owen's original paper:
 | ||
|  |    BOOST_CHECK_EQUAL(owens_t(static_cast<RealType>(0.5), static_cast<RealType>(0)), static_cast<RealType>(0)); | ||
|  |    BOOST_CHECK_EQUAL(owens_t(static_cast<RealType>(10), static_cast<RealType>(0)), static_cast<RealType>(0)); | ||
|  |    BOOST_CHECK_EQUAL(owens_t(static_cast<RealType>(10000), static_cast<RealType>(0)), static_cast<RealType>(0)); | ||
|  | 
 | ||
|  |    BOOST_CHECK_CLOSE_FRACTION(owens_t(static_cast<RealType>(0), static_cast<RealType>(2L)), atan(static_cast<RealType>(2L)) / (boost::math::constants::pi<RealType>() * 2), tolerance); | ||
|  |    BOOST_CHECK_CLOSE_FRACTION(owens_t(static_cast<RealType>(0), static_cast<RealType>(0.5L)), atan(static_cast<RealType>(0.5L)) / (boost::math::constants::pi<RealType>() * 2), tolerance); | ||
|  |    BOOST_CHECK_CLOSE_FRACTION(owens_t(static_cast<RealType>(0), static_cast<RealType>(2000L)), atan(static_cast<RealType>(2000L)) / (boost::math::constants::pi<RealType>() * 2), tolerance); | ||
|  |    BOOST_CHECK_CLOSE_FRACTION(owens_t(static_cast<RealType>(5), static_cast<RealType>(1)), cdf(normal_distribution<RealType>(), 5) * cdf(complement(normal_distribution<RealType>(), 5)) / 2, tolerance); | ||
|  |    BOOST_CHECK_CLOSE_FRACTION(owens_t(static_cast<RealType>(0.125), static_cast<RealType>(1)), cdf(normal_distribution<RealType>(), 0.125) * cdf(complement(normal_distribution<RealType>(), 0.125)) / 2, tolerance); | ||
|  |    if(std::numeric_limits<RealType>::has_infinity) | ||
|  |    { | ||
|  |       BOOST_CHECK_CLOSE_FRACTION(owens_t(static_cast<RealType>(0.125), std::numeric_limits<RealType>::infinity()), cdf(complement(normal_distribution<RealType>(), 0.125)) / 2, tolerance); | ||
|  |       BOOST_CHECK_CLOSE_FRACTION(owens_t(static_cast<RealType>(5), std::numeric_limits<RealType>::infinity()), cdf(complement(normal_distribution<RealType>(), 5)) / 2, tolerance); | ||
|  |       BOOST_CHECK_CLOSE_FRACTION(owens_t(static_cast<RealType>(-0.125), std::numeric_limits<RealType>::infinity()), cdf(normal_distribution<RealType>(), -0.125) / 2, tolerance); | ||
|  |       BOOST_CHECK_CLOSE_FRACTION(owens_t(static_cast<RealType>(-5), std::numeric_limits<RealType>::infinity()), cdf(normal_distribution<RealType>(), -5) / 2, tolerance); | ||
|  |    } | ||
|  | } // template <class RealType>void test_spots(RealType)
 | ||
|  | 
 | ||
|  | template <class RealType> // Any floating-point type RealType.
 | ||
|  | void check_against_T7(RealType) | ||
|  | { | ||
|  |    using namespace std; | ||
|  |    // Basic sanity checks, test data is as accurate as long double,
 | ||
|  |    // so set tolerance to a few epsilon expressed as a fraction.
 | ||
|  |    RealType tolerance = boost::math::tools::epsilon<RealType>() * 150; // most OK with 3 eps tolerance.
 | ||
|  |    cout << "Tolerance = " << tolerance << "." << endl; | ||
|  | 
 | ||
|  |    using  ::boost::math::owens_t; | ||
|  |    using namespace std; // ADL of std names.
 | ||
|  | 
 | ||
|  |    // apply log scale because points near zero are more interesting
 | ||
|  |    for(RealType a = static_cast<RealType>(-10.0l); a < static_cast<RealType>(3l); a += static_cast<RealType>(0.2l)) | ||
|  |       for(RealType h = static_cast<RealType>(-10.0l); h < static_cast<RealType>(3.5l); h += static_cast<RealType>(0.2l)) | ||
|  |       { | ||
|  |          const RealType expa = exp(a); | ||
|  |          const RealType exph = exp(h); | ||
|  |          const RealType t = boost::math::owens_t(exph, expa); | ||
|  |          RealType t7 = boost::math::owens_t_T7(exph, expa); | ||
|  |          //if(!(boost::math::isnormal)(t) || !(boost::math::isnormal)(t7))
 | ||
|  |          //   std::cout << "a = " << expa << " h = " << exph << " t = " << t << " t7 = " << t7 << std::endl;
 | ||
|  |          BOOST_CHECK_CLOSE_FRACTION(t, t7, tolerance); | ||
|  |       } | ||
|  | 
 | ||
|  | } // template <class RealType>void test_spots(RealType)
 | ||
|  | 
 | ||
|  | template <class Real, class T> | ||
|  | void do_test_owens_t(const T& data, const char* type_name, const char* test_name) | ||
|  | { | ||
|  | #if !(defined(ERROR_REPORTING_MODE) && !defined(OWENS_T_FUNCTION_TO_TEST))
 | ||
|  |    typedef typename T::value_type row_type; | ||
|  |    typedef Real                   value_type; | ||
|  | 
 | ||
|  |    typedef value_type(*pg)(value_type, value_type); | ||
|  | #ifdef OWENS_T_FUNCTION_TO_TEST
 | ||
|  |    pg funcp = OWENS_T_FUNCTION_TO_TEST; | ||
|  | #elif defined(BOOST_MATH_NO_DEDUCED_FUNCTION_POINTERS)
 | ||
|  |    pg funcp = boost::math::owens_t<value_type>; | ||
|  | #else
 | ||
|  |    pg funcp = boost::math::owens_t; | ||
|  | #endif
 | ||
|  | 
 | ||
|  |    boost::math::tools::test_result<value_type> result; | ||
|  | 
 | ||
|  |    std::cout << "Testing " << test_name << " with type " << type_name | ||
|  |       << "\n~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~\n"; | ||
|  | 
 | ||
|  |    //
 | ||
|  |    // test owens_t against data:
 | ||
|  |    //
 | ||
|  |    result = boost::math::tools::test_hetero<Real>( | ||
|  |       data, | ||
|  |       bind_func<Real>(funcp, 0, 1), | ||
|  |       extract_result<Real>(2)); | ||
|  |    handle_test_result(result, data[result.worst()], result.worst(), type_name, "owens_t", test_name); | ||
|  | 
 | ||
|  |    std::cout << std::endl; | ||
|  | #endif
 | ||
|  | } | ||
|  | 
 | ||
|  | template <class T> | ||
|  | void test_owens_t(T, const char* name) | ||
|  | { | ||
|  |    //
 | ||
|  |    // The actual test data is rather verbose, so it's in a separate file
 | ||
|  |    //
 | ||
|  |    // The contents are as follows, each row of data contains
 | ||
|  |    // three items, input value a, input value b and erf(a, b):
 | ||
|  |    // 
 | ||
|  | #  include "owens_t.ipp"
 | ||
|  | 
 | ||
|  |    do_test_owens_t<T>(owens_t, name, "Owens T (medium small values)"); | ||
|  | 
 | ||
|  | #include "owens_t_large_data.ipp"
 | ||
|  | 
 | ||
|  |    do_test_owens_t<T>(owens_t_large_data, name, "Owens T (large and diverse values)"); | ||
|  | } |