mirror of
				https://github.com/saitohirga/WSJT-X.git
				synced 2025-10-25 01:50:30 -04:00 
			
		
		
		
	
		
			
	
	
		
			631 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
		
		
			
		
	
	
			631 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
|  | // Copyright John Maddock 2006.
 | ||
|  | // Use, modification and distribution are subject to the
 | ||
|  | // Boost Software License, Version 1.0.
 | ||
|  | // (See accompanying file LICENSE_1_0.txt
 | ||
|  | // or copy at http://www.boost.org/LICENSE_1_0.txt)
 | ||
|  | 
 | ||
|  | #include <boost/math/tools/test_data.hpp>
 | ||
|  | #include <boost/test/included/prg_exec_monitor.hpp>
 | ||
|  | #include <boost/math/special_functions/ellint_rj.hpp>
 | ||
|  | #include <boost/math/special_functions/ellint_rd.hpp>
 | ||
|  | #include <fstream>
 | ||
|  | #include <boost/math/tools/test_data.hpp>
 | ||
|  | #include <boost/random.hpp>
 | ||
|  | #include "mp_t.hpp"
 | ||
|  | 
 | ||
|  | float extern_val; | ||
|  | // confuse the compilers optimiser, and force a truncation to float precision:
 | ||
|  | float truncate_to_float(float const * pf) | ||
|  | { | ||
|  |    extern_val = *pf; | ||
|  |    return *pf; | ||
|  | } | ||
|  | 
 | ||
|  | //
 | ||
|  | // Archived here is the original implementation of this
 | ||
|  | // function by Xiaogang Zhang, we can use this to
 | ||
|  | // generate special test cases for the new version:
 | ||
|  | //
 | ||
|  | template <typename T, typename Policy> | ||
|  | T ellint_rj_old(T x, T y, T z, T p, const Policy& pol) | ||
|  | { | ||
|  |    T value, u, lambda, alpha, beta, sigma, factor, tolerance; | ||
|  |    T X, Y, Z, P, EA, EB, EC, E2, E3, S1, S2, S3; | ||
|  |    unsigned long k; | ||
|  | 
 | ||
|  |    BOOST_MATH_STD_USING | ||
|  |       using namespace boost::math; | ||
|  | 
 | ||
|  |    static const char* function = "boost::math::ellint_rj<%1%>(%1%,%1%,%1%)"; | ||
|  | 
 | ||
|  |    if(x < 0) | ||
|  |    { | ||
|  |       return policies::raise_domain_error<T>(function, | ||
|  |          "Argument x must be non-negative, but got x = %1%", x, pol); | ||
|  |    } | ||
|  |    if(y < 0) | ||
|  |    { | ||
|  |       return policies::raise_domain_error<T>(function, | ||
|  |          "Argument y must be non-negative, but got y = %1%", y, pol); | ||
|  |    } | ||
|  |    if(z < 0) | ||
|  |    { | ||
|  |       return policies::raise_domain_error<T>(function, | ||
|  |          "Argument z must be non-negative, but got z = %1%", z, pol); | ||
|  |    } | ||
|  |    if(p == 0) | ||
|  |    { | ||
|  |       return policies::raise_domain_error<T>(function, | ||
|  |          "Argument p must not be zero, but got p = %1%", p, pol); | ||
|  |    } | ||
|  |    if(x + y == 0 || y + z == 0 || z + x == 0) | ||
|  |    { | ||
|  |       return policies::raise_domain_error<T>(function, | ||
|  |          "At most one argument can be zero, " | ||
|  |          "only possible result is %1%.", std::numeric_limits<T>::quiet_NaN(), pol); | ||
|  |    } | ||
|  | 
 | ||
|  |    // error scales as the 6th power of tolerance
 | ||
|  |    tolerance = pow(T(1) * tools::epsilon<T>() / 3, T(1) / 6); | ||
|  | 
 | ||
|  |    // for p < 0, the integral is singular, return Cauchy principal value
 | ||
|  |    if(p < 0) | ||
|  |    { | ||
|  |       //
 | ||
|  |       // We must ensure that (z - y) * (y - x) is positive.
 | ||
|  |       // Since the integral is symmetrical in x, y and z
 | ||
|  |       // we can just permute the values:
 | ||
|  |       //
 | ||
|  |       if(x > y) | ||
|  |          std::swap(x, y); | ||
|  |       if(y > z) | ||
|  |          std::swap(y, z); | ||
|  |       if(x > y) | ||
|  |          std::swap(x, y); | ||
|  | 
 | ||
|  |       T q = -p; | ||
|  |       T pmy = (z - y) * (y - x) / (y + q);  // p - y
 | ||
|  | 
 | ||
|  |       BOOST_ASSERT(pmy >= 0); | ||
|  | 
 | ||
|  |       p = pmy + y; | ||
|  |       value = ellint_rj_old(x, y, z, p, pol); | ||
|  |       value *= pmy; | ||
|  |       value -= 3 * boost::math::ellint_rf(x, y, z, pol); | ||
|  |       value += 3 * sqrt((x * y * z) / (x * z + p * q)) * boost::math::ellint_rc(x * z + p * q, p * q, pol); | ||
|  |       value /= (y + q); | ||
|  |       return value; | ||
|  |    } | ||
|  | 
 | ||
|  |    // duplication
 | ||
|  |    sigma = 0; | ||
|  |    factor = 1; | ||
|  |    k = 1; | ||
|  |    do | ||
|  |    { | ||
|  |       u = (x + y + z + p + p) / 5; | ||
|  |       X = (u - x) / u; | ||
|  |       Y = (u - y) / u; | ||
|  |       Z = (u - z) / u; | ||
|  |       P = (u - p) / u; | ||
|  | 
 | ||
|  |       if((tools::max)(abs(X), abs(Y), abs(Z), abs(P)) < tolerance) | ||
|  |          break; | ||
|  | 
 | ||
|  |       T sx = sqrt(x); | ||
|  |       T sy = sqrt(y); | ||
|  |       T sz = sqrt(z); | ||
|  | 
 | ||
|  |       lambda = sy * (sx + sz) + sz * sx; | ||
|  |       alpha = p * (sx + sy + sz) + sx * sy * sz; | ||
|  |       alpha *= alpha; | ||
|  |       beta = p * (p + lambda) * (p + lambda); | ||
|  |       sigma += factor * boost::math::ellint_rc(alpha, beta, pol); | ||
|  |       factor /= 4; | ||
|  |       x = (x + lambda) / 4; | ||
|  |       y = (y + lambda) / 4; | ||
|  |       z = (z + lambda) / 4; | ||
|  |       p = (p + lambda) / 4; | ||
|  |       ++k; | ||
|  |    } while(k < policies::get_max_series_iterations<Policy>()); | ||
|  | 
 | ||
|  |    // Check to see if we gave up too soon:
 | ||
|  |    policies::check_series_iterations<T>(function, k, pol); | ||
|  | 
 | ||
|  |    // Taylor series expansion to the 5th order
 | ||
|  |    EA = X * Y + Y * Z + Z * X; | ||
|  |    EB = X * Y * Z; | ||
|  |    EC = P * P; | ||
|  |    E2 = EA - 3 * EC; | ||
|  |    E3 = EB + 2 * P * (EA - EC); | ||
|  |    S1 = 1 + E2 * (E2 * T(9) / 88 - E3 * T(9) / 52 - T(3) / 14); | ||
|  |    S2 = EB * (T(1) / 6 + P * (T(-6) / 22 + P * T(3) / 26)); | ||
|  |    S3 = P * ((EA - EC) / 3 - P * EA * T(3) / 22); | ||
|  |    value = 3 * sigma + factor * (S1 + S2 + S3) / (u * sqrt(u)); | ||
|  | 
 | ||
|  |    return value; | ||
|  | } | ||
|  | 
 | ||
|  | template <typename T, typename Policy> | ||
|  | T ellint_rd_imp_old(T x, T y, T z, const Policy& pol) | ||
|  | { | ||
|  |    T value, u, lambda, sigma, factor, tolerance; | ||
|  |    T X, Y, Z, EA, EB, EC, ED, EE, S1, S2; | ||
|  |    unsigned long k; | ||
|  | 
 | ||
|  |    BOOST_MATH_STD_USING | ||
|  |    using namespace boost::math; | ||
|  | 
 | ||
|  |    static const char* function = "boost::math::ellint_rd<%1%>(%1%,%1%,%1%)"; | ||
|  | 
 | ||
|  |    if(x < 0) | ||
|  |    { | ||
|  |       return policies::raise_domain_error<T>(function, | ||
|  |          "Argument x must be >= 0, but got %1%", x, pol); | ||
|  |    } | ||
|  |    if(y < 0) | ||
|  |    { | ||
|  |       return policies::raise_domain_error<T>(function, | ||
|  |          "Argument y must be >= 0, but got %1%", y, pol); | ||
|  |    } | ||
|  |    if(z <= 0) | ||
|  |    { | ||
|  |       return policies::raise_domain_error<T>(function, | ||
|  |          "Argument z must be > 0, but got %1%", z, pol); | ||
|  |    } | ||
|  |    if(x + y == 0) | ||
|  |    { | ||
|  |       return policies::raise_domain_error<T>(function, | ||
|  |          "At most one argument can be zero, but got, x + y = %1%", x + y, pol); | ||
|  |    } | ||
|  | 
 | ||
|  |    // error scales as the 6th power of tolerance
 | ||
|  |    tolerance = pow(tools::epsilon<T>() / 3, T(1) / 6); | ||
|  | 
 | ||
|  |    // duplication
 | ||
|  |    sigma = 0; | ||
|  |    factor = 1; | ||
|  |    k = 1; | ||
|  |    do | ||
|  |    { | ||
|  |       u = (x + y + z + z + z) / 5; | ||
|  |       X = (u - x) / u; | ||
|  |       Y = (u - y) / u; | ||
|  |       Z = (u - z) / u; | ||
|  |       if((tools::max)(abs(X), abs(Y), abs(Z)) < tolerance) | ||
|  |          break; | ||
|  |       T sx = sqrt(x); | ||
|  |       T sy = sqrt(y); | ||
|  |       T sz = sqrt(z); | ||
|  |       lambda = sy * (sx + sz) + sz * sx; //sqrt(x * y) + sqrt(y * z) + sqrt(z * x);
 | ||
|  |       sigma += factor / (sz * (z + lambda)); | ||
|  |       factor /= 4; | ||
|  |       x = (x + lambda) / 4; | ||
|  |       y = (y + lambda) / 4; | ||
|  |       z = (z + lambda) / 4; | ||
|  |       ++k; | ||
|  |    } while(k < policies::get_max_series_iterations<Policy>()); | ||
|  | 
 | ||
|  |    // Check to see if we gave up too soon:
 | ||
|  |    policies::check_series_iterations<T>(function, k, pol); | ||
|  | 
 | ||
|  |    // Taylor series expansion to the 5th order
 | ||
|  |    EA = X * Y; | ||
|  |    EB = Z * Z; | ||
|  |    EC = EA - EB; | ||
|  |    ED = EA - 6 * EB; | ||
|  |    EE = ED + EC + EC; | ||
|  |    S1 = ED * (ED * T(9) / 88 - Z * EE * T(9) / 52 - T(3) / 14); | ||
|  |    S2 = Z * (EE / 6 + Z * (-EC * T(9) / 22 + Z * EA * T(3) / 26)); | ||
|  |    value = 3 * sigma + factor * (1 + S1 + S2) / (u * sqrt(u)); | ||
|  | 
 | ||
|  |    return value; | ||
|  | } | ||
|  | 
 | ||
|  | template <typename T, typename Policy> | ||
|  | T ellint_rf_imp_old(T x, T y, T z, const Policy& pol) | ||
|  | { | ||
|  |    T value, X, Y, Z, E2, E3, u, lambda, tolerance; | ||
|  |    unsigned long k; | ||
|  |    BOOST_MATH_STD_USING | ||
|  |    using namespace boost::math; | ||
|  |    static const char* function = "boost::math::ellint_rf<%1%>(%1%,%1%,%1%)"; | ||
|  |    if(x < 0 || y < 0 || z < 0) | ||
|  |    { | ||
|  |       return policies::raise_domain_error<T>(function, | ||
|  |          "domain error, all arguments must be non-negative, " | ||
|  |          "only sensible result is %1%.", | ||
|  |          std::numeric_limits<T>::quiet_NaN(), pol); | ||
|  |    } | ||
|  |    if(x + y == 0 || y + z == 0 || z + x == 0) | ||
|  |    { | ||
|  |       return policies::raise_domain_error<T>(function, | ||
|  |          "domain error, at most one argument can be zero, " | ||
|  |          "only sensible result is %1%.", | ||
|  |          std::numeric_limits<T>::quiet_NaN(), pol); | ||
|  |    } | ||
|  |    // Carlson scales error as the 6th power of tolerance,
 | ||
|  |    // but this seems not to work for types larger than
 | ||
|  |    // 80-bit reals, this heuristic seems to work OK:
 | ||
|  |    if(policies::digits<T, Policy>() > 64) | ||
|  |    { | ||
|  |       tolerance = pow(tools::epsilon<T>(), T(1) / 4.25f); | ||
|  |       BOOST_MATH_INSTRUMENT_VARIABLE(tolerance); | ||
|  |    } | ||
|  |    else | ||
|  |    { | ||
|  |       tolerance = pow(4 * tools::epsilon<T>(), T(1) / 6); | ||
|  |       BOOST_MATH_INSTRUMENT_VARIABLE(tolerance); | ||
|  |    } | ||
|  |    // duplication
 | ||
|  |    k = 1; | ||
|  |    do | ||
|  |    { | ||
|  |       u = (x + y + z) / 3; | ||
|  |       X = (u - x) / u; | ||
|  |       Y = (u - y) / u; | ||
|  |       Z = (u - z) / u; | ||
|  |       // Termination condition:
 | ||
|  |       if((tools::max)(abs(X), abs(Y), abs(Z)) < tolerance) | ||
|  |          break; | ||
|  |       T sx = sqrt(x); | ||
|  |       T sy = sqrt(y); | ||
|  |       T sz = sqrt(z); | ||
|  |       lambda = sy * (sx + sz) + sz * sx; | ||
|  |       x = (x + lambda) / 4; | ||
|  |       y = (y + lambda) / 4; | ||
|  |       z = (z + lambda) / 4; | ||
|  |       ++k; | ||
|  |    } while(k < policies::get_max_series_iterations<Policy>()); | ||
|  |    // Check to see if we gave up too soon:
 | ||
|  |    policies::check_series_iterations<T>(function, k, pol); | ||
|  |    BOOST_MATH_INSTRUMENT_VARIABLE(k); | ||
|  |    // Taylor series expansion to the 5th order
 | ||
|  |    E2 = X * Y - Z * Z; | ||
|  |    E3 = X * Y * Z; | ||
|  |    value = (1 + E2*(E2 / 24 - E3*T(3) / 44 - T(0.1)) + E3 / 14) / sqrt(u); | ||
|  |    BOOST_MATH_INSTRUMENT_VARIABLE(value); | ||
|  |    return value; | ||
|  | } | ||
|  | 
 | ||
|  | 
 | ||
|  | 
 | ||
|  | boost::math::tuple<mp_t, mp_t, mp_t, mp_t> generate_rj_data_4e(mp_t n) | ||
|  | { | ||
|  |    mp_t result = ellint_rj_old(n, n, n, n, boost::math::policies::policy<>()); | ||
|  |    return boost::math::make_tuple(n, n, n, result); | ||
|  | } | ||
|  | 
 | ||
|  | boost::math::tuple<mp_t, mp_t, mp_t, mp_t, mp_t> generate_rj_data_3e(mp_t x, mp_t p) | ||
|  | { | ||
|  |    mp_t r = ellint_rj_old(x, x, x, p, boost::math::policies::policy<>()); | ||
|  |    return boost::math::make_tuple(x, x, x, p, r); | ||
|  | } | ||
|  | 
 | ||
|  | boost::math::tuple<mp_t, mp_t, mp_t, mp_t, mp_t> generate_rj_data_2e_1(mp_t x, mp_t y, mp_t p) | ||
|  | { | ||
|  |    mp_t r = ellint_rj_old(x, x, y, p, boost::math::policies::policy<>()); | ||
|  |    return boost::math::make_tuple(x, x, y, p, r); | ||
|  | } | ||
|  | 
 | ||
|  | boost::math::tuple<mp_t, mp_t, mp_t, mp_t, mp_t> generate_rj_data_2e_2(mp_t x, mp_t y, mp_t p) | ||
|  | { | ||
|  |    mp_t r = ellint_rj_old(x, y, x, p, boost::math::policies::policy<>()); | ||
|  |    return boost::math::make_tuple(x, y, x, p, r); | ||
|  | } | ||
|  | 
 | ||
|  | boost::math::tuple<mp_t, mp_t, mp_t, mp_t, mp_t> generate_rj_data_2e_3(mp_t x, mp_t y, mp_t p) | ||
|  | { | ||
|  |    mp_t r = ellint_rj_old(y, x, x, p, boost::math::policies::policy<>()); | ||
|  |    return boost::math::make_tuple(y, x, x, p, r); | ||
|  | } | ||
|  | 
 | ||
|  | boost::math::tuple<mp_t, mp_t, mp_t, mp_t, mp_t> generate_rj_data_2e_4(mp_t x, mp_t y, mp_t p) | ||
|  | { | ||
|  |    mp_t r = ellint_rj_old(x, y, p, p, boost::math::policies::policy<>()); | ||
|  |    return boost::math::make_tuple(x, y, p, p, r); | ||
|  | } | ||
|  | 
 | ||
|  | boost::math::tuple<mp_t, mp_t, mp_t, mp_t> generate_rd_data_2e_1(mp_t x, mp_t y) | ||
|  | { | ||
|  |    mp_t r = ellint_rd_imp_old(x, y, y, boost::math::policies::policy<>()); | ||
|  |    return boost::math::make_tuple(x, y, y, r); | ||
|  | } | ||
|  | 
 | ||
|  | boost::math::tuple<mp_t, mp_t, mp_t, mp_t> generate_rd_data_2e_2(mp_t x, mp_t y) | ||
|  | { | ||
|  |    mp_t r = ellint_rd_imp_old(x, x, y, boost::math::policies::policy<>()); | ||
|  |    return boost::math::make_tuple(x, x, y, r); | ||
|  | } | ||
|  | 
 | ||
|  | boost::math::tuple<mp_t, mp_t, mp_t, mp_t> generate_rd_data_2e_3(mp_t x) | ||
|  | { | ||
|  |    mp_t r = ellint_rd_imp_old(mp_t(0), x, x, boost::math::policies::policy<>()); | ||
|  |    return boost::math::make_tuple(0, x, x, r); | ||
|  | } | ||
|  | 
 | ||
|  | boost::math::tuple<mp_t, mp_t, mp_t, mp_t> generate_rd_data_3e(mp_t x) | ||
|  | { | ||
|  |    mp_t r = ellint_rd_imp_old(x, x, x, boost::math::policies::policy<>()); | ||
|  |    return boost::math::make_tuple(x, x, x, r); | ||
|  | } | ||
|  | 
 | ||
|  | boost::math::tuple<mp_t, mp_t, mp_t, mp_t> generate_rd_data_0xy(mp_t x, mp_t y) | ||
|  | { | ||
|  |    mp_t r = ellint_rd_imp_old(mp_t(0), x, y, boost::math::policies::policy<>()); | ||
|  |    return boost::math::make_tuple(mp_t(0), x, y, r); | ||
|  | } | ||
|  | 
 | ||
|  | boost::math::tuple<mp_t, mp_t, mp_t, mp_t> generate_rf_data_xxx(mp_t x) | ||
|  | { | ||
|  |    mp_t r = ellint_rf_imp_old(x, x, x, boost::math::policies::policy<>()); | ||
|  |    return boost::math::make_tuple(x, x, x, r); | ||
|  | } | ||
|  | 
 | ||
|  | boost::math::tuple<mp_t, mp_t, mp_t, mp_t> generate_rf_data_xyy(mp_t x, mp_t y) | ||
|  | { | ||
|  |    mp_t r = ellint_rf_imp_old(x, y, y, boost::math::policies::policy<>()); | ||
|  |    return boost::math::make_tuple(x, y, y, r); | ||
|  | } | ||
|  | 
 | ||
|  | boost::math::tuple<mp_t, mp_t, mp_t, mp_t> generate_rf_data_xxy(mp_t x, mp_t y) | ||
|  | { | ||
|  |    mp_t r = ellint_rf_imp_old(x, x, y, boost::math::policies::policy<>()); | ||
|  |    return boost::math::make_tuple(x, x, y, r); | ||
|  | } | ||
|  | 
 | ||
|  | boost::math::tuple<mp_t, mp_t, mp_t, mp_t> generate_rf_data_xyx(mp_t x, mp_t y) | ||
|  | { | ||
|  |    mp_t r = ellint_rf_imp_old(x, y, x, boost::math::policies::policy<>()); | ||
|  |    return boost::math::make_tuple(x, y, x, r); | ||
|  | } | ||
|  | 
 | ||
|  | boost::math::tuple<mp_t, mp_t, mp_t, mp_t> generate_rf_data_0yy(mp_t y) | ||
|  | { | ||
|  |    mp_t r = ellint_rf_imp_old(mp_t(0), y, y, boost::math::policies::policy<>()); | ||
|  |    return boost::math::make_tuple(mp_t(0), y, y, r); | ||
|  | } | ||
|  | 
 | ||
|  | boost::math::tuple<mp_t, mp_t, mp_t, mp_t> generate_rf_data_xy0(mp_t x, mp_t y) | ||
|  | { | ||
|  |    mp_t r = ellint_rf_imp_old(x, y, mp_t(0), boost::math::policies::policy<>()); | ||
|  |    return boost::math::make_tuple(x, y, mp_t(0), r); | ||
|  | } | ||
|  | 
 | ||
|  | boost::math::tuple<mp_t, mp_t, mp_t, mp_t> generate_rf_data(mp_t n) | ||
|  | { | ||
|  |    static boost::mt19937 r; | ||
|  |    boost::uniform_real<float> ur(0, 1); | ||
|  |    boost::uniform_int<int> ui(-100, 100); | ||
|  |    float x = ur(r); | ||
|  |    x = ldexp(x, ui(r)); | ||
|  |    mp_t xr(truncate_to_float(&x)); | ||
|  |    float y = ur(r); | ||
|  |    y = ldexp(y, ui(r)); | ||
|  |    mp_t yr(truncate_to_float(&y)); | ||
|  |    float z = ur(r); | ||
|  |    z = ldexp(z, ui(r)); | ||
|  |    mp_t zr(truncate_to_float(&z)); | ||
|  | 
 | ||
|  |    mp_t result = boost::math::ellint_rf(xr, yr, zr); | ||
|  |    return boost::math::make_tuple(xr, yr, zr, result); | ||
|  | } | ||
|  | 
 | ||
|  | boost::math::tuple<mp_t, mp_t, mp_t> generate_rc_data(mp_t n) | ||
|  | { | ||
|  |    static boost::mt19937 r; | ||
|  |    boost::uniform_real<float> ur(0, 1); | ||
|  |    boost::uniform_int<int> ui(-100, 100); | ||
|  |    float x = ur(r); | ||
|  |    x = ldexp(x, ui(r)); | ||
|  |    mp_t xr(truncate_to_float(&x)); | ||
|  |    float y = ur(r); | ||
|  |    y = ldexp(y, ui(r)); | ||
|  |    mp_t yr(truncate_to_float(&y)); | ||
|  | 
 | ||
|  |    mp_t result = boost::math::ellint_rc(xr, yr); | ||
|  |    return boost::math::make_tuple(xr, yr, result); | ||
|  | } | ||
|  | 
 | ||
|  | boost::math::tuple<mp_t, mp_t, mp_t, mp_t, mp_t> generate_rj_data(mp_t n) | ||
|  | { | ||
|  |    static boost::mt19937 r; | ||
|  |    boost::uniform_real<float> ur(0, 1); | ||
|  |    boost::uniform_real<float> nur(-1, 1); | ||
|  |    boost::uniform_int<int> ui(-100, 100); | ||
|  |    float x = ur(r); | ||
|  |    x = ldexp(x, ui(r)); | ||
|  |    mp_t xr(truncate_to_float(&x)); | ||
|  |    float y = ur(r); | ||
|  |    y = ldexp(y, ui(r)); | ||
|  |    mp_t yr(truncate_to_float(&y)); | ||
|  |    float z = ur(r); | ||
|  |    z = ldexp(z, ui(r)); | ||
|  |    mp_t zr(truncate_to_float(&z)); | ||
|  |    float p = nur(r); | ||
|  |    p = ldexp(p, ui(r)); | ||
|  |    mp_t pr(truncate_to_float(&p)); | ||
|  | 
 | ||
|  |    boost::math::ellint_rj(x, y, z, p); | ||
|  | 
 | ||
|  |    mp_t result = boost::math::ellint_rj(xr, yr, zr, pr); | ||
|  |    return boost::math::make_tuple(xr, yr, zr, pr, result); | ||
|  | } | ||
|  | 
 | ||
|  | boost::math::tuple<mp_t, mp_t, mp_t, mp_t> generate_rd_data(mp_t n) | ||
|  | { | ||
|  |    static boost::mt19937 r; | ||
|  |    boost::uniform_real<float> ur(0, 1); | ||
|  |    boost::uniform_int<int> ui(-100, 100); | ||
|  |    float x = ur(r); | ||
|  |    x = ldexp(x, ui(r)); | ||
|  |    mp_t xr(truncate_to_float(&x)); | ||
|  |    float y = ur(r); | ||
|  |    y = ldexp(y, ui(r)); | ||
|  |    mp_t yr(truncate_to_float(&y)); | ||
|  |    float z = ur(r); | ||
|  |    z = ldexp(z, ui(r)); | ||
|  |    mp_t zr(truncate_to_float(&z)); | ||
|  | 
 | ||
|  |    mp_t result = boost::math::ellint_rd(xr, yr, zr); | ||
|  |    return boost::math::make_tuple(xr, yr, zr, result); | ||
|  | } | ||
|  | 
 | ||
|  | mp_t rg_imp(mp_t x, mp_t y, mp_t z) | ||
|  | { | ||
|  |    using std::swap; | ||
|  |    // If z is zero permute so the call to RD is valid:
 | ||
|  |    if(z == 0) | ||
|  |       swap(x, z); | ||
|  |    return (z * ellint_rf_imp_old(x, y, z, boost::math::policies::policy<>()) | ||
|  |       - (x - z) * (y - z) * ellint_rd_imp_old(x, y, z, boost::math::policies::policy<>()) / 3 | ||
|  |       + sqrt(x * y / z)) / 2; | ||
|  | } | ||
|  | 
 | ||
|  | boost::math::tuple<mp_t, mp_t, mp_t, mp_t> generate_rg_data(mp_t n) | ||
|  | { | ||
|  |    static boost::mt19937 r; | ||
|  |    boost::uniform_real<float> ur(0, 1); | ||
|  |    boost::uniform_int<int> ui(-100, 100); | ||
|  |    float x = ur(r); | ||
|  |    x = ldexp(x, ui(r)); | ||
|  |    mp_t xr(truncate_to_float(&x)); | ||
|  |    float y = ur(r); | ||
|  |    y = ldexp(y, ui(r)); | ||
|  |    mp_t yr(truncate_to_float(&y)); | ||
|  |    float z = ur(r); | ||
|  |    z = ldexp(z, ui(r)); | ||
|  |    mp_t zr(truncate_to_float(&z)); | ||
|  | 
 | ||
|  |    mp_t result = rg_imp(xr, yr, zr); | ||
|  |    return boost::math::make_tuple(xr, yr, zr, result); | ||
|  | } | ||
|  | 
 | ||
|  | boost::math::tuple<mp_t, mp_t, mp_t, mp_t> generate_rg_xxx(mp_t x) | ||
|  | { | ||
|  |    mp_t result = rg_imp(x, x, x); | ||
|  |    return boost::math::make_tuple(x, x, x, result); | ||
|  | } | ||
|  | 
 | ||
|  | boost::math::tuple<mp_t, mp_t, mp_t, mp_t> generate_rg_xyy(mp_t x, mp_t y) | ||
|  | { | ||
|  |    mp_t result = rg_imp(x, y, y); | ||
|  |    return boost::math::make_tuple(x, y, y, result); | ||
|  | } | ||
|  | 
 | ||
|  | boost::math::tuple<mp_t, mp_t, mp_t, mp_t> generate_rg_xxy(mp_t x, mp_t y) | ||
|  | { | ||
|  |    mp_t result = rg_imp(x, x, y); | ||
|  |    return boost::math::make_tuple(x, x, y, result); | ||
|  | } | ||
|  | 
 | ||
|  | boost::math::tuple<mp_t, mp_t, mp_t, mp_t> generate_rg_xyx(mp_t x, mp_t y) | ||
|  | { | ||
|  |    mp_t result = rg_imp(x, y, x); | ||
|  |    return boost::math::make_tuple(x, y, x, result); | ||
|  | } | ||
|  | 
 | ||
|  | boost::math::tuple<mp_t, mp_t, mp_t, mp_t> generate_rg_0xx(mp_t x) | ||
|  | { | ||
|  |    mp_t result = rg_imp(mp_t(0), x, x); | ||
|  |    return boost::math::make_tuple(mp_t(0), x, x, result); | ||
|  | } | ||
|  | 
 | ||
|  | boost::math::tuple<mp_t, mp_t, mp_t, mp_t> generate_rg_x0x(mp_t x) | ||
|  | { | ||
|  |    mp_t result = rg_imp(x, mp_t(0), x); | ||
|  |    return boost::math::make_tuple(x, mp_t(0), x, result); | ||
|  | } | ||
|  | 
 | ||
|  | boost::math::tuple<mp_t, mp_t, mp_t, mp_t> generate_rg_xx0(mp_t x) | ||
|  | { | ||
|  |    mp_t result = rg_imp(x, x, mp_t(0)); | ||
|  |    return boost::math::make_tuple(x, x, mp_t(0), result); | ||
|  | } | ||
|  | 
 | ||
|  | boost::math::tuple<mp_t, mp_t, mp_t, mp_t> generate_rg_00x(mp_t x) | ||
|  | { | ||
|  |    mp_t result = sqrt(x) / 2; | ||
|  |    return boost::math::make_tuple(mp_t(0), mp_t(0), x, result); | ||
|  | } | ||
|  | 
 | ||
|  | boost::math::tuple<mp_t, mp_t, mp_t, mp_t> generate_rg_0x0(mp_t x) | ||
|  | { | ||
|  |    mp_t result = sqrt(x) / 2; | ||
|  |    return boost::math::make_tuple(mp_t(0), x, mp_t(0), result); | ||
|  | } | ||
|  | 
 | ||
|  | boost::math::tuple<mp_t, mp_t, mp_t, mp_t> generate_rg_x00(mp_t x) | ||
|  | { | ||
|  |    mp_t result = sqrt(x) / 2; | ||
|  |    return boost::math::make_tuple(x, mp_t(0), mp_t(0), result); | ||
|  | } | ||
|  | 
 | ||
|  | boost::math::tuple<mp_t, mp_t, mp_t, mp_t> generate_rg_xy0(mp_t x, mp_t y) | ||
|  | { | ||
|  |    mp_t result = rg_imp(x, y, mp_t(0)); | ||
|  |    return boost::math::make_tuple(x, y, mp_t(0), result); | ||
|  | } | ||
|  | 
 | ||
|  | int cpp_main(int argc, char*argv[]) | ||
|  | { | ||
|  |    using namespace boost::math::tools; | ||
|  | 
 | ||
|  |    parameter_info<mp_t> arg1, arg2, arg3; | ||
|  |    test_data<mp_t> data; | ||
|  | 
 | ||
|  |    bool cont; | ||
|  |    std::string line; | ||
|  | 
 | ||
|  |    if(argc < 1) | ||
|  |       return 1; | ||
|  | 
 | ||
|  |    do{ | ||
|  | #if 0
 | ||
|  |       int count; | ||
|  |       std::cout << "Number of points: "; | ||
|  |       std::cin >> count; | ||
|  |        | ||
|  |       arg1 = make_periodic_param(mp_t(0), mp_t(1), count); | ||
|  |       arg1.type |= dummy_param; | ||
|  | 
 | ||
|  |       //
 | ||
|  |       // Change this next line to get the R variant you want:
 | ||
|  |       //
 | ||
|  |       data.insert(&generate_rd_data, arg1); | ||
|  | 
 | ||
|  |       std::cout << "Any more data [y/n]?"; | ||
|  |       std::getline(std::cin, line); | ||
|  |       boost::algorithm::trim(line); | ||
|  |       cont = (line == "y"); | ||
|  | #else
 | ||
|  |       get_user_parameter_info(arg1, "x"); | ||
|  |       get_user_parameter_info(arg2, "y"); | ||
|  |       //get_user_parameter_info(arg3, "p");
 | ||
|  |       arg1.type |= dummy_param; | ||
|  |       arg2.type |= dummy_param; | ||
|  |       //arg3.type |= dummy_param;
 | ||
|  |       data.insert(generate_rd_data_0xy, arg1, arg2); | ||
|  | 
 | ||
|  |       std::cout << "Any more data [y/n]?"; | ||
|  |       std::getline(std::cin, line); | ||
|  |       boost::algorithm::trim(line); | ||
|  |       cont = (line == "y"); | ||
|  | #endif
 | ||
|  |    }while(cont); | ||
|  | 
 | ||
|  |    std::cout << "Enter name of test data file [default=ellint_rf_data.ipp]"; | ||
|  |    std::getline(std::cin, line); | ||
|  |    boost::algorithm::trim(line); | ||
|  |    if(line == "") | ||
|  |       line = "ellint_rf_data.ipp"; | ||
|  |    std::ofstream ofs(line.c_str()); | ||
|  |    line.erase(line.find('.')); | ||
|  |    ofs << std::scientific << std::setprecision(40); | ||
|  |    write_code(ofs, data, line.c_str()); | ||
|  | 
 | ||
|  |    return 0; | ||
|  | } | ||
|  | 
 | ||
|  | 
 |