mirror of
				https://github.com/saitohirga/WSJT-X.git
				synced 2025-10-28 19:43:15 -04:00 
			
		
		
		
	
		
			
	
	
		
			167 lines
		
	
	
		
			6.8 KiB
		
	
	
	
		
			Fortran
		
	
	
	
	
	
		
		
			
		
	
	
			167 lines
		
	
	
		
			6.8 KiB
		
	
	
	
		
			Fortran
		
	
	
	
	
	
|  | subroutine moon2(y,m,Day,UT,lon,lat,RA,Dec,topRA,topDec,              &
 | ||
|  |      LST,HA,Az,El,dist)
 | ||
|  | 
 | ||
|  |   implicit none
 | ||
|  | 
 | ||
|  |   integer y                           !Year
 | ||
|  |   integer m                           !Month
 | ||
|  |   integer Day                         !Day
 | ||
|  |   real*8 UT                           !UTC in hours
 | ||
|  |   real*8 RA,Dec                       !RA and Dec of moon
 | ||
|  | 
 | ||
|  | ! NB: Double caps are single caps in the writeup.
 | ||
|  | 
 | ||
|  |   real*8 NN                           !Longitude of ascending node
 | ||
|  |   real*8 i                            !Inclination to the ecliptic
 | ||
|  |   real*8 w                            !Argument of perigee
 | ||
|  |   real*8 a                            !Semi-major axis
 | ||
|  |   real*8 e                            !Eccentricity
 | ||
|  |   real*8 MM                           !Mean anomaly
 | ||
|  | 
 | ||
|  |   real*8 v                            !True anomaly
 | ||
|  |   real*8 EE                           !Eccentric anomaly
 | ||
|  |   real*8 ecl                          !Obliquity of the ecliptic
 | ||
|  | 
 | ||
|  |   real*8 d                            !Ephemeris time argument in days
 | ||
|  |   real*8 r                            !Distance to sun, AU
 | ||
|  |   real*8 xv,yv                        !x and y coords in ecliptic
 | ||
|  |   real*8 lonecl,latecl                !Ecliptic long and lat of moon
 | ||
|  |   real*8 xg,yg,zg                     !Ecliptic rectangular coords
 | ||
|  |   real*8 Ms                           !Mean anomaly of sun
 | ||
|  |   real*8 ws                           !Argument of perihelion of sun
 | ||
|  |   real*8 Ls                           !Mean longitude of sun (Ns=0)
 | ||
|  |   real*8 Lm                           !Mean longitude of moon
 | ||
|  |   real*8 DD                           !Mean elongation of moon
 | ||
|  |   real*8 FF                           !Argument of latitude for moon
 | ||
|  |   real*8 xe,ye,ze                     !Equatorial geocentric coords of moon
 | ||
|  |   real*8 mpar                         !Parallax of moon (r_E / d)
 | ||
|  |   real*8 lat,lon                      !Station coordinates on earth
 | ||
|  |   real*8 gclat                        !Geocentric latitude
 | ||
|  |   real*8 rho                          !Earth radius factor
 | ||
|  |   real*8 GMST0,LST,HA
 | ||
|  |   real*8 g
 | ||
|  |   real*8 topRA,topDec                 !Topocentric coordinates of Moon
 | ||
|  |   real*8 Az,El
 | ||
|  |   real*8 dist
 | ||
|  | 
 | ||
|  |   real*8 rad,twopi,pi,pio2
 | ||
|  |   data rad/57.2957795131d0/,twopi/6.283185307d0/
 | ||
|  | 
 | ||
|  |   d=367*y - 7*(y+(m+9)/12)/4 + 275*m/9 + Day - 730530 + UT/24.d0
 | ||
|  |   ecl = 23.4393d0 - 3.563d-7 * d
 | ||
|  | 
 | ||
|  | ! Orbital elements for Moon:  
 | ||
|  |   NN = 125.1228d0 - 0.0529538083d0 * d
 | ||
|  |   i = 5.1454d0
 | ||
|  |   w = mod(318.0634d0 + 0.1643573223d0 * d + 360000.d0,360.d0)
 | ||
|  |   a = 60.2666d0
 | ||
|  |   e = 0.054900d0
 | ||
|  |   MM = mod(115.3654d0 + 13.0649929509d0 * d + 360000.d0,360.d0)
 | ||
|  | 
 | ||
|  |   EE = MM + e*rad*sin(MM/rad) * (1.d0 + e*cos(MM/rad))
 | ||
|  |   EE = EE - (EE - e*rad*sin(EE/rad)-MM) / (1.d0 - e*cos(EE/rad))
 | ||
|  |   EE = EE - (EE - e*rad*sin(EE/rad)-MM) / (1.d0 - e*cos(EE/rad))
 | ||
|  | 
 | ||
|  |   xv = a * (cos(EE/rad) - e)
 | ||
|  |   yv = a * (sqrt(1.d0-e*e) * sin(EE/rad))
 | ||
|  | 
 | ||
|  |   v = mod(rad*atan2(yv,xv)+720.d0,360.d0)
 | ||
|  |   r = sqrt(xv*xv + yv*yv)
 | ||
|  | 
 | ||
|  | ! Get geocentric position in ecliptic rectangular coordinates:
 | ||
|  | 
 | ||
|  |   xg = r * (cos(NN/rad)*cos((v+w)/rad) -                          &
 | ||
|  |        sin(NN/rad)*sin((v+w)/rad)*cos(i/rad))
 | ||
|  |   yg = r * (sin(NN/rad)*cos((v+w)/rad) +                          &
 | ||
|  |        cos(NN/rad)*sin((v+w)/rad)*cos(i/rad))
 | ||
|  |   zg = r * (sin((v+w)/rad)*sin(i/rad))
 | ||
|  | 
 | ||
|  | ! Ecliptic longitude and latitude of moon:
 | ||
|  |   lonecl = mod(rad*atan2(yg/rad,xg/rad)+720.d0,360.d0)
 | ||
|  |   latecl = rad*atan2(zg/rad,sqrt(xg*xg + yg*yg)/rad)
 | ||
|  | 
 | ||
|  | ! Now include orbital perturbations:
 | ||
|  |   Ms = mod(356.0470d0 + 0.9856002585d0 * d + 3600000.d0,360.d0)
 | ||
|  |   ws = 282.9404d0 + 4.70935d-5*d
 | ||
|  |   Ls = mod(Ms + ws + 720.d0,360.d0)
 | ||
|  |   Lm = mod(MM + w + NN+720.d0,360.d0)
 | ||
|  |   DD = mod(Lm - Ls + 360.d0,360.d0)
 | ||
|  |   FF = mod(Lm - NN + 360.d0,360.d0)
 | ||
|  | 
 | ||
|  |   lonecl = lonecl                                           &
 | ||
|  |        -1.274d0 * sin((MM-2.d0*DD)/rad)                     &
 | ||
|  |        +0.658d0 * sin(2.d0*DD/rad)                          &
 | ||
|  |        -0.186d0 * sin(Ms/rad)                               &
 | ||
|  |        -0.059d0 * sin((2.d0*MM-2.d0*DD)/rad)                &
 | ||
|  |        -0.057d0 * sin((MM-2.d0*DD+Ms)/rad)                  &
 | ||
|  |        +0.053d0 * sin((MM+2.d0*DD)/rad)                     &
 | ||
|  |        +0.046d0 * sin((2.d0*DD-Ms)/rad)                     &
 | ||
|  |        +0.041d0 * sin((MM-Ms)/rad)                          &
 | ||
|  |        -0.035d0 * sin(DD/rad)                               &
 | ||
|  |        -0.031d0 * sin((MM+Ms)/rad)                          &
 | ||
|  |        -0.015d0 * sin((2.d0*FF-2.d0*DD)/rad)                &
 | ||
|  |        +0.011d0 * sin((MM-4.d0*DD)/rad)
 | ||
|  | 
 | ||
|  |   latecl = latecl                                           &
 | ||
|  |        -0.173d0 * sin((FF-2.d0*DD)/rad)                     &
 | ||
|  |        -0.055d0 * sin((MM-FF-2.d0*DD)/rad)                  &
 | ||
|  |        -0.046d0 * sin((MM+FF-2.d0*DD)/rad)                  &
 | ||
|  |        +0.033d0 * sin((FF+2.d0*DD)/rad)                     &
 | ||
|  |        +0.017d0 * sin((2.d0*MM+FF)/rad)
 | ||
|  | 
 | ||
|  |   r = 60.36298d0                                            &
 | ||
|  |        - 3.27746d0*cos(MM/rad)                              &
 | ||
|  |        - 0.57994d0*cos((MM-2.d0*DD)/rad)                    &
 | ||
|  |        - 0.46357d0*cos(2.d0*DD/rad)                         &
 | ||
|  |        - 0.08904d0*cos(2.d0*MM/rad)                         &
 | ||
|  |        + 0.03865d0*cos((2.d0*MM-2.d0*DD)/rad)               &
 | ||
|  |        - 0.03237d0*cos((2.d0*DD-Ms)/rad)                    &
 | ||
|  |        - 0.02688d0*cos((MM+2.d0*DD)/rad)                    &
 | ||
|  |        - 0.02358d0*cos((MM-2.d0*DD+Ms)/rad)                 &
 | ||
|  |        - 0.02030d0*cos((MM-Ms)/rad)                         &
 | ||
|  |        + 0.01719d0*cos(DD/rad)                              &
 | ||
|  |        + 0.01671d0*cos((MM+Ms)/rad)
 | ||
|  | 
 | ||
|  |   dist=r*6378.140d0
 | ||
|  | 
 | ||
|  | ! Geocentric coordinates:
 | ||
|  | ! Rectangular ecliptic coordinates of the moon:
 | ||
|  | 
 | ||
|  |   xg = r * cos(lonecl/rad)*cos(latecl/rad)
 | ||
|  |   yg = r * sin(lonecl/rad)*cos(latecl/rad)
 | ||
|  |   zg = r *                 sin(latecl/rad)
 | ||
|  | 
 | ||
|  | ! Rectangular equatorial coordinates of the moon:
 | ||
|  |   xe = xg
 | ||
|  |   ye = yg*cos(ecl/rad) - zg*sin(ecl/rad)
 | ||
|  |   ze = yg*sin(ecl/rad) + zg*cos(ecl/rad)
 | ||
|  |    
 | ||
|  | ! Right Ascension, Declination:
 | ||
|  |   RA = mod(rad*atan2(ye,xe)+360.d0,360.d0)
 | ||
|  |   Dec = rad*atan2(ze,sqrt(xe*xe + ye*ye))
 | ||
|  | 
 | ||
|  | ! Now convert to topocentric system:
 | ||
|  |   mpar=rad*asin(1.d0/r)
 | ||
|  | !     alt_topoc = alt_geoc - mpar*cos(alt_geoc)
 | ||
|  |   gclat = lat - 0.1924d0*sin(2.d0*lat/rad)
 | ||
|  |   rho = 0.99883d0 + 0.00167d0*cos(2.d0*lat/rad)
 | ||
|  |   GMST0 = (Ls + 180.d0)/15.d0
 | ||
|  |   LST = mod(GMST0+UT+lon/15.d0+48.d0,24.d0)    !LST in hours
 | ||
|  |   HA = 15.d0*LST - RA                          !HA in degrees
 | ||
|  |   g = rad*atan(tan(gclat/rad)/cos(HA/rad))
 | ||
|  |   topRA = RA - mpar*rho*cos(gclat/rad)*sin(HA/rad)/cos(Dec/rad)
 | ||
|  |   topDec = Dec - mpar*rho*sin(gclat/rad)*sin((g-Dec)/rad)/sin(g/rad)
 | ||
|  | 
 | ||
|  |   HA = 15.d0*LST - topRA                       !HA in degrees
 | ||
|  |   if(HA.gt.180.d0) HA=HA-360.d0
 | ||
|  |   if(HA.lt.-180.d0) HA=HA+360.d0
 | ||
|  | 
 | ||
|  |   pi=0.5d0*twopi
 | ||
|  |   pio2=0.5d0*pi
 | ||
|  |   call dcoord(pi,pio2-lat/rad,0.d0,lat/rad,ha*twopi/360,topDec/rad,az,el)
 | ||
|  |   Az=az*rad
 | ||
|  |   El=El*rad
 | ||
|  | 
 | ||
|  |   return
 | ||
|  | end subroutine moon2
 |