mirror of
				https://github.com/saitohirga/WSJT-X.git
				synced 2025-11-03 13:30:52 -05:00 
			
		
		
		
	A few more editorial tweaks, and more text.
git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@6354 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
This commit is contained in:
		
							parent
							
								
									0e1c1a9d75
								
							
						
					
					
						commit
						51bad2584e
					
				@ -139,15 +139,21 @@ WSJT-X
 | 
			
		||||
\emph default
 | 
			
		||||
, widely used for amateur weak-signal communication with JT65 and other
 | 
			
		||||
 specialized digital modes.
 | 
			
		||||
 The program is freely available and licensed under the GNU General Public
 | 
			
		||||
 License.
 | 
			
		||||
 The program is freely available 
 | 
			
		||||
\begin_inset CommandInset citation
 | 
			
		||||
LatexCommand cite
 | 
			
		||||
key "wsjt"
 | 
			
		||||
 | 
			
		||||
\end_inset
 | 
			
		||||
 | 
			
		||||
 and licensed under the GNU General Public License.
 | 
			
		||||
\end_layout
 | 
			
		||||
 | 
			
		||||
\begin_layout Standard
 | 
			
		||||
The JT65 protocol specifies transmissions that normally start one second
 | 
			
		||||
 into a UTC minute and last for 46.8 seconds.
 | 
			
		||||
 Receiving software therefore has up to several seconds to decode a message,
 | 
			
		||||
 before the operator sends a reply at the start of the next minute.
 | 
			
		||||
 Receiving software therefore has up to several seconds to decode a message
 | 
			
		||||
 before the start of the next minute, when the operator sends a reply.
 | 
			
		||||
 With today's personal computers, this relatively long time available for
 | 
			
		||||
 decoding a short message encourages experimentation with decoders of high
 | 
			
		||||
 computational complexity.
 | 
			
		||||
@ -158,7 +164,7 @@ The JT65 protocol specifies transmissions that normally start one second
 | 
			
		||||
 properties, not least of which is its conceptual simplicity.
 | 
			
		||||
 Decoding performance and complexity scale in a convenient way, providing
 | 
			
		||||
 steadily increasing soft-decision decoding gain as a tunable computational
 | 
			
		||||
 complexity parameter is increased over more than 5 orders of magnitude.
 | 
			
		||||
 complexity parameter is increased over more than five orders of magnitude.
 | 
			
		||||
 Appreciable gain is available from our decoder even on very simple (and
 | 
			
		||||
 relatively slow) computers.
 | 
			
		||||
 On the other hand, because the algorithm benefits from a large number of
 | 
			
		||||
@ -405,7 +411,7 @@ probabilistic
 | 
			
		||||
\begin_inset CommandInset citation
 | 
			
		||||
LatexCommand cite
 | 
			
		||||
after "Chapter 10"
 | 
			
		||||
key "key-1"
 | 
			
		||||
key "lc2004"
 | 
			
		||||
 | 
			
		||||
\end_inset
 | 
			
		||||
 | 
			
		||||
@ -1224,16 +1230,20 @@ Calculate the hard-decision Hamming distance
 | 
			
		||||
\begin_inset Formula $X$
 | 
			
		||||
\end_inset
 | 
			
		||||
 | 
			
		||||
 between the candidate codeword and the received symbols, the corresponding
 | 
			
		||||
 soft distance 
 | 
			
		||||
 between the candidate codeword and the received symbols, along with the
 | 
			
		||||
 corresponding soft distance 
 | 
			
		||||
\begin_inset Formula $d_{s}$
 | 
			
		||||
\end_inset
 | 
			
		||||
 | 
			
		||||
, and the quality metric 
 | 
			
		||||
 and the quality metric 
 | 
			
		||||
\begin_inset Formula $u$
 | 
			
		||||
\end_inset
 | 
			
		||||
 | 
			
		||||
.
 | 
			
		||||
 
 | 
			
		||||
\end_layout
 | 
			
		||||
 | 
			
		||||
\begin_layout Enumerate
 | 
			
		||||
If 
 | 
			
		||||
\begin_inset Formula $u$
 | 
			
		||||
\end_inset
 | 
			
		||||
@ -1242,8 +1252,8 @@ Calculate the hard-decision Hamming distance
 | 
			
		||||
\begin_inset Formula $u_{1}$
 | 
			
		||||
\end_inset
 | 
			
		||||
 | 
			
		||||
 as 
 | 
			
		||||
\begin_inset Formula $u_{2}$
 | 
			
		||||
 by setting 
 | 
			
		||||
\begin_inset Formula $u_{2}=u_{1}$
 | 
			
		||||
\end_inset
 | 
			
		||||
 | 
			
		||||
 and then set 
 | 
			
		||||
@ -1262,7 +1272,7 @@ If
 | 
			
		||||
\begin_inset Formula $d_{s}<d_{0}$
 | 
			
		||||
\end_inset
 | 
			
		||||
 | 
			
		||||
, go to step 10.
 | 
			
		||||
, go to step 11.
 | 
			
		||||
\end_layout
 | 
			
		||||
 | 
			
		||||
\begin_layout Enumerate
 | 
			
		||||
@ -1287,7 +1297,7 @@ If
 | 
			
		||||
\begin_inset Formula $r<r_{1},$
 | 
			
		||||
\end_inset
 | 
			
		||||
 | 
			
		||||
 go to step 10.
 | 
			
		||||
 go to step 11.
 | 
			
		||||
\end_layout
 | 
			
		||||
 | 
			
		||||
\begin_layout Enumerate
 | 
			
		||||
@ -1382,18 +1392,18 @@ The FT algorithm is completely general: with equal sensitivity it recovers
 | 
			
		||||
much
 | 
			
		||||
\emph default
 | 
			
		||||
 smaller list of messages (say, a few thousand messages or less) that we
 | 
			
		||||
 can guess may be among the most likely ones to be received.
 | 
			
		||||
 can guess might be among the most likely ones to be received.
 | 
			
		||||
 One such situation exists when making short ham-radio contacts that exchange
 | 
			
		||||
 minimal information including callsigns, signal reports, perhaps Maidenhead
 | 
			
		||||
 locators, and acknowledgments.
 | 
			
		||||
 On the EME path or on a VHF or UHF band with limited geographical coverage,
 | 
			
		||||
 On the EME path or a VHF or UHF band with limited geographical coverage,
 | 
			
		||||
 the most likely received messages often originate from callsigns that have
 | 
			
		||||
 been decoded before.
 | 
			
		||||
 Saving a list of previously decoded callsigns and associated locators makes
 | 
			
		||||
 it easy to generate lists of hypothetical messages and their corresponding
 | 
			
		||||
 codewords at very little computational expense.
 | 
			
		||||
 The resulting candidate codewords can be tested in the same way as those
 | 
			
		||||
 generated by the probabilistic method described in Setcion 
 | 
			
		||||
 generated by the probabilistic method described in Section 
 | 
			
		||||
\begin_inset CommandInset ref
 | 
			
		||||
LatexCommand ref
 | 
			
		||||
reference "sec:The-decoding-algorithm"
 | 
			
		||||
@ -1456,14 +1466,10 @@ For hinted decoding we again invoke a ratio threshold test, but in this
 | 
			
		||||
\begin_inset Formula $r_{2}$
 | 
			
		||||
\end_inset
 | 
			
		||||
 | 
			
		||||
 can be a more relaxed limit than the 
 | 
			
		||||
\begin_inset Formula $r_{1}$
 | 
			
		||||
\end_inset
 | 
			
		||||
 | 
			
		||||
 used in the FT algorithm.
 | 
			
		||||
 For the limited subset of messages that operator experience suggests to
 | 
			
		||||
 can be a more relaxed limit than that used in the FT algorithm.
 | 
			
		||||
 For the limited subset of messages suggested by operator experience to
 | 
			
		||||
 be likely, hinted decodes can be obtained at lower signal levels than required
 | 
			
		||||
 for those obtained from the full universe of 
 | 
			
		||||
 for the full universe of 
 | 
			
		||||
\begin_inset Formula $2^{72}$
 | 
			
		||||
\end_inset
 | 
			
		||||
 | 
			
		||||
@ -1511,9 +1517,9 @@ reference "sec:Appendix:SNR"
 | 
			
		||||
\end_inset
 | 
			
		||||
 | 
			
		||||
.
 | 
			
		||||
 Examples of both presentations are included in the following discussion,
 | 
			
		||||
 Examples of both types of plot are included in the following discussion,
 | 
			
		||||
 where we describe simulations carried out to compare performance of FT
 | 
			
		||||
 with other algorithms, and with theoretical expectations.
 | 
			
		||||
 with other algorithms and with theoretical expectations.
 | 
			
		||||
 We have also used simulations to establish suitable default values for
 | 
			
		||||
 the acceptance parameters 
 | 
			
		||||
\begin_inset Formula $X_{0},$
 | 
			
		||||
@ -1599,7 +1605,7 @@ As expected, the soft-decision algorithms, FT and KV, are about 2 dB better
 | 
			
		||||
\begin_inset Formula $T=10^{5}$
 | 
			
		||||
\end_inset
 | 
			
		||||
 | 
			
		||||
 is small enough to be practical on most of today's home computers.
 | 
			
		||||
 is small enough to be practical on today's home computers.
 | 
			
		||||
 
 | 
			
		||||
\end_layout
 | 
			
		||||
 | 
			
		||||
@ -1631,9 +1637,17 @@ Word error rates as a function of
 | 
			
		||||
\end_inset
 | 
			
		||||
 | 
			
		||||
 the signal-to-noise ratio per information bit.
 | 
			
		||||
 Theory: theoretical prediction for the hard-decision BM decoder.
 | 
			
		||||
 The remaining curves represent simulation results on an AWGN channel for
 | 
			
		||||
 the BM, KV, and FT decoders.
 | 
			
		||||
 The curve labeled 
 | 
			
		||||
\begin_inset Quotes eld
 | 
			
		||||
\end_inset
 | 
			
		||||
 | 
			
		||||
Theory
 | 
			
		||||
\begin_inset Quotes erd
 | 
			
		||||
\end_inset
 | 
			
		||||
 | 
			
		||||
 shows a theoretical prediction for the hard-decision BM decoder.
 | 
			
		||||
 Remaining curves represent simulation results on an AWGN channel for the
 | 
			
		||||
 BM, KV, and FT decoders.
 | 
			
		||||
 The KV algorithm was executed with complexity coefficient 
 | 
			
		||||
\begin_inset Formula $\lambda=15$
 | 
			
		||||
\end_inset
 | 
			
		||||
@ -1643,7 +1657,7 @@ Word error rates as a function of
 | 
			
		||||
WSJT
 | 
			
		||||
\emph default
 | 
			
		||||
 programs.
 | 
			
		||||
 The FT alrithm was run with timeout setting 
 | 
			
		||||
 The FT algorithm used timeout setting 
 | 
			
		||||
\begin_inset Formula $T=10^{5}.$
 | 
			
		||||
\end_inset
 | 
			
		||||
 | 
			
		||||
@ -1743,18 +1757,18 @@ name "fig:WER2"
 | 
			
		||||
\end_inset
 | 
			
		||||
 | 
			
		||||
Percent of JT65 messages copied as a function of SNR in 2500 Hz bandwidth.
 | 
			
		||||
 Solid lines with filled circles are results from the FT decoder; numbers
 | 
			
		||||
 adjacent to the curves specify values of the timeout parameter 
 | 
			
		||||
\begin_inset Formula $T.$
 | 
			
		||||
 Numbers adjacent to curves specify values of timeout parameter 
 | 
			
		||||
\begin_inset Formula $T$
 | 
			
		||||
\end_inset
 | 
			
		||||
 | 
			
		||||
 The dotted line with open squares is the KV decoder with complexity coefficient
 | 
			
		||||
 
 | 
			
		||||
 for the FT decoder.
 | 
			
		||||
 Open circles and dotted line show results for the KV decoder with complexity
 | 
			
		||||
 coefficient 
 | 
			
		||||
\begin_inset Formula $\lambda=15$
 | 
			
		||||
\end_inset
 | 
			
		||||
 | 
			
		||||
.
 | 
			
		||||
 Results from the BM algorithm are shown with a dashed line and crosses.
 | 
			
		||||
 Results for the BM algorithm are plotted with crosses and dashed line.
 | 
			
		||||
\end_layout
 | 
			
		||||
 | 
			
		||||
\end_inset
 | 
			
		||||
@ -1768,12 +1782,12 @@ Percent of JT65 messages copied as a function of SNR in 2500 Hz bandwidth.
 | 
			
		||||
\end_layout
 | 
			
		||||
 | 
			
		||||
\begin_layout Standard
 | 
			
		||||
Timeout parameter 
 | 
			
		||||
Parameter 
 | 
			
		||||
\begin_inset Formula $T$
 | 
			
		||||
\end_inset
 | 
			
		||||
 | 
			
		||||
 is the maximum number of symbol-erasure trials allowed for a particular
 | 
			
		||||
 attempt at decoding a received word.
 | 
			
		||||
 in the FT algorithm is the maximum number of symbol-erasure trials allowed
 | 
			
		||||
 for a particular attempt at decoding a received word.
 | 
			
		||||
 Most successful decodes take only a small fraction of the maximum allowed
 | 
			
		||||
 number of trials.
 | 
			
		||||
 Figure 
 | 
			
		||||
@ -1784,18 +1798,20 @@ reference "fig:N_vs_X"
 | 
			
		||||
\end_inset
 | 
			
		||||
 | 
			
		||||
 shows the number of stochastic erasure trials required to find the correct
 | 
			
		||||
 codeword vs.
 | 
			
		||||
 the number of hard-decision errors in the received word, for a run with
 | 
			
		||||
 1000 simulated transmissions at 
 | 
			
		||||
 codeword as a function of 
 | 
			
		||||
\begin_inset Formula $X,$
 | 
			
		||||
\end_inset
 | 
			
		||||
 | 
			
		||||
 the number of hard-decision errors in the received word.
 | 
			
		||||
 This run used 1000 simulated transmissions at 
 | 
			
		||||
\begin_inset Formula $\mathrm{SNR}=-24$
 | 
			
		||||
\end_inset
 | 
			
		||||
 | 
			
		||||
 dB, just slightly above the decoding threshold.
 | 
			
		||||
 The timeout parameter was 
 | 
			
		||||
\begin_inset Formula $T=10^{5}$
 | 
			
		||||
 dB, just slightly above the decoding threshold, and the timeout parameter
 | 
			
		||||
 was 
 | 
			
		||||
\begin_inset Formula $T=10^{5}.$
 | 
			
		||||
\end_inset
 | 
			
		||||
 | 
			
		||||
 for this run.
 | 
			
		||||
 No points are shown for 
 | 
			
		||||
\begin_inset Formula $X\le25$
 | 
			
		||||
\end_inset
 | 
			
		||||
@ -1808,7 +1824,7 @@ reference "fig:N_vs_X"
 | 
			
		||||
 | 
			
		||||
\end_inset
 | 
			
		||||
 | 
			
		||||
 shows that the FT algorithm decoded received words with as many as 
 | 
			
		||||
 shows that the FT algorithm decodes received words with as many as 
 | 
			
		||||
\begin_inset Formula $X=43$
 | 
			
		||||
\end_inset
 | 
			
		||||
 | 
			
		||||
@ -1910,8 +1926,18 @@ reference "fig:Psuccess"
 | 
			
		||||
\end_layout
 | 
			
		||||
 | 
			
		||||
\begin_layout Standard
 | 
			
		||||
(*** A little more description is needed here, along with new data for the
 | 
			
		||||
 DS curves.***)
 | 
			
		||||
It is interesting to note that while Rayleigh fading severely degrades the
 | 
			
		||||
 success rate of the BM decoder, the penalties are much smaller with both
 | 
			
		||||
 FT and hinted decoding.
 | 
			
		||||
 Simulated Doppler spreads of 0.2 Hz actually increased the FT and DS decoding
 | 
			
		||||
 rates slightly at SNRs close to the decosing threshold, presumably because
 | 
			
		||||
 with the low-rate JT65 code signal peaks can be enough to produce good
 | 
			
		||||
 copy.
 | 
			
		||||
\end_layout
 | 
			
		||||
 | 
			
		||||
\begin_layout Standard
 | 
			
		||||
(*** New data will be used for the DS curves.
 | 
			
		||||
 ***)
 | 
			
		||||
\end_layout
 | 
			
		||||
 | 
			
		||||
\begin_layout Standard
 | 
			
		||||
@ -1955,8 +1981,16 @@ Deep Search
 | 
			
		||||
 | 
			
		||||
) algorithm.
 | 
			
		||||
 Numbers adjacent to the curves are the simulated Doppler spreads in Hz.
 | 
			
		||||
 The curve labeled Sync illustrates the dependence of proper time and frequency
 | 
			
		||||
 synchronization in the decoder presently implemented in 
 | 
			
		||||
 The curve labeled 
 | 
			
		||||
\begin_inset Quotes eld
 | 
			
		||||
\end_inset
 | 
			
		||||
 | 
			
		||||
Sync
 | 
			
		||||
\begin_inset Quotes erd
 | 
			
		||||
\end_inset
 | 
			
		||||
 | 
			
		||||
 illustrates the rate of correct time and frequency synchronization in the
 | 
			
		||||
 decoder presently implemented in program 
 | 
			
		||||
\emph on
 | 
			
		||||
WSJT-X
 | 
			
		||||
\emph default
 | 
			
		||||
@ -1982,6 +2016,55 @@ Summary
 | 
			
		||||
 Still to come ...
 | 
			
		||||
\end_layout
 | 
			
		||||
 | 
			
		||||
\begin_layout Standard
 | 
			
		||||
Possible ideas: 
 | 
			
		||||
\end_layout
 | 
			
		||||
 | 
			
		||||
\begin_layout Standard
 | 
			
		||||
Tie it in to 
 | 
			
		||||
\emph on
 | 
			
		||||
WSJT-X
 | 
			
		||||
\emph default
 | 
			
		||||
 and 
 | 
			
		||||
\emph on
 | 
			
		||||
MAP65
 | 
			
		||||
\emph default
 | 
			
		||||
.
 | 
			
		||||
 
 | 
			
		||||
\end_layout
 | 
			
		||||
 | 
			
		||||
\begin_layout Standard
 | 
			
		||||
Mention two-pass decoding.
 | 
			
		||||
\end_layout
 | 
			
		||||
 | 
			
		||||
\begin_layout Standard
 | 
			
		||||
Experience with FT on crowded HF bands.
 | 
			
		||||
\end_layout
 | 
			
		||||
 | 
			
		||||
\begin_layout Standard
 | 
			
		||||
Maybe one screen shot, or partial screen shot of the 
 | 
			
		||||
\begin_inset Quotes eld
 | 
			
		||||
\end_inset
 | 
			
		||||
 | 
			
		||||
Band Activity
 | 
			
		||||
\begin_inset Quotes erd
 | 
			
		||||
\end_inset
 | 
			
		||||
 | 
			
		||||
 window?
 | 
			
		||||
\end_layout
 | 
			
		||||
 | 
			
		||||
\begin_layout Standard
 | 
			
		||||
Some EME results needed! 
 | 
			
		||||
\end_layout
 | 
			
		||||
 | 
			
		||||
\begin_layout Standard
 | 
			
		||||
Something about the code repository and how to build 
 | 
			
		||||
\emph on
 | 
			
		||||
WSJT-X 
 | 
			
		||||
\emph default
 | 
			
		||||
.
 | 
			
		||||
\end_layout
 | 
			
		||||
 | 
			
		||||
\begin_layout Bibliography
 | 
			
		||||
\begin_inset CommandInset bibitem
 | 
			
		||||
LatexCommand bibitem
 | 
			
		||||
@ -1992,9 +2075,11 @@ key "kv2001"
 | 
			
		||||
 | 
			
		||||
“Algebraic soft-decision decoding of Reed-Solomon codes,” R.
 | 
			
		||||
 Köetter and A.
 | 
			
		||||
 Vardy, IEEE Trans.
 | 
			
		||||
 Inform.
 | 
			
		||||
 Theory, Vol.
 | 
			
		||||
 Vardy, 
 | 
			
		||||
\emph on
 | 
			
		||||
IEEE Transactions on Information Theory
 | 
			
		||||
\emph default
 | 
			
		||||
, Vol.
 | 
			
		||||
 49, Nov.
 | 
			
		||||
 2003.
 | 
			
		||||
\end_layout
 | 
			
		||||
@ -2003,13 +2088,32 @@ key "kv2001"
 | 
			
		||||
\begin_inset CommandInset bibitem
 | 
			
		||||
LatexCommand bibitem
 | 
			
		||||
label "2"
 | 
			
		||||
key "wsjt"
 | 
			
		||||
 | 
			
		||||
\end_inset
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
\emph on
 | 
			
		||||
WSJT Home Page
 | 
			
		||||
\emph default
 | 
			
		||||
: http://www.physics.princeton.edu/pulsar/K1JT/.
 | 
			
		||||
\end_layout
 | 
			
		||||
 | 
			
		||||
\begin_layout Bibliography
 | 
			
		||||
\begin_inset CommandInset bibitem
 | 
			
		||||
LatexCommand bibitem
 | 
			
		||||
label "3"
 | 
			
		||||
key "lhmg2010"
 | 
			
		||||
 | 
			
		||||
\end_inset
 | 
			
		||||
 | 
			
		||||
"Stochastic Chase Decoding of Reed-Solomon Codes", Camille Leroux, Saied
 | 
			
		||||
 Hemati, Shie Mannor, Warren J.
 | 
			
		||||
 Gross, IEEE Communications Letters, Vol.
 | 
			
		||||
 Gross, 
 | 
			
		||||
\emph on
 | 
			
		||||
IEEE Communications Letters
 | 
			
		||||
\emph default
 | 
			
		||||
, Vol.
 | 
			
		||||
 14, No.
 | 
			
		||||
 9, September 2010.
 | 
			
		||||
\end_layout
 | 
			
		||||
@ -2017,7 +2121,7 @@ key "lhmg2010"
 | 
			
		||||
\begin_layout Bibliography
 | 
			
		||||
\begin_inset CommandInset bibitem
 | 
			
		||||
LatexCommand bibitem
 | 
			
		||||
label "3"
 | 
			
		||||
label "4"
 | 
			
		||||
key "lk2008"
 | 
			
		||||
 | 
			
		||||
\end_inset
 | 
			
		||||
@ -2026,7 +2130,9 @@ key "lk2008"
 | 
			
		||||
 Decoding," Soo-Woong Lee and B.
 | 
			
		||||
 V.
 | 
			
		||||
 K.
 | 
			
		||||
 Vijaya Kumar, IEEE 
 | 
			
		||||
 Vijaya Kumar, 
 | 
			
		||||
\emph on
 | 
			
		||||
IEEE 
 | 
			
		||||
\begin_inset Quotes eld
 | 
			
		||||
\end_inset
 | 
			
		||||
 | 
			
		||||
@ -2034,25 +2140,31 @@ GLOBECOM
 | 
			
		||||
\begin_inset Quotes erd
 | 
			
		||||
\end_inset
 | 
			
		||||
 | 
			
		||||
 2008 proceedings.
 | 
			
		||||
\end_layout
 | 
			
		||||
 | 
			
		||||
\begin_layout Bibliography
 | 
			
		||||
\begin_inset CommandInset bibitem
 | 
			
		||||
LatexCommand bibitem
 | 
			
		||||
label "4"
 | 
			
		||||
key "lc2004"
 | 
			
		||||
 | 
			
		||||
\end_inset
 | 
			
		||||
 | 
			
		||||
Error Control Coding, 2nd edition, Shu Lin and Daniel J.
 | 
			
		||||
 Costello, Pearson-Prentice Hall, 2004.
 | 
			
		||||
 2008 proceedings
 | 
			
		||||
\emph default
 | 
			
		||||
.
 | 
			
		||||
\end_layout
 | 
			
		||||
 | 
			
		||||
\begin_layout Bibliography
 | 
			
		||||
\begin_inset CommandInset bibitem
 | 
			
		||||
LatexCommand bibitem
 | 
			
		||||
label "5"
 | 
			
		||||
key "lc2004"
 | 
			
		||||
 | 
			
		||||
\end_inset
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
\emph on
 | 
			
		||||
Error Control Coding, 2nd Edition
 | 
			
		||||
\emph default
 | 
			
		||||
, Shu Lin and Daniel J.
 | 
			
		||||
 Costello, Pearson-Prentice Hall, 2004.
 | 
			
		||||
\end_layout
 | 
			
		||||
 | 
			
		||||
\begin_layout Bibliography
 | 
			
		||||
\begin_inset CommandInset bibitem
 | 
			
		||||
LatexCommand bibitem
 | 
			
		||||
label "6"
 | 
			
		||||
key "ls2009"
 | 
			
		||||
 | 
			
		||||
\end_inset
 | 
			
		||||
@ -2066,7 +2178,11 @@ Stochastic Erasure-Only List Decoding Algorithms for Reed-Solomon Codes,
 | 
			
		||||
\end_inset
 | 
			
		||||
 | 
			
		||||
 Chang-Ming Lee and Yu T.
 | 
			
		||||
 Su, IEEE Signal Processing Letters, Vol.
 | 
			
		||||
 Su, 
 | 
			
		||||
\emph on
 | 
			
		||||
IEEE Signal Processing Letters,
 | 
			
		||||
\emph default
 | 
			
		||||
 Vol.
 | 
			
		||||
 16, No.
 | 
			
		||||
 8, August 2009.
 | 
			
		||||
\end_layout
 | 
			
		||||
@ -2074,12 +2190,12 @@ Stochastic Erasure-Only List Decoding Algorithms for Reed-Solomon Codes,
 | 
			
		||||
\begin_layout Bibliography
 | 
			
		||||
\begin_inset CommandInset bibitem
 | 
			
		||||
LatexCommand bibitem
 | 
			
		||||
label "6"
 | 
			
		||||
label "7"
 | 
			
		||||
key "karn"
 | 
			
		||||
 | 
			
		||||
\end_inset
 | 
			
		||||
 | 
			
		||||
Berlekamp-Massey decoder written by Phil Karn, http://www.ka9q.net/code/fec/
 | 
			
		||||
Berlekamp-Massey decoder written by Phil Karn, KA9Q: http://www.ka9q.net/code/fec/
 | 
			
		||||
\end_layout
 | 
			
		||||
 | 
			
		||||
\begin_layout Section
 | 
			
		||||
@ -2202,9 +2318,9 @@ reference "eq:Eb_Es"
 | 
			
		||||
 | 
			
		||||
:
 | 
			
		||||
\begin_inset Formula 
 | 
			
		||||
\[
 | 
			
		||||
\mathrm{SNR}_{2500}=1.23\times10^{-3}\frac{E_{b}}{N_{o}}.
 | 
			
		||||
\]
 | 
			
		||||
\begin{equation}
 | 
			
		||||
\mathrm{SNR}_{2500}=1.23\times10^{-3}\frac{E_{b}}{N_{o}}.\label{eq:SNR2500}
 | 
			
		||||
\end{equation}
 | 
			
		||||
 | 
			
		||||
\end_inset
 | 
			
		||||
 | 
			
		||||
@ -2213,9 +2329,9 @@ If all quantities are expressed in dB, then:
 | 
			
		||||
 | 
			
		||||
\begin_layout Standard
 | 
			
		||||
\begin_inset Formula 
 | 
			
		||||
\[
 | 
			
		||||
\mathrm{SNR}_{2500}=(E_{b}/N_{o})_{\mathrm{dB}}-29.1\,\mathrm{dB}.
 | 
			
		||||
\]
 | 
			
		||||
\begin{equation}
 | 
			
		||||
\mathrm{SNR}_{2500}=(E_{b}/N_{o})_{\mathrm{dB}}-29.1\,\mathrm{dB}=(E_{s}/N_{0})_{\mathrm{dB}}-29.7\,\mathrm{dB}.\label{eq:SNR_all_types}
 | 
			
		||||
\end{equation}
 | 
			
		||||
 | 
			
		||||
\end_inset
 | 
			
		||||
 | 
			
		||||
 | 
			
		||||
		Loading…
	
	
			
			x
			
			
		
	
		Reference in New Issue
	
	Block a user