/*
 This file is part of program wsprd, a detector/demodulator/decoder
 for the Weak Signal Propagation Reporter (WSPR) mode.
 
 File name: wsprd.c
 
 Copyright 2001-2018, Joe Taylor, K1JT
 
 Much of the present code is based on work by Steven Franke, K9AN,
 which in turn was based on earlier work by K1JT.
 
 Copyright 2014-2018, Steven Franke, K9AN
 
 License: GNU GPL v3
 
 This program is free software: you can redistribute it and/or modify
 it under the terms of the GNU General Public License as published by
 the Free Software Foundation, either version 3 of the License, or
 (at your option) any later version.
 
 This program is distributed in the hope that it will be useful,
 but WITHOUT ANY WARRANTY; without even the implied warranty of
 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 GNU General Public License for more details.
 
 You should have received a copy of the GNU General Public License
 along with this program.  If not, see .
 */
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include "fano.h"
#include "jelinek.h"
#include "nhash.h"
#include "wsprd_utils.h"
#include "wsprsim_utils.h"
#define max(x,y) ((x) > (y) ? (x) : (y))
extern void osdwspr_ (float [], unsigned char [], int *, unsigned char [], int *, float *);
// Possible PATIENCE options: FFTW_ESTIMATE, FFTW_ESTIMATE_PATIENT,
// FFTW_MEASURE, FFTW_PATIENT, FFTW_EXHAUSTIVE
#define PATIENCE FFTW_ESTIMATE
fftwf_plan PLAN1,PLAN2,PLAN3;
unsigned char pr3[162]=
{1,1,0,0,0,0,0,0,1,0,0,0,1,1,1,0,0,0,1,0,
    0,1,0,1,1,1,1,0,0,0,0,0,0,0,1,0,0,1,0,1,
    0,0,0,0,0,0,1,0,1,1,0,0,1,1,0,1,0,0,0,1,
    1,0,1,0,0,0,0,1,1,0,1,0,1,0,1,0,1,0,0,1,
    0,0,1,0,1,1,0,0,0,1,1,0,1,0,1,0,0,0,1,0,
    0,0,0,0,1,0,0,1,0,0,1,1,1,0,1,1,0,0,1,1,
    0,1,0,0,0,1,1,1,0,0,0,0,0,1,0,1,0,0,1,1,
    0,0,0,0,0,0,0,1,1,0,1,0,1,1,0,0,0,1,1,0,
    0,0};
int printdata=0;
//***************************************************************************
unsigned long readc2file(char *ptr_to_infile, float *idat, float *qdat,
                         double *freq, int *wspr_type)
{
    float *buffer;
    double dfreq;
    int i,ntrmin;
    char c2file[15];
    size_t nr;
    FILE* fp;
    
    fp = fopen(ptr_to_infile,"rb");
    if (fp == NULL) {
        fprintf(stderr, "Cannot open data file '%s'\n", ptr_to_infile);
        return 1;
    }
    nr=fread(c2file,sizeof(char),14,fp);
    nr=fread(&ntrmin,sizeof(int),1,fp);
    nr=fread(&dfreq,sizeof(double),1,fp);
    *freq=dfreq;
    
    buffer=calloc(2*65536,sizeof(float));
    nr=fread(buffer,sizeof(float),2*45000,fp);
    fclose(fp);
    
    *wspr_type=ntrmin;
    
    for(i=0; i<45000; i++) {
        idat[i]=buffer[2*i];
        qdat[i]=-buffer[2*i+1];
    }
    free(buffer);
    
    if( nr == 2*45000 ) {
        return (unsigned long) nr/2;
    } else {
        return 1;
    }
}
//***************************************************************************
unsigned long readwavfile(char *ptr_to_infile, int ntrmin, float *idat, float *qdat )
{
    size_t i, j, npoints, nr;
    int nfft1, nfft2, nh2, i0;
    double df;
    
    nfft2=46080; //this is the number of downsampled points that will be returned
    nh2=nfft2/2;
    
    if( ntrmin == 2 ) {
        nfft1=nfft2*32;      //need to downsample by a factor of 32
        df=12000.0/nfft1;
        i0=1500.0/df+0.5;
        npoints=114*12000;
    } else if ( ntrmin == 15 ) {
        nfft1=nfft2*8*32;
        df=12000.0/nfft1;
        i0=(1500.0+112.5)/df+0.5;
        npoints=8*114*12000;
    } else {
        fprintf(stderr,"This should not happen\n");
        return 1;
    }
    
    float *realin;
    fftwf_complex *fftin, *fftout;
    
    FILE *fp;
    short int *buf2;
    
    fp = fopen(ptr_to_infile,"rb");
    if (fp == NULL) {
        fprintf(stderr, "Cannot open data file '%s'\n", ptr_to_infile);
        return 1;
    }
    
    buf2 = calloc(npoints,sizeof(short int));
    nr=fread(buf2,2,22,fp);      //Read and ignore header
    nr=fread(buf2,2,npoints,fp); //Read raw data
    fclose(fp);
    if( nr == 0 ) {
        fprintf(stderr, "No data in file '%s'\n", ptr_to_infile);
        return 1;
    }	
    
    realin=(float*) fftwf_malloc(sizeof(float)*nfft1);
    fftout=(fftwf_complex*) fftwf_malloc(sizeof(fftwf_complex)*(nfft1/2+1));
    PLAN1 = fftwf_plan_dft_r2c_1d(nfft1, realin, fftout, PATIENCE);
    
    for (i=0; i(size_t)nh2 ) j=j-nfft2;
        fftin[i][0]=fftout[j][0];
        fftin[i][1]=fftout[j][1];
    }
    
    fftwf_free(fftout);
    fftout=(fftwf_complex*) fftwf_malloc(sizeof(fftwf_complex)*nfft2);
    PLAN2 = fftwf_plan_dft_1d(nfft2, fftin, fftout, FFTW_BACKWARD, PATIENCE);
    fftwf_execute(PLAN2);
    
    for (i=0; i<(size_t)nfft2; i++) {
        idat[i]=fftout[i][0]/1000.0;
        qdat[i]=fftout[i][1]/1000.0;
    }
    
    fftwf_free(fftin);
    fftwf_free(fftout);
    return nfft2;
}
//***************************************************************************
void sync_and_demodulate(float *id, float *qd, long np,
                         unsigned char *symbols, float *f1, int ifmin, int ifmax, float fstep,
                         int *shift1, int lagmin, int lagmax, int lagstep,
                         float *drift1, int symfac, float *sync, int mode)
{
    /***********************************************************************
     * mode = 0: no frequency or drift search. find best time lag.          *
     *        1: no time lag or drift search. find best frequency.          *
     *        2: no frequency or time lag search. calculate soft-decision   *
     *           symbols using passed frequency and shift.                  *
     ************************************************************************/
    
    static float fplast=-10000.0;
    static float dt=1.0/375.0, df=375.0/256.0;
    static float pi=3.14159265358979323846;
    float twopidt, df15=df*1.5, df05=df*0.5;
    
    int i, j, k, lag;
    float i0[162],q0[162],i1[162],q1[162],i2[162],q2[162],i3[162],q3[162];
    float p0,p1,p2,p3,cmet,totp,syncmax,fac;
    float c0[256],s0[256],c1[256],s1[256],c2[256],s2[256],c3[256],s3[256];
    float dphi0, cdphi0, sdphi0, dphi1, cdphi1, sdphi1, dphi2, cdphi2, sdphi2,
    dphi3, cdphi3, sdphi3;
    float f0=0.0, fp, ss, fbest=0.0, fsum=0.0, f2sum=0.0, fsymb[162];
    int best_shift = 0, ifreq;
    
    syncmax=-1e30;
    if( mode == 0 ) {ifmin=0; ifmax=0; fstep=0.0; f0=*f1;}
    if( mode == 1 ) {lagmin=*shift1;lagmax=*shift1;f0=*f1;}
    if( mode == 2 ) {lagmin=*shift1;lagmax=*shift1;ifmin=0;ifmax=0;f0=*f1;}
    
    twopidt=2*pi*dt;
    for(ifreq=ifmin; ifreq<=ifmax; ifreq++) {
        f0=*f1+ifreq*fstep;
        for(lag=lagmin; lag<=lagmax; lag=lag+lagstep) {
            ss=0.0;
            totp=0.0;
            for (i=0; i<162; i++) {
                fp = f0 + (*drift1/2.0)*((float)i-81.0)/81.0;
                if( i==0 || (fp != fplast) ) {  // only calculate sin/cos if necessary
                    dphi0=twopidt*(fp-df15);
                    cdphi0=cos(dphi0);
                    sdphi0=sin(dphi0);
                    
                    dphi1=twopidt*(fp-df05);
                    cdphi1=cos(dphi1);
                    sdphi1=sin(dphi1);
                    
                    dphi2=twopidt*(fp+df05);
                    cdphi2=cos(dphi2);
                    sdphi2=sin(dphi2);
                    
                    dphi3=twopidt*(fp+df15);
                    cdphi3=cos(dphi3);
                    sdphi3=sin(dphi3);
                    
                    c0[0]=1; s0[0]=0;
                    c1[0]=1; s1[0]=0;
                    c2[0]=1; s2[0]=0;
                    c3[0]=1; s3[0]=0;
                    
                    for (j=1; j<256; j++) {
                        c0[j]=c0[j-1]*cdphi0 - s0[j-1]*sdphi0;
                        s0[j]=c0[j-1]*sdphi0 + s0[j-1]*cdphi0;
                        c1[j]=c1[j-1]*cdphi1 - s1[j-1]*sdphi1;
                        s1[j]=c1[j-1]*sdphi1 + s1[j-1]*cdphi1;
                        c2[j]=c2[j-1]*cdphi2 - s2[j-1]*sdphi2;
                        s2[j]=c2[j-1]*sdphi2 + s2[j-1]*cdphi2;
                        c3[j]=c3[j-1]*cdphi3 - s3[j-1]*sdphi3;
                        s3[j]=c3[j-1]*sdphi3 + s3[j-1]*cdphi3;
                    }
                    fplast = fp;
                }
                
                i0[i]=0.0; q0[i]=0.0;
                i1[i]=0.0; q1[i]=0.0;
                i2[i]=0.0; q2[i]=0.0;
                i3[i]=0.0; q3[i]=0.0;
                
                for (j=0; j<256; j++) {
                    k=lag+i*256+j;
                    if( (k>0) && (k syncmax ) {          //Save best parameters
                syncmax=ss;
                best_shift=lag;
                fbest=f0;
            }
        } // lag loop
    } //freq loop
    
    if( mode <=1 ) {                       //Send best params back to caller
        *sync=syncmax;
        *shift1=best_shift;
        *f1=fbest;
        return;
    }
    
    if( mode == 2 ) {
        *sync=syncmax;
        for (i=0; i<162; i++) {              //Normalize the soft symbols
            fsum=fsum+fsymb[i]/162.0;
            f2sum=f2sum+fsymb[i]*fsymb[i]/162.0;
        }
        fac=sqrt(f2sum-fsum*fsum);
        for (i=0; i<162; i++) {
            fsymb[i]=symfac*fsymb[i]/fac;
            if( fsymb[i] > 127) fsymb[i]=127.0;
            if( fsymb[i] < -128 ) fsymb[i]=-128.0;
            symbols[i]=fsymb[i] + 128;
        }
        return;
    }
    return;
}
void noncoherent_sequence_detection(float *id, float *qd, long np,
                                    unsigned char *symbols, float *f1,  int *shift1,
                                    float *drift1, int symfac, int *nblocksize, int *bitmetric)
{
    /************************************************************************
     *  Noncoherent sequence detection for wspr.                            *
     *  Allowed block lengths are nblock=1,2,3,6, or 9 symbols.             *
     *  Longer block lengths require longer channel coherence time.         *
     *  The whole block is estimated at once.                               *
     *  nblock=1 corresponds to noncoherent detection of individual symbols *
     *     like the original wsprd symbol demodulator.                      *
     ************************************************************************/
    static float fplast=-10000.0;
    static float dt=1.0/375.0, df=375.0/256.0;
    static float pi=3.14159265358979323846;
    float twopidt, df15=df*1.5, df05=df*0.5;
    
    int i, j, k, lag, itone, ib, b, nblock, nseq, imask;
    float xi[512],xq[512];
    float is[4][162],qs[4][162],cf[4][162],sf[4][162],cm,sm,cmp,smp;
    float p[512],fac,xm1,xm0;
    float c0[257],s0[257],c1[257],s1[257],c2[257],s2[257],c3[257],s3[257];
    float dphi0, cdphi0, sdphi0, dphi1, cdphi1, sdphi1, dphi2, cdphi2, sdphi2,
    dphi3, cdphi3, sdphi3;
    float f0, fp, fsum=0.0, f2sum=0.0, fsymb[162];
    
    twopidt=2*pi*dt;
    f0=*f1;
    lag=*shift1;
    nblock=*nblocksize;
    nseq=1<0) && (k>(nblock-1-ib);
                itone=pr3[i+ib]+2*b;
                xi[j]=xi[j]+is[itone][i+ib]*cm + qs[itone][i+ib]*sm;
                xq[j]=xq[j]+qs[itone][i+ib]*cm - is[itone][i+ib]*sm;
                cmp=cf[itone][i+ib]*cm - sf[itone][i+ib]*sm;
                smp=sf[itone][i+ib]*cm + cf[itone][i+ib]*sm;
                cm=cmp; sm=smp;
            }
            p[j]=xi[j]*xi[j]+xq[j]*xq[j];
            p[j]=sqrt(p[j]);
        }
        for (ib=0; ib xm1) xm1=p[j];
                }
                if((j & imask)==0) {
                    if(p[j]>xm0) xm0=p[j];
                }
            }
            fsymb[i+ib]=xm1-xm0;
            if( bitbybit == 1 ) {
                fsymb[i+ib]=fsymb[i+ib]/(xm1 > xm0 ? xm1 : xm0);
            }
        }
    }
    for (i=0; i<162; i++) {              //Normalize the soft symbols
        fsum=fsum+fsymb[i]/162.0;
        f2sum=f2sum+fsymb[i]*fsymb[i]/162.0;
    }
    fac=sqrt(f2sum-fsum*fsum);
    for (i=0; i<162; i++) {
        fsymb[i]=symfac*fsymb[i]/fac;
        if( fsymb[i] > 127) fsymb[i]=127.0;
        if( fsymb[i] < -128 ) fsymb[i]=-128.0;
        symbols[i]=fsymb[i] + 128;
    }
    return;
}
/***************************************************************************
 symbol-by-symbol signal subtraction
 ****************************************************************************/
void subtract_signal(float *id, float *qd, long np,
                     float f0, int shift0, float drift0, unsigned char* channel_symbols)
{
    float dt=1.0/375.0, df=375.0/256.0;
    int i, j, k;
    float pi=4.*atan(1.0),twopidt, fp;
    
    float i0,q0;
    float c0[256],s0[256];
    float dphi, cdphi, sdphi;
    
    twopidt=2*pi*dt;
    
    for (i=0; i<162; i++) {
        fp = f0 + ((float)drift0/2.0)*((float)i-81.0)/81.0;
        
        dphi=twopidt*(fp+((float)channel_symbols[i]-1.5)*df);
        cdphi=cos(dphi);
        sdphi=sin(dphi);
        
        c0[0]=1; s0[0]=0;
        
        for (j=1; j<256; j++) {
            c0[j]=c0[j-1]*cdphi - s0[j-1]*sdphi;
            s0[j]=c0[j-1]*sdphi + s0[j-1]*cdphi;
        }
        
        i0=0.0; q0=0.0;
        
        for (j=0; j<256; j++) {
            k=shift0+i*256+j;
            if( (k>0) & (k0) & (k0) && (k(nsig-1-nfilt/2) ) {
            norm=partialsum[nfilt/2+nsig-1-i];
        } else {
            norm=1.0;
        }
        k=shift0+i;
        j=i+nfilt;
        if( (k>0) && (k=2 ? 1:0;
    }
    deinterleave(cw);
    nerrors=0;
    for (i=0; i<162; i++) {
        is = symbols[i] > 127 ? 1:0;
        nerrors = nerrors + (is == cw[i] ? 0:1);
    }
    return nerrors;
}
//***************************************************************************
void usage(void)
{
    printf("Usage: wsprd [options...] infile\n");
    printf("       infile must have suffix .wav or .c2\n");
    printf("\n");
    printf("Options:\n");
    printf("       -a  path to writeable data files, default=\".\"\n");
    printf("       -B disable block demodulation - use single-symbol noncoherent demod\n");
    printf("       -c write .c2 file at the end of the first pass\n");
    printf("       -C maximum number of decoder cycles per bit, default 10000\n");
    printf("       -d deeper search. Slower, a few more decodes\n");
    printf("       -e x (x is transceiver dial frequency error in Hz)\n");
    printf("       -f x (x is transceiver dial frequency in MHz)\n");
    printf("       -H do not use (or update) the hash table\n");
    printf("       -J use the stack decoder instead of Fano decoder\n");
    printf("       -m decode wspr-15 .wav file\n");
    printf("       -o n (0<=n<=5), decoding depth for OSD, default is disabled\n");
    printf("       -q quick mode - doesn't dig deep for weak signals\n");
    printf("       -s single pass mode, no subtraction (same as original wsprd)\n");
    printf("       -v verbose mode (shows dupes)\n");
    printf("       -w wideband mode - decode signals within +/- 150 Hz of center\n");
    printf("       -z x (x is fano metric table bias, default is 0.45)\n");
}
//***************************************************************************
int main(int argc, char *argv[])
{
    char cr[] = "(C) 2018, Steven Franke - K9AN";
    (void)cr;
    extern char *optarg;
    extern int optind;
    int i,j,k;
    unsigned char *symbols, *decdata, *channel_symbols, *apmask, *cw;
    signed char message[]={-9,13,-35,123,57,-39,64,0,0,0,0};
    char *callsign, *grid,  *call_loc_pow;
    char *ptr_to_infile,*ptr_to_infile_suffix;
    char *data_dir=".";
    char wisdom_fname[200],all_fname[200],spots_fname[200];
    char timer_fname[200],hash_fname[200];
    char uttime[5],date[7];
    int c,delta,maxpts=65536,verbose=0,quickmode=0,more_candidates=0, stackdecoder=0;
    int usehashtable=1,wspr_type=2, ipass, nblocksize;
    int nhardmin,ihash;
    int writec2=0,maxdrift;
    int shift1, lagmin, lagmax, lagstep, ifmin, ifmax, not_decoded;
    unsigned int nbits=81, stacksize=200000;
    struct snode * stack=NULL;
    unsigned int npoints, cycles, maxnp, metric;
    float df=375.0/256.0/2;
    float fsymbs[162];
    float dt=1.0/375.0, dt_print;
    double dialfreq_cmdline=0.0, dialfreq, freq_print;
    double dialfreq_error=0.0;
    float fmin=-110, fmax=110;
    float f1, fstep, sync1, drift1;
    float dmin;
    float psavg[512];
    float *idat, *qdat;
    clock_t t0,t00;
    float tfano=0.0,treadwav=0.0,tcandidates=0.0,tsync0=0.0;
    float tsync1=0.0,tsync2=0.0,tosd=0.0,ttotal=0.0;
    
    struct cand { float freq; float snr; int shift; float drift; float sync; };
    struct cand candidates[200];
    
    struct result { char date[7]; char time[5]; float sync; float snr;
        float dt; double freq; char message[23]; float drift;
        unsigned int cycles; int jitter; int blocksize; unsigned int metric;
        int nhardmin; int ipass; int decodetype;};
    struct result decodes[50];
    
    char *hashtab;
    hashtab=calloc(32768*13,sizeof(char));
    char *loctab;
    loctab=calloc(32768*5,sizeof(char));
    int nh;
    symbols=calloc(nbits*2,sizeof(unsigned char));
    apmask=calloc(162,sizeof(unsigned char));
    cw=calloc(162,sizeof(unsigned char));
    decdata=calloc(11,sizeof(unsigned char));
    channel_symbols=calloc(nbits*2,sizeof(unsigned char));
    callsign=calloc(13,sizeof(char));
    grid=calloc(5,sizeof(char));
    call_loc_pow=calloc(23,sizeof(char));
    float allfreqs[100];
    char allcalls[100][13];
    for (i=0; i<100; i++) allfreqs[i]=0.0;
    memset(allcalls,0,sizeof(char)*100*13);
    
    int uniques=0, noprint=0, ndecodes_pass=0;
    
    // Parameters used for performance-tuning:
    unsigned int maxcycles=10000;            //Decoder timeout limit
    float minsync1=0.10;                     //First sync limit
    float minsync2=0.12;                     //Second sync limit
    int iifac=8;                             //Step size in final DT peakup
    int symfac=50;                           //Soft-symbol normalizing factor
    int subtraction=1;
    int npasses=3;
    int ndepth=-1;                            //Depth for OSD
    
    float minrms=52.0 * (symfac/64.0);      //Final test for plausible decoding
    delta=60;                                //Fano threshold step
    float bias=0.45;                        //Fano metric bias (used for both Fano and stack algorithms)
    
    t00=clock();
    fftwf_complex *fftin, *fftout;
#include "./metric_tables.c"
    
    int mettab[2][256];
    
    idat=calloc(maxpts,sizeof(float));
    qdat=calloc(maxpts,sizeof(float));
    
    while ( (c = getopt(argc, argv, "a:BcC:de:f:HJmo:qstwvz:")) !=-1 ) {
        switch (c) {
            case 'a':
                data_dir = optarg;
                break;
            case 'B':
                npasses=2;
                break;
            case 'c':
                writec2=1;
                break;
            case 'C':
                maxcycles=(unsigned int) strtoul(optarg,NULL,10);
                break;
            case 'd':
                more_candidates=1;
                break;
            case 'e':
                dialfreq_error = strtod(optarg,NULL);   // units of Hz
                // dialfreq_error = dial reading - actual, correct frequency
                break;
            case 'f':
                dialfreq_cmdline = strtod(optarg,NULL); // units of MHz
                break;
            case 'H':
                usehashtable = 0;
                break;
            case 'J': //Stack (Jelinek) decoder, Fano decoder is the default
                stackdecoder = 1;
                break;
            case 'm':  //15-minute wspr mode
                wspr_type = 15;
                break;
            case 'o':  //use ordered-statistics-decoder
                ndepth=(int) strtol(optarg,NULL,10);
                break;
            case 'q':  //no shift jittering
                quickmode = 1;
                break;
            case 's':  //single pass mode
                subtraction = 0;
                npasses = 1;
                break;
            case 'v':
                verbose = 1;
                break;
            case 'w':
                fmin=-150.0;
                fmax=150.0;
                break;
            case 'z':
                bias=strtod(optarg,NULL); //fano metric bias (default is 0.45)
                break;
            case '?':
                usage();
                return 1;
        }
    }
    
    if( access(data_dir, R_OK | W_OK)) {
      fprintf(stderr, "Error: inaccessible data directory: '%s'\n", data_dir);
      usage();
      return EXIT_FAILURE;
    }
    if( optind+1 > argc) {
        usage();
        return 1;
    } else {
        ptr_to_infile=argv[optind];
    }
    
    if( stackdecoder ) {
        stack=calloc(stacksize,sizeof(struct snode));
    }
    // setup metric table
    for(i=0; i<256; i++) {
        mettab[0][i]=round( 10*(metric_tables[2][i]-bias) );
        mettab[1][i]=round( 10*(metric_tables[2][255-i]-bias) );
    }
    
    FILE *fp_fftwf_wisdom_file, *fall_wspr, *fwsprd, *fhash, *ftimer;
    strcpy(wisdom_fname,".");
    strcpy(all_fname,".");
    strcpy(spots_fname,".");
    strcpy(timer_fname,".");
    strcpy(hash_fname,".");
    if(data_dir != NULL) {
      strncpy(wisdom_fname,data_dir, sizeof wisdom_fname);
      strncpy(all_fname,data_dir, sizeof all_fname);
      strncpy(spots_fname,data_dir, sizeof spots_fname);
      strncpy(timer_fname,data_dir, sizeof timer_fname);
      strncpy(hash_fname,data_dir, sizeof hash_fname);
    }
    strncat(wisdom_fname,"/wspr_wisdom.dat",20);
    strncat(all_fname,"/ALL_WSPR.TXT",20);
    strncat(spots_fname,"/wspr_spots.txt",20);
    strncat(timer_fname,"/wspr_timer.out",20);
    strncat(hash_fname,"/hashtable.txt",20);
    if ((fp_fftwf_wisdom_file = fopen(wisdom_fname, "r"))) {  //Open FFTW wisdom
        fftwf_import_wisdom_from_file(fp_fftwf_wisdom_file);
        fclose(fp_fftwf_wisdom_file);
    }
    
    fall_wspr=fopen(all_fname,"a");
    fwsprd=fopen(spots_fname,"w");
    //  FILE *fdiag;
    //  fdiag=fopen("wsprd_diag","a");
    
    if((ftimer=fopen(timer_fname,"r"))) {
        //Accumulate timing data
        int nr=fscanf(ftimer,"%f %f %f %f %f %f %f %f",
               &treadwav,&tcandidates,&tsync0,&tsync1,&tsync2,&tfano,&tosd,&ttotal);
        fclose(ftimer);
        if(nr == 0) fprintf(stderr, "Empty timer file: '%s'\n", timer_fname);
    }
    ftimer=fopen(timer_fname,"w");
    
    if( strstr(ptr_to_infile,".wav") ) {
        ptr_to_infile_suffix=strstr(ptr_to_infile,".wav");
        
        t0 = clock();
        npoints=readwavfile(ptr_to_infile, wspr_type, idat, qdat);
        treadwav += (float)(clock()-t0)/CLOCKS_PER_SEC;
        
        if( npoints == 1 ) {
            return 1;
        }
        dialfreq=dialfreq_cmdline - (dialfreq_error*1.0e-06);
    } else if ( strstr(ptr_to_infile,".c2") !=0 )  {
        ptr_to_infile_suffix=strstr(ptr_to_infile,".c2");
        npoints=readc2file(ptr_to_infile, idat, qdat, &dialfreq, &wspr_type);
        if( npoints == 1 ) {
            return 1;
        }
        dialfreq -= (dialfreq_error*1.0e-06);
    } else {
        printf("Error: Failed to open %s\n",ptr_to_infile);
        printf("WSPR file must have suffix .wav or .c2\n");
        return 1;
    }
    
    // Parse date and time from given filename
    strncpy(date,ptr_to_infile_suffix-11,6);
    strncpy(uttime,ptr_to_infile_suffix-4,4);
    date[6]='\0';
    uttime[4]='\0';
    
    // Do windowed ffts over 2 symbols, stepped by half symbols
    int nffts=4*floor(npoints/512)-1;
    fftin=(fftwf_complex*) fftwf_malloc(sizeof(fftwf_complex)*512);
    fftout=(fftwf_complex*) fftwf_malloc(sizeof(fftwf_complex)*512);
    PLAN3 = fftwf_plan_dft_1d(512, fftin, fftout, FFTW_FORWARD, PATIENCE);
    
    float ps[512][nffts];
    float w[512];
    for(i=0; i<512; i++) {
        w[i]=sin(0.006147931*i);
    }
    
    if( usehashtable ) {
        char line[80], hcall[13], hgrid[5];
        if( (fhash=fopen(hash_fname,"r+")) ) {
            while (fgets(line, sizeof(line), fhash) != NULL) {
                hgrid[0]='\0';
                sscanf(line,"%d %s %s",&nh,hcall,hgrid);
                strcpy(hashtab+nh*13,hcall);
                if(strlen(hgrid)>0) strcpy(loctab+nh*5,hgrid);
            }
        } else {
            fhash=fopen(hash_fname,"w+");
        }
        fclose(fhash);
    }
    
    //*************** main loop starts here *****************
    for (ipass=0; ipass2) ipass=2;
        if(ipass < 2) {
            nblocksize=1;
            maxdrift=4;
            minsync2=0.12;
        }
        if(ipass == 2 ) {
            nblocksize=4;  // try 3 blocksizes plus bitbybit normalization
            maxdrift=0;    // no drift for smaller frequency estimator variance
            minsync2=0.10;
        }
        ndecodes_pass=0;   // still needed?
        
        for (i=0; i511 )
                    k=k-512;
                ps[j][i]=fftout[k][0]*fftout[k][0]+fftout[k][1]*fftout[k][1];
            }
        }
        
        // Compute average spectrum
        for (i=0; i<512; i++) psavg[i]=0.0;
        for (i=0; ismspec[j-1]) &&
            (smspec[j]>smspec[j+1]) &&
            (npk<200);
            if ( candidate ) {
                candidates[npk].freq = (j-205)*df;
                candidates[npk].snr  = 10*log10(smspec[j])-snr_scaling_factor;
                npk++;
            }
        }
        if( more_candidates ) {
            for(j=0; j<411; j=j+3) {
                candidate = (smspec[j]>min_snr) && (npk<200);
                if ( candidate ) {
                    candidates[npk].freq = (j-205)*df;
                    candidates[npk].snr  = 10*log10(smspec[j])-snr_scaling_factor;
                    npk++;
                }
            }
        }
        
        // Compute corrected fmin, fmax, accounting for dial frequency error
        fmin += dialfreq_error;    // dialfreq_error is in units of Hz
        fmax += dialfreq_error;
        
        // Don't waste time on signals outside of the range [fmin,fmax].
        i=0;
        for( j=0; j= fmin && candidates[j].freq <= fmax ) {
                candidates[i]=candidates[j];
                i++;
            }
        }
        npk=i;
        
        // bubble sort on snr
        int pass;
        struct cand tmp;
        for (pass = 1; pass <= npk - 1; pass++) {
            for (k = 0; k < npk - pass ; k++) {
                if (candidates[k].snr < candidates[k+1].snr) {
                    tmp = candidates[k];
                    candidates[k]=candidates[k+1];
                    candidates[k+1] = tmp;
                }
            }
        }
        
        t0=clock();
        
        /* Make coarse estimates of shift (DT), freq, and drift
         
         * Look for time offsets up to +/- 8 symbols (about +/- 5.4 s) relative
         to nominal start time, which is 2 seconds into the file
         
         * Calculates shift relative to the beginning of the file
         
         * Negative shifts mean that signal started before start of file
         
         * The program prints DT = shift-2 s
         
         * Shifts that cause sync vector to fall off of either end of the data
         vector are accommodated by "partial decoding", such that missing
         symbols produce a soft-decision symbol value of 128
         
         * The frequency drift model is linear, deviation of +/- drift/2 over the
         span of 162 symbols, with deviation equal to 0 at the center of the
         signal vector.
         */
        
        int idrift,ifr,if0,ifd,k0;
        int kindex;
        float smax,ss,pow,p0,p1,p2,p3;
        for(j=0; j smax ) {                  //Save coarse parameters
                            smax=sync1;
                            candidates[j].shift=128*(k0+1);
                            candidates[j].drift=idrift;
                            candidates[j].freq=(ifr-256)*df;
                            candidates[j].sync=sync1;
                        }
                    }
                }
            }
        }
        tcandidates += (float)(clock()-t0)/CLOCKS_PER_SEC;
        
        /*
         Refine the estimates of freq, shift using sync as a metric.
         Sync is calculated such that it is a float taking values in the range
         [0.0,1.0].
         
         Function sync_and_demodulate has three modes of operation
         mode is the last argument:
         
         0 = no frequency or drift search. find best time lag.
         1 = no time lag or drift search. find best frequency.
         2 = no frequency or time lag search. Calculate soft-decision
         symbols using passed frequency and shift.
         
         NB: best possibility for OpenMP may be here: several worker threads
         could each work on one candidate at a time.
         */
        for (j=0; jminsync1 continue
            fstep=0.0; ifmin=0; ifmax=0;
            lagmin=shift1-128;
            lagmax=shift1+128;
            lagstep=64;
            t0 = clock();
            sync_and_demodulate(idat, qdat, npoints, symbols, &f1, ifmin, ifmax, fstep, &shift1,
                                lagmin, lagmax, lagstep, &drift1, symfac, &sync1, 0);
            tsync0 += (float)(clock()-t0)/CLOCKS_PER_SEC;
            
            fstep=0.25; ifmin=-2; ifmax=2;
            t0 = clock();
            sync_and_demodulate(idat, qdat, npoints, symbols, &f1, ifmin, ifmax, fstep, &shift1,
                                lagmin, lagmax, lagstep, &drift1, symfac, &sync1, 1);
            
            if(ipass < 2) {
                // refine drift estimate
                fstep=0.0; ifmin=0; ifmax=0;
                float driftp,driftm,syncp,syncm;
                driftp=drift1+0.5;
                sync_and_demodulate(idat, qdat, npoints, symbols, &f1, ifmin, ifmax, fstep, &shift1,
                                    lagmin, lagmax, lagstep, &driftp, symfac, &syncp, 1);
                
                driftm=drift1-0.5;
                sync_and_demodulate(idat, qdat, npoints, symbols, &f1, ifmin, ifmax, fstep, &shift1,
                                    lagmin, lagmax, lagstep, &driftm, symfac, &syncm, 1);
                
                if(syncp>sync1) {
                    drift1=driftp;
                    sync1=syncp;
                } else if (syncm>sync1) {
                    drift1=driftm;
                    sync1=syncm;
                }
            }
            tsync1 += (float)(clock()-t0)/CLOCKS_PER_SEC;
            
            // fine-grid lag and freq search
            if( sync1 > minsync1 ) {
                
                lagmin=shift1-32; lagmax=shift1+32; lagstep=16;
                t0 = clock();
                sync_and_demodulate(idat, qdat, npoints, symbols, &f1, ifmin, ifmax, fstep, &shift1,
                                    lagmin, lagmax, lagstep, &drift1, symfac, &sync1, 0);
                tsync0 += (float)(clock()-t0)/CLOCKS_PER_SEC;
                
                // fine search over frequency
                fstep=0.05; ifmin=-2; ifmax=2;
                t0 = clock();
                sync_and_demodulate(idat, qdat, npoints, symbols, &f1, ifmin, ifmax, fstep, &shift1,
                                    lagmin, lagmax, lagstep, &drift1, symfac, &sync1, 1);
                tsync1 += (float)(clock()-t0)/CLOCKS_PER_SEC;
                
                candidates[j].freq=f1;
                candidates[j].shift=shift1;
                candidates[j].drift=drift1;
                candidates[j].sync=sync1;
            }
        }
        
        int nwat=0; 
        int idupe;
        for ( j=0; j candidates[k].sync) candidates[k]=candidates[j];
            } else if ( candidates[j].sync > minsync2 ) {
                candidates[nwat]=candidates[j];
                nwat++;
            }
        }
        
        int idt, ii, jittered_shift;
        float y,sq,rms;
        int ib, blocksize, bitmetric;
        int n1,n2,n3,nadd,nu,ntype;
        int osd_decode;
        for (j=0; j minrms) {
                        deinterleave(symbols);
                        t0 = clock();
                        
                        if ( stack ) {
                            not_decoded = jelinek(&metric, &cycles, decdata, symbols, nbits,
                                                  stacksize, stack, mettab,maxcycles);
                        } else {
                            not_decoded = fano(&metric,&cycles,&maxnp,decdata,symbols,nbits,
                                               mettab,delta,maxcycles);
                        }
                        
                        tfano += (float)(clock()-t0)/CLOCKS_PER_SEC;
                        
                        if( (ndepth >= 0) && not_decoded ) {
                            for(i=0; i<162; i++) {
                                fsymbs[i]=symbols[i]-128.0;
                            }
                            t0 = clock();
                            osdwspr_(fsymbs,apmask,&ndepth,cw,&nhardmin,&dmin);
                            tosd += (float)(clock()-t0)/CLOCKS_PER_SEC;
                            
                            for(i=0; i<162; i++) {
                                symbols[i]=255*cw[i];
                            }
                            fano(&metric,&cycles,&maxnp,decdata,symbols,nbits,
                                 mettab,delta,maxcycles);
                            for(i=0; i<11; i++) {
                                if( decdata[i]>127 ) {
                                    message[i]=decdata[i]-256;
                                } else {
                                    message[i]=decdata[i];
                                }
                            }
                            unpack50(message,&n1,&n2);
                            if( !unpackcall(n1,callsign) ) break;
                            callsign[12]=0;
                            if( !unpackgrid(n2, grid) ) break;
                            grid[4]=0;
                            ntype = (n2&127) - 64;
                            int itype;
                            if( (ntype >= 0) && (ntype <= 62) ) {
                                nu = ntype%10;
                                itype=1;
                                if( !(nu == 0 || nu == 3 || nu == 7) ) {
                                    nadd=nu;
                                    if( nu > 3 ) nadd=nu-3;
                                    if( nu > 7 ) nadd=nu-7;
                                    n3=n2/128+32768*(nadd-1);
                                    if( !unpackpfx(n3,callsign) ) {
                                        break;
                                    }
                                    itype=2;
                                }
                                ihash=nhash(callsign,strlen(callsign),(uint32_t)146);
                                if(strncmp(hashtab+ihash*13,callsign,13)==0) {
                                    if( (itype==1 && strncmp(loctab+ihash*5,grid,5)==0) ||
                                        (itype==2) ) {
                                       not_decoded=0;
                                       osd_decode =1;
                                    } 
                                }
                            }
                        }
                        
                    }
                    idt++;
                    if( quickmode ) break;
                }
                ib++;
            }
            
            if( !not_decoded ) {
                ndecodes_pass++;
                
                for(i=0; i<11; i++) {
                    
                    if( decdata[i]>127 ) {
                        message[i]=decdata[i]-256;
                    } else {
                        message[i]=decdata[i];
                    }
                    
                }
                
                // Unpack the decoded message, update the hashtable, apply
                // sanity checks on grid and power, and return
                // call_loc_pow string and also callsign (for de-duping).
                noprint=unpk_(message,hashtab,loctab,call_loc_pow,callsign);
                if( subtraction && !noprint ) {
                    if( get_wspr_channel_symbols(call_loc_pow, hashtab, loctab, channel_symbols) ) {
                        subtract_signal2(idat, qdat, npoints, f1, shift1, drift1, channel_symbols);
                        if(!osd_decode) nhardmin=count_hard_errors(symbols,channel_symbols);
                    } else {
                        break;
                    }
                }
                
                // Remove dupes (same callsign and freq within 4 Hz)
                int dupe=0;
                for (i=0; i decodes[k+1].freq) {
                temp = decodes[k];
                decodes[k]=decodes[k+1];;
                decodes[k+1] = temp;
            }
        }
    }
    
    for (i=0; i\n");
    
    fftwf_free(fftin);
    fftwf_free(fftout);
    
    if ((fp_fftwf_wisdom_file = fopen(wisdom_fname, "w"))) {
        fftwf_export_wisdom_to_file(fp_fftwf_wisdom_file);
        fclose(fp_fftwf_wisdom_file);
    }
    
    ttotal += (float)(clock()-t00)/CLOCKS_PER_SEC;
    
    fprintf(ftimer,"%7.2f %7.2f %7.2f %7.2f %7.2f %7.2f %7.2f %7.2f\n\n",
            treadwav,tcandidates,tsync0,tsync1,tsync2,tfano,tosd,ttotal);
    
    fprintf(ftimer,"Code segment        Seconds   Frac\n");
    fprintf(ftimer,"-----------------------------------\n");
    fprintf(ftimer,"readwavfile        %7.2f %7.2f\n",treadwav,treadwav/ttotal);
    fprintf(ftimer,"Coarse DT f0 f1    %7.2f %7.2f\n",tcandidates,
            tcandidates/ttotal);
    fprintf(ftimer,"sync_and_demod(0)  %7.2f %7.2f\n",tsync0,tsync0/ttotal);
    fprintf(ftimer,"sync_and_demod(1)  %7.2f %7.2f\n",tsync1,tsync1/ttotal);
    fprintf(ftimer,"sync_and_demod(2)  %7.2f %7.2f\n",tsync2,tsync2/ttotal);
    fprintf(ftimer,"Stack/Fano decoder %7.2f %7.2f\n",tfano,tfano/ttotal);
    fprintf(ftimer,"OSD        decoder %7.2f %7.2f\n",tosd,tosd/ttotal);
    fprintf(ftimer,"-----------------------------------\n");
    fprintf(ftimer,"Total              %7.2f %7.2f\n",ttotal,1.0);
    
    fclose(fall_wspr);
    fclose(fwsprd);
    //  fclose(fdiag);
    fclose(ftimer);
    fftwf_destroy_plan(PLAN1);
    fftwf_destroy_plan(PLAN2);
    fftwf_destroy_plan(PLAN3);
    
    if( usehashtable ) {
        fhash=fopen(hash_fname,"w");
        for (i=0; i<32768; i++) {
            if( strncmp(hashtab+i*13,"\0",1) != 0 ) {
                fprintf(fhash,"%5d %s %s\n",i,hashtab+i*13,loctab+i*5);
            }
        }
        fclose(fhash);
    }
    
    free(hashtab);
    free(loctab);
    free(symbols);
    free(decdata);
    free(channel_symbols);
    free(callsign);
    free(call_loc_pow);
    free(idat);
    free(qdat);
    free(stack);
    
    return 0;
}