mirror of
				https://github.com/saitohirga/WSJT-X.git
				synced 2025-10-25 01:50:30 -04:00 
			
		
		
		
	
		
			
				
	
	
		
			881 lines
		
	
	
		
			31 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			881 lines
		
	
	
		
			31 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // Copyright Paul A. Bristow 2015
 | |
| 
 | |
| // Use, modification and distribution are subject to the
 | |
| // Boost Software License, Version 1.0.
 | |
| // (See accompanying file LICENSE_1_0.txt
 | |
| // or copy at http://www.boost.org/LICENSE_1_0.txt)
 | |
| 
 | |
| // Comparison of finding roots using TOMS748, Newton-Raphson, Halley & Schroder algorithms.
 | |
| // root_n_finding_algorithms.cpp  Generalised for nth root version.
 | |
| 
 | |
| // http://en.wikipedia.org/wiki/Cube_root
 | |
| 
 | |
| // Note that this file contains Quickbook mark-up as well as code
 | |
| // and comments, don't change any of the special comment mark-ups!
 | |
| // This program also writes files in Quickbook tables mark-up format.
 | |
| 
 | |
| #include <boost/cstdlib.hpp>
 | |
| #include <boost/config.hpp>
 | |
| #include <boost/array.hpp>
 | |
| #include <boost/type_traits/is_floating_point.hpp>
 | |
| #include <boost/math/tools/roots.hpp>
 | |
| #include <boost/math/special_functions/ellint_1.hpp>
 | |
| #include <boost/math/special_functions/ellint_2.hpp>
 | |
| 
 | |
| //using boost::math::policies::policy;
 | |
| //using boost::math::tools::eps_tolerance; // Binary functor for specified number of bits.
 | |
| //using boost::math::tools::bracket_and_solve_root;
 | |
| //using boost::math::tools::toms748_solve;
 | |
| //using boost::math::tools::halley_iterate; 
 | |
| //using boost::math::tools::newton_raphson_iterate;
 | |
| //using boost::math::tools::schroder_iterate;
 | |
| 
 | |
| #include <boost/math/special_functions/next.hpp> // For float_distance.
 | |
| 
 | |
| #include <boost/multiprecision/cpp_bin_float.hpp> // is binary.
 | |
| using boost::multiprecision::cpp_bin_float_100;
 | |
| using boost::multiprecision::cpp_bin_float_50;
 | |
| 
 | |
| #include <boost/timer/timer.hpp>
 | |
| #include <boost/system/error_code.hpp>
 | |
| #include <boost/preprocessor/stringize.hpp>
 | |
| 
 | |
| // STL
 | |
| #include <iostream>
 | |
| #include <iomanip>
 | |
| #include <string>
 | |
| #include <vector>
 | |
| #include <limits>
 | |
| #include <fstream> // std::ofstream
 | |
| #include <cmath>
 | |
| #include <typeinfo> // for type name using typid(thingy).name();
 | |
| 
 | |
| #ifdef __FILE__
 | |
|   std::string sourcefilename = __FILE__;
 | |
| #else
 | |
|   std::string sourcefilename("");
 | |
| #endif
 | |
| 
 | |
|   std::string chop_last(std::string s)
 | |
|   {
 | |
|      std::string::size_type pos = s.find_last_of("\\/");
 | |
|      if(pos != std::string::npos)
 | |
|         s.erase(pos);
 | |
|      else if(s.empty())
 | |
|         abort();
 | |
|      else
 | |
|         s.erase();
 | |
|      return s;
 | |
|   }
 | |
| 
 | |
|   std::string make_root()
 | |
|   {
 | |
|      std::string result;
 | |
|      if(sourcefilename.find_first_of(":") != std::string::npos)
 | |
|      {
 | |
|         result = chop_last(sourcefilename); // lose filename part
 | |
|         result = chop_last(result);   // lose /example/
 | |
|         result = chop_last(result);   // lose /math/
 | |
|         result = chop_last(result);   // lose /libs/
 | |
|      }
 | |
|      else
 | |
|      {
 | |
|         result = chop_last(sourcefilename); // lose filename part
 | |
|         if(result.empty())
 | |
|            result = ".";
 | |
|         result += "/../../..";
 | |
|      }
 | |
|      return result;
 | |
|   }
 | |
| 
 | |
|   std::string short_file_name(std::string s)
 | |
|   {
 | |
|      std::string::size_type pos = s.find_last_of("\\/");
 | |
|      if(pos != std::string::npos)
 | |
|         s.erase(0, pos + 1);
 | |
|      return s;
 | |
|   }
 | |
| 
 | |
|   std::string boost_root = make_root();
 | |
| 
 | |
| 
 | |
| std::string fp_hardware; // Any hardware features like SEE or AVX
 | |
| 
 | |
| const std::string roots_name = "libs/math/doc/roots/";
 | |
| 
 | |
| const std::string full_roots_name(boost_root + "/libs/math/doc/roots/");
 | |
| 
 | |
| const std::size_t nooftypes = 4;
 | |
| const std::size_t noofalgos = 4;
 | |
| const std::size_t noofroots = 3;
 | |
| 
 | |
| double digits_accuracy = 1.0; // 1 == maximum possible accuracy.
 | |
| 
 | |
| std::stringstream ss;
 | |
| 
 | |
| std::ofstream fout;
 | |
| 
 | |
| std::vector<std::string> algo_names =
 | |
| {
 | |
|   "TOMS748", "Newton", "Halley", "Schr'''ö'''der"
 | |
| };
 | |
| 
 | |
| std::vector<std::string> names =
 | |
| {
 | |
|   "float", "double", "long double", "cpp_bin_float50"
 | |
| };
 | |
| 
 | |
| uintmax_t iters; // Global as value of iterations is not returned.
 | |
| 
 | |
| struct root_info
 | |
| { // for a floating-point type, float, double ...
 | |
|   std::size_t max_digits10; // for type.
 | |
|   std::string full_typename; // for type from type_id.name().
 | |
|   std::string short_typename; // for type "float", "double", "cpp_bin_float_50" ....
 | |
|   std::size_t bin_digits;  // binary in floating-point type numeric_limits<T>::digits;  
 | |
|   int get_digits; // fraction of maximum possible accuracy required.
 | |
|   // = digits * digits_accuracy
 | |
|   // Vector of values (4) for each algorithm, TOMS748, Newton, Halley & Schroder.
 | |
|   //std::vector< boost::int_least64_t> times;  converted to int.
 | |
|   std::vector<int> times; // arbirary units (ticks).
 | |
|   //boost::int_least64_t min_time = std::numeric_limits<boost::int_least64_t>::max(); // Used to normalize times (as int).
 | |
|   std::vector<double> normed_times;
 | |
|   int min_time = (std::numeric_limits<int>::max)(); // Used to normalize times.
 | |
|   std::vector<uintmax_t> iterations;
 | |
|   std::vector<long int> distances;
 | |
|   std::vector<cpp_bin_float_100> full_results;
 | |
| }; // struct root_info
 | |
| 
 | |
| std::vector<root_info> root_infos;  // One element for each floating-point type used.
 | |
| 
 | |
| inline std::string build_test_name(const char* type_name, const char* test_name)
 | |
| {
 | |
|   std::string result(BOOST_COMPILER);
 | |
|   result += "|";
 | |
|   result += BOOST_STDLIB;
 | |
|   result += "|";
 | |
|   result += BOOST_PLATFORM;
 | |
|   result += "|";
 | |
|   result += type_name;
 | |
|   result += "|";
 | |
|   result += test_name;
 | |
| #if defined(_DEBUG) || !defined(NDEBUG)
 | |
|   result += "|";
 | |
|   result += " debug";
 | |
| #else
 | |
|   result += "|";
 | |
|   result += " release";
 | |
| #endif
 | |
|   result += "|";
 | |
|   return result;
 | |
| } // std::string build_test_name
 | |
| 
 | |
| // Algorithms //////////////////////////////////////////////
 | |
| 
 | |
| // No derivatives - using TOMS748 internally.
 | |
| //[elliptic_noderv_func
 | |
| template <typename T = double>
 | |
| struct elliptic_root_functor_noderiv
 | |
| { //  Nth root of x using only function - no derivatives.
 | |
|    elliptic_root_functor_noderiv(T const& arc, T const& radius) : m_arc(arc), m_radius(radius)
 | |
|    { // Constructor just stores value a to find root of.
 | |
|    }
 | |
|    T operator()(T const& x)
 | |
|    {
 | |
|       using std::sqrt;
 | |
|       // return the difference between required arc-length, and the calculated arc-length for an
 | |
|       // ellipse with radii m_radius and x:
 | |
|       T a = (std::max)(m_radius, x);
 | |
|       T b = (std::min)(m_radius, x);
 | |
|       T k = sqrt(1 - b * b / (a * a));
 | |
|       return 4 * a * boost::math::ellint_2(k) - m_arc;
 | |
|    }
 | |
| private:
 | |
|    T m_arc;     // length of arc.
 | |
|    T m_radius;  // one of the two radii of the ellipse
 | |
| }; // template <class T> struct elliptic_root_functor_noderiv
 | |
| //]
 | |
| //[elliptic_root_noderiv
 | |
| template <class T = double>
 | |
| T elliptic_root_noderiv(T radius, T arc)
 | |
| { // return the other radius of an ellipse, given one radii and the arc-length
 | |
|    using namespace std;  // Help ADL of std functions.
 | |
|    using namespace boost::math::tools; // For bracket_and_solve_root.
 | |
| 
 | |
|    T guess = sqrt(arc * arc / 16 - radius * radius);
 | |
|    T factor = 1.2;                     // How big steps to take when searching.
 | |
| 
 | |
|    const boost::uintmax_t maxit = 50;  // Limit to maximum iterations.
 | |
|    boost::uintmax_t it = maxit;        // Initally our chosen max iterations, but updated with actual.
 | |
|    bool is_rising = true;              // arc-length increases if one radii increases, so function is rising
 | |
|    // Define a termination condition, stop when nearly all digits are correct, but allow for
 | |
|    // the fact that we are returning a range, and must have some inaccuracy in the elliptic integral:
 | |
|    eps_tolerance<T> tol(std::numeric_limits<T>::digits - 2);
 | |
|    // Call bracket_and_solve_root to find the solution, note that this is a rising function:
 | |
|    std::pair<T, T> r = bracket_and_solve_root(elliptic_root_functor_noderiv<T>(arc, radius), guess, factor, is_rising, tol, it);
 | |
|    //<-
 | |
|    iters = it;
 | |
|    //->
 | |
|    // Result is midway between the endpoints of the range:
 | |
|    return r.first + (r.second - r.first) / 2;
 | |
| } // template <class T> T elliptic_root_noderiv(T x)
 | |
| //]
 | |
| // Using 1st derivative only Newton-Raphson
 | |
| //[elliptic_1deriv_func
 | |
| template <class T = double>
 | |
| struct elliptic_root_functor_1deriv
 | |
| { // Functor also returning 1st derviative.
 | |
|    BOOST_STATIC_ASSERT_MSG(boost::is_integral<T>::value == false, "Only floating-point type types can be used!");
 | |
| 
 | |
|    elliptic_root_functor_1deriv(T const& arc, T const& radius) : m_arc(arc), m_radius(radius)
 | |
|    { // Constructor just stores value a to find root of.
 | |
|    }
 | |
|    std::pair<T, T> operator()(T const& x)
 | |
|    {
 | |
|       using std::sqrt;
 | |
|       // Return the difference between required arc-length, and the calculated arc-length for an
 | |
|       // ellipse with radii m_radius and x, plus it's derivative.
 | |
|       // See http://www.wolframalpha.com/input/?i=d%2Fda+[4+*+a+*+EllipticE%281+-+b^2%2Fa^2%29]
 | |
|       // We require two elliptic integral calls, but from these we can calculate both
 | |
|       // the function and it's derivative:
 | |
|       T a = (std::max)(m_radius, x);
 | |
|       T b = (std::min)(m_radius, x);
 | |
|       T a2 = a * a;
 | |
|       T b2 = b * b;
 | |
|       T k = sqrt(1 - b2 / a2);
 | |
|       T Ek = boost::math::ellint_2(k);
 | |
|       T Kk = boost::math::ellint_1(k);
 | |
|       T fx = 4 * a * Ek - m_arc;
 | |
|       T dfx = 4 * (a2 * Ek - b2 * Kk) / (a2 - b2);
 | |
|       return std::make_pair(fx, dfx);
 | |
|    }
 | |
| private:
 | |
|    T m_arc;     // length of arc.
 | |
|    T m_radius;  // one of the two radii of the ellipse
 | |
| };  // struct elliptic_root__functor_1deriv
 | |
| //]
 | |
| //[elliptic_1deriv
 | |
| template <class T = double>
 | |
| T elliptic_root_1deriv(T radius, T arc)
 | |
| { 
 | |
|    using namespace std;  // Help ADL of std functions.
 | |
|    using namespace boost::math::tools; // For newton_raphson_iterate.
 | |
| 
 | |
|    BOOST_STATIC_ASSERT_MSG(boost::is_integral<T>::value == false, "Only floating-point type types can be used!");
 | |
| 
 | |
|    T guess = sqrt(arc * arc / 16 - radius * radius);
 | |
|    T min = 0;   // Minimum possible value is zero.
 | |
|    T max = arc; // Maximum possible value is the arc length.
 | |
| 
 | |
|    // Accuracy doubles at each step, so stop when just over half of the digits are
 | |
|    // correct, and rely on that step to polish off the remainder:
 | |
|    int get_digits = static_cast<int>(std::numeric_limits<T>::digits * 0.6);
 | |
|    const boost::uintmax_t maxit = 20;
 | |
|    boost::uintmax_t it = maxit;
 | |
|    T result = newton_raphson_iterate(elliptic_root_functor_1deriv<T>(arc, radius), guess, min, max, get_digits, it);
 | |
|    //<-
 | |
|    iters = it;
 | |
|    //->
 | |
|    return result;
 | |
| } // T elliptic_root_1_deriv  Newton-Raphson
 | |
| //]
 | |
| 
 | |
| // Using 1st and 2nd derivatives with Halley algorithm.
 | |
| //[elliptic_2deriv_func
 | |
| template <class T = double>
 | |
| struct elliptic_root_functor_2deriv
 | |
| { // Functor returning both 1st and 2nd derivatives.
 | |
|    BOOST_STATIC_ASSERT_MSG(boost::is_integral<T>::value == false, "Only floating-point type types can be used!");
 | |
| 
 | |
|    elliptic_root_functor_2deriv(T const& arc, T const& radius) : m_arc(arc), m_radius(radius) {}
 | |
|    std::tuple<T, T, T> operator()(T const& x)
 | |
|    {
 | |
|       using std::sqrt;
 | |
|       // Return the difference between required arc-length, and the calculated arc-length for an
 | |
|       // ellipse with radii m_radius and x, plus it's derivative.
 | |
|       // See http://www.wolframalpha.com/input/?i=d^2%2Fda^2+[4+*+a+*+EllipticE%281+-+b^2%2Fa^2%29]
 | |
|       // for the second derivative.
 | |
|       T a = (std::max)(m_radius, x);
 | |
|       T b = (std::min)(m_radius, x);
 | |
|       T a2 = a * a;
 | |
|       T b2 = b * b;
 | |
|       T k = sqrt(1 - b2 / a2);
 | |
|       T Ek = boost::math::ellint_2(k);
 | |
|       T Kk = boost::math::ellint_1(k);
 | |
|       T fx = 4 * a * Ek - m_arc;
 | |
|       T dfx = 4 * (a2 * Ek - b2 * Kk) / (a2 - b2);
 | |
|       T dfx2 = 4 * b2 * ((a2 + b2) * Kk - 2 * a2 * Ek) / (a * (a2 - b2) * (a2 - b2));
 | |
|       return std::make_tuple(fx, dfx, dfx2);
 | |
|    }
 | |
| private:
 | |
|    T m_arc;     // length of arc.
 | |
|    T m_radius;  // one of the two radii of the ellipse
 | |
| };
 | |
| //]
 | |
| //[elliptic_2deriv
 | |
| template <class T = double>
 | |
| T elliptic_root_2deriv(T radius, T arc)
 | |
| {
 | |
|    using namespace std;                // Help ADL of std functions.
 | |
|    using namespace boost::math::tools; // For halley_iterate.
 | |
| 
 | |
|    BOOST_STATIC_ASSERT_MSG(boost::is_integral<T>::value == false, "Only floating-point type types can be used!");
 | |
| 
 | |
|    T guess = sqrt(arc * arc / 16 - radius * radius);
 | |
|    T min = 0;                                   // Minimum possible value is zero.
 | |
|    T max = arc;                                 // radius can't be larger than the arc length.
 | |
| 
 | |
|    // Accuracy triples at each step, so stop when just over one-third of the digits
 | |
|    // are correct, and the last iteration will polish off the remaining digits:
 | |
|    int get_digits = static_cast<int>(std::numeric_limits<T>::digits * 0.4);
 | |
|    const boost::uintmax_t maxit = 20;
 | |
|    boost::uintmax_t it = maxit;
 | |
|    T result = halley_iterate(elliptic_root_functor_2deriv<T>(arc, radius), guess, min, max, get_digits, it);
 | |
|    //<-
 | |
|    iters = it;
 | |
|    //->
 | |
|    return result;
 | |
| } // nth_2deriv Halley
 | |
| //]
 | |
| // Using 1st and 2nd derivatives using Schroder algorithm.
 | |
| 
 | |
| template <class T = double>
 | |
| T elliptic_root_2deriv_s(T arc, T radius)
 | |
| { // return nth root of x using 1st and 2nd derivatives and Schroder.
 | |
| 
 | |
|   using namespace std;  // Help ADL of std functions.
 | |
|   using namespace boost::math::tools; // For schroder_iterate.
 | |
| 
 | |
|   BOOST_STATIC_ASSERT_MSG(boost::is_integral<T>::value == false, "Only floating-point type types can be used!");
 | |
| 
 | |
|   T guess = sqrt(arc * arc / 16 - radius * radius);
 | |
|   T min = 0; // Minimum possible value is zero.
 | |
|   T max = arc; // radius can't be larger than the arc length.
 | |
| 
 | |
|   int digits = std::numeric_limits<T>::digits; // Maximum possible binary digits accuracy for type T.
 | |
|   int get_digits = static_cast<int>(digits * digits_accuracy);
 | |
|   const boost::uintmax_t maxit = 20;
 | |
|   boost::uintmax_t it = maxit;
 | |
|   T result = schroder_iterate(elliptic_root_functor_2deriv<T>(arc, radius), guess, min, max, get_digits, it);
 | |
|   iters = it;
 | |
| 
 | |
|   return result;
 | |
| } // T elliptic_root_2deriv_s Schroder
 | |
| 
 | |
| //////////////////////////////////////////////////////// end of algorithms - perhaps in a separate .hpp?
 | |
| 
 | |
| //! Print 4 floating-point types info: max_digits10, digits and required accuracy digits as a Quickbook table.
 | |
| int table_type_info(double digits_accuracy)
 | |
| {
 | |
|   std::string qbk_name = full_roots_name; // Prefix by boost_root file.
 | |
| 
 | |
|   qbk_name += "type_info_table";
 | |
|   std::stringstream ss;
 | |
|   ss.precision(3);
 | |
|   ss << "_" << digits_accuracy * 100;
 | |
|   qbk_name += ss.str();
 | |
| 
 | |
| #ifdef _MSC_VER
 | |
|   qbk_name += "_msvc.qbk";
 | |
| #else // assume GCC
 | |
|   qbk_name += "_gcc.qbk";
 | |
| #endif
 | |
| 
 | |
|   // Example: type_info_table_100_msvc.qbk
 | |
|   fout.open(qbk_name, std::ios_base::out);
 | |
| 
 | |
|   if (fout.is_open())
 | |
|   {
 | |
|     std::cout << "Output type table to " << qbk_name << std::endl;
 | |
|   }
 | |
|   else
 | |
|   { // Failed to open.
 | |
|     std::cout << " Open file " << qbk_name << " for output failed!" << std::endl;
 | |
|     std::cout << "errno " << errno << std::endl;
 | |
|     return errno;
 | |
|   }
 | |
| 
 | |
|   fout <<
 | |
|     "[/"
 | |
|     << qbk_name
 | |
|     << "\n"
 | |
|     "Copyright 2015 Paul A. Bristow.""\n"
 | |
|     "Copyright 2015 John Maddock.""\n"
 | |
|     "Distributed under the Boost Software License, Version 1.0.""\n"
 | |
|     "(See accompanying file LICENSE_1_0.txt or copy at""\n"
 | |
|     "http://www.boost.org/LICENSE_1_0.txt).""\n"
 | |
|     "]""\n"
 | |
|     << std::endl;
 | |
| 
 | |
|   fout << "[h6 Fraction of maximum possible bits of accuracy required is " << digits_accuracy << ".]\n" << std::endl;
 | |
| 
 | |
|   std::string table_id("type_info");
 | |
|   table_id += ss.str(); // Fraction digits accuracy.
 | |
| 
 | |
| #ifdef _MSC_VER
 | |
|   table_id += "_msvc";
 | |
| #else // assume GCC
 | |
|   table_id += "_gcc";
 | |
| #endif
 | |
| 
 | |
|   fout << "[table:" << table_id << " Digits for float, double, long double and cpp_bin_float_50\n"
 | |
|     << "[[type name] [max_digits10] [binary digits] [required digits]]\n";// header.
 | |
| 
 | |
|   // For all fout types:
 | |
| 
 | |
|   fout  << "[[" << "float" << "]"
 | |
|     << "[" << std::numeric_limits<float>::max_digits10 << "]"  // max_digits10
 | |
|     << "[" << std::numeric_limits<float>::digits << "]"// < "Binary digits 
 | |
|     << "[" << static_cast<int>(std::numeric_limits<float>::digits * digits_accuracy) << "]]\n"; // Accuracy digits.
 | |
| 
 | |
|   fout << "[[" << "float" << "]"
 | |
|     << "[" << std::numeric_limits<double>::max_digits10 << "]"  // max_digits10
 | |
|     << "[" << std::numeric_limits<double>::digits << "]"// < "Binary digits 
 | |
|     << "[" << static_cast<int>(std::numeric_limits<double>::digits * digits_accuracy) << "]]\n"; // Accuracy digits.
 | |
| 
 | |
|   fout << "[[" << "long double" << "]"
 | |
|     << "[" << std::numeric_limits<long double>::max_digits10 << "]"  // max_digits10
 | |
|     << "[" << std::numeric_limits<long double>::digits << "]"// < "Binary digits 
 | |
|     << "[" << static_cast<int>(std::numeric_limits<long double>::digits * digits_accuracy) << "]]\n"; // Accuracy digits.
 | |
| 
 | |
|   fout << "[[" << "cpp_bin_float_50" << "]"
 | |
|     << "[" << std::numeric_limits<cpp_bin_float_50>::max_digits10 << "]"  // max_digits10
 | |
|     << "[" << std::numeric_limits<cpp_bin_float_50>::digits << "]"// < "Binary digits 
 | |
|     << "[" << static_cast<int>(std::numeric_limits<cpp_bin_float_50>::digits * digits_accuracy) << "]]\n"; // Accuracy digits.
 | |
| 
 | |
|   fout << "] [/table table_id_msvc] \n" << std::endl; // End of table.
 | |
| 
 | |
|   fout.close();
 | |
|   return 0;
 | |
| } // type_table
 | |
| 
 | |
| //! Evaluate root N timing for each algorithm, and for one floating-point type T. 
 | |
| template <typename T>
 | |
| int test_root(cpp_bin_float_100 big_radius, cpp_bin_float_100 big_arc, cpp_bin_float_100 answer, const char* type_name, std::size_t type_no)
 | |
| {
 | |
|   std::size_t max_digits = 2 + std::numeric_limits<T>::digits * 3010 / 10000;
 | |
|   // For new versions use max_digits10
 | |
|   // std::cout.precision(std::numeric_limits<T>::max_digits10);
 | |
|   std::cout.precision(max_digits);
 | |
|   std::cout << std::showpoint << std::endl; // Show trailing zeros too.
 | |
| 
 | |
|   root_infos.push_back(root_info()); 
 | |
| 
 | |
|   root_infos[type_no].max_digits10 = max_digits;
 | |
|   root_infos[type_no].full_typename = typeid(T).name(); // Full typename.
 | |
|   root_infos[type_no].short_typename = type_name; // Short typename.
 | |
|   root_infos[type_no].bin_digits = std::numeric_limits<T>::digits;
 | |
|   root_infos[type_no].get_digits = static_cast<int>(std::numeric_limits<T>::digits * digits_accuracy);
 | |
| 
 | |
|   T radius = static_cast<T>(big_radius);
 | |
|   T arc = static_cast<T>(big_arc);
 | |
| 
 | |
|   T result; // root
 | |
|   T sum = 0;
 | |
|   T ans = static_cast<T>(answer);
 | |
| 
 | |
|   using boost::timer::nanosecond_type;
 | |
|   using boost::timer::cpu_times;
 | |
|   using boost::timer::cpu_timer;
 | |
| 
 | |
|   long eval_count = boost::is_floating_point<T>::value ? 1000000 : 10000; // To give a sufficiently stable timing for the fast built-in types,
 | |
|   // This takes an inconveniently long time for multiprecision cpp_bin_float_50 etc  types.
 | |
| 
 | |
|   cpu_times now; // Holds wall, user and system times.
 | |
| 
 | |
|   { // Evaluate times etc for each algorithm.
 | |
|     //algorithm_names.push_back("TOMS748"); // 
 | |
|     cpu_timer ti; // Can start, pause, resume and stop, and read elapsed.
 | |
|     ti.start();
 | |
|     for(long i = eval_count; i >= 0; --i)
 | |
|     {
 | |
|       result = elliptic_root_noderiv(radius, arc); // 
 | |
|       sum += result;
 | |
|     }
 | |
|     now = ti.elapsed();
 | |
|     int time = static_cast<int>(now.user / eval_count);
 | |
|     root_infos[type_no].times.push_back(time); // CPU time taken.
 | |
|     if (time < root_infos[type_no].min_time)
 | |
|     {
 | |
|       root_infos[type_no].min_time = time;
 | |
|     }
 | |
|     ti.stop();
 | |
|     long int distance = static_cast<int>(boost::math::float_distance<T>(result, ans));
 | |
|     root_infos[type_no].distances.push_back(distance);
 | |
|     root_infos[type_no].iterations.push_back(iters); // 
 | |
|     root_infos[type_no].full_results.push_back(result);
 | |
|   }
 | |
|   {
 | |
|     // algorithm_names.push_back("Newton"); // algorithm
 | |
|     cpu_timer ti; // Can start, pause, resume and stop, and read elapsed.
 | |
|     ti.start();
 | |
|     for(long i = eval_count; i >= 0; --i)
 | |
|     {
 | |
|       result = elliptic_root_1deriv(radius, arc); // 
 | |
|       sum += result;
 | |
|     }
 | |
|     now = ti.elapsed();
 | |
|     int time = static_cast<int>(now.user / eval_count);
 | |
|     root_infos[type_no].times.push_back(time); // CPU time taken.
 | |
|     if (time < root_infos[type_no].min_time)
 | |
|     {
 | |
|       root_infos[type_no].min_time = time;
 | |
|     }
 | |
| 
 | |
|     ti.stop();
 | |
|     long int distance = static_cast<int>(boost::math::float_distance<T>(result, ans));
 | |
|     root_infos[type_no].distances.push_back(distance);
 | |
|     root_infos[type_no].iterations.push_back(iters); //
 | |
|     root_infos[type_no].full_results.push_back(result);
 | |
|   }
 | |
|   {
 | |
|     //algorithm_names.push_back("Halley"); // algorithm
 | |
|     cpu_timer ti; // Can start, pause, resume and stop, and read elapsed.
 | |
|     ti.start();
 | |
|     for(long i = eval_count; i >= 0; --i)
 | |
|     {
 | |
|       result = elliptic_root_2deriv(radius, arc); // 
 | |
|       sum += result;
 | |
|     }
 | |
|     now = ti.elapsed();
 | |
|     int time = static_cast<int>(now.user / eval_count);
 | |
|     root_infos[type_no].times.push_back(time); // CPU time taken.
 | |
|     ti.stop();
 | |
|     if (time < root_infos[type_no].min_time)
 | |
|     {
 | |
|       root_infos[type_no].min_time = time;
 | |
|     }
 | |
|     long int distance = static_cast<int>(boost::math::float_distance<T>(result, ans));
 | |
|     root_infos[type_no].distances.push_back(distance);
 | |
|     root_infos[type_no].iterations.push_back(iters); // 
 | |
|     root_infos[type_no].full_results.push_back(result);
 | |
|   }
 | |
|   {
 | |
|     // algorithm_names.push_back("Schr'''ö'''der"); // algorithm
 | |
|     cpu_timer ti; // Can start, pause, resume and stop, and read elapsed.
 | |
|     ti.start();
 | |
|     for(long i = eval_count; i >= 0; --i)
 | |
|     {
 | |
|       result = elliptic_root_2deriv_s(arc, radius); // 
 | |
|       sum += result;
 | |
|     }
 | |
|     now = ti.elapsed();
 | |
|     int time = static_cast<int>(now.user / eval_count);
 | |
|     root_infos[type_no].times.push_back(time); // CPU time taken.
 | |
|     if (time < root_infos[type_no].min_time)
 | |
|     {
 | |
|       root_infos[type_no].min_time = time;
 | |
|     }
 | |
|     ti.stop();
 | |
|     long int distance = static_cast<int>(boost::math::float_distance<T>(result, ans));
 | |
|     root_infos[type_no].distances.push_back(distance);
 | |
|     root_infos[type_no].iterations.push_back(iters); // 
 | |
|     root_infos[type_no].full_results.push_back(result);
 | |
|   }
 | |
|   for (size_t i = 0; i != root_infos[type_no].times.size(); i++) // For each time.
 | |
|   { // Normalize times.
 | |
|     root_infos[type_no].normed_times.push_back(static_cast<double>(root_infos[type_no].times[i]) / root_infos[type_no].min_time);
 | |
|   }
 | |
| 
 | |
|   std::cout << "Accumulated result was: " << sum << std::endl;
 | |
| 
 | |
|   return 4;  // eval_count of how many algorithms used.
 | |
| } // test_root
 | |
| 
 | |
| /*! Fill array of times, interations, etc for Nth root for all 4 types,
 | |
|  and write a table of results in Quickbook format.
 | |
|  */
 | |
| void table_root_info(cpp_bin_float_100 radius, cpp_bin_float_100 arc)
 | |
| {
 | |
|    using std::abs;
 | |
| 
 | |
|   std::cout << nooftypes << " floating-point types tested:" << std::endl;
 | |
| #if defined(_DEBUG) || !defined(NDEBUG)
 | |
|   std::cout << "Compiled in debug mode." << std::endl;
 | |
| #else
 | |
|   std::cout << "Compiled in optimise mode." << std::endl;
 | |
| #endif
 | |
|   std::cout << "FP hardware " << fp_hardware << std::endl;
 | |
|   // Compute the 'right' answer for root N at 100 decimal digits.
 | |
|   cpp_bin_float_100 full_answer = elliptic_root_noderiv(radius, arc);
 | |
| 
 | |
|   int type_count = 0;
 | |
|   root_infos.clear(); // Erase any previous data.
 | |
|   // Fill the elements of the array for each floating-point type.
 | |
| 
 | |
|   type_count = test_root<float>(radius, arc, full_answer, "float", 0);
 | |
|   type_count = test_root<double>(radius, arc, full_answer,  "double", 1);
 | |
|   type_count = test_root<long double>(radius, arc, full_answer, "long double", 2);
 | |
|   type_count = test_root<cpp_bin_float_50>(radius, arc, full_answer, "cpp_bin_float_50", 3);
 | |
| 
 | |
|   // Use info from 4 floating point types to
 | |
| 
 | |
|   // Prepare Quickbook table for a single root
 | |
|   // with columns of times, iterations, distances repeated for various floating-point types,
 | |
|   // and 4 rows for each algorithm.
 | |
| 
 | |
|   std::stringstream table_info;
 | |
|   table_info.precision(3);
 | |
|   table_info << "[table:elliptic root with radius " << radius << " and arc length " << arc << ") for float, double, long double and cpp_bin_float_50 types";
 | |
|   if (fp_hardware != "")
 | |
|   {
 | |
|     table_info << ", using " << fp_hardware;
 | |
|   }
 | |
|   table_info << std::endl;
 | |
| 
 | |
|   fout << table_info.str()
 | |
|     << "[[][float][][][] [][double][][][] [][long d][][][] [][cpp50][][]]\n"
 | |
|     << "[[Algo     ]";
 | |
|   for (size_t tp = 0; tp != nooftypes; tp++)
 | |
|   { // For all types:
 | |
|     fout << "[Its]" << "[Times]" << "[Norm]" << "[Dis]" << "[ ]";
 | |
|   }
 | |
|   fout << "]" << std::endl;
 | |
| 
 | |
|   // Row for all algorithms.
 | |
|   for (std::size_t algo = 0; algo != noofalgos; algo++)
 | |
|   {
 | |
|     fout << "[[" << std::left << std::setw(9) << algo_names[algo] << "]";
 | |
|     for (size_t tp = 0; tp != nooftypes; tp++)
 | |
|     { // For all types:
 | |
|       fout
 | |
|         << "[" << std::right << std::showpoint
 | |
|         << std::setw(3) << std::setprecision(2) << root_infos[tp].iterations[algo] << "]["
 | |
|         << std::setw(5) << std::setprecision(5) << root_infos[tp].times[algo] << "][";
 | |
|       fout << std::setw(3) << std::setprecision(3);
 | |
|         double normed_time = root_infos[tp].normed_times[algo];
 | |
|         if (abs(normed_time - 1.00) <= 0.05)
 | |
|         { // At or near the best time, so show as blue.
 | |
|           fout << "[role blue " << normed_time << "]";
 | |
|         }
 | |
|         else if (abs(normed_time) > 4.)
 | |
|         { // markedly poor so show as red.
 | |
|           fout << "[role red " << normed_time << "]";
 | |
|         }
 | |
|         else
 | |
|         { // Not the best, so normal black.
 | |
|           fout << normed_time;
 | |
|         }
 | |
|         fout << "]["
 | |
|         << std::setw(3) << std::setprecision(2) << root_infos[tp].distances[algo] << "][ ]";
 | |
|     } // tp
 | |
|     fout << "]" << std::endl;
 | |
|   } // for algo
 | |
|   fout << "] [/end of table root]\n";
 | |
| } // void table_root_info
 | |
| 
 | |
| /*! Output program header, table of type info, and tables for 4 algorithms and 4 floating-point types,
 | |
|  for Nth root required digits_accuracy.
 | |
|  */
 | |
| 
 | |
| int roots_tables(cpp_bin_float_100 radius, cpp_bin_float_100 arc, double digits_accuracy)
 | |
| {
 | |
|   ::digits_accuracy = digits_accuracy;
 | |
|   // Save globally so that it is available to root-finding algorithms. Ugly :-(
 | |
| 
 | |
| #if defined(_DEBUG) || !defined(NDEBUG)
 | |
|   std::string debug_or_optimize("Compiled in debug mode.");
 | |
| #else
 | |
|      std::string debug_or_optimize("Compiled in optimise mode.");
 | |
| #endif
 | |
| 
 | |
|   // Create filename for roots_table
 | |
|   std::string qbk_name = full_roots_name;
 | |
|   qbk_name += "elliptic_table";
 | |
| 
 | |
|   std::stringstream ss;
 | |
|   ss.precision(3);
 | |
|   // ss << "_" << N // now put all the tables in one .qbk file?
 | |
|     ss << "_" << digits_accuracy * 100
 | |
|     << std::flush;
 | |
|   // Assume only save optimize mode runs, so don't add any  _DEBUG info.
 | |
|   qbk_name += ss.str();
 | |
| 
 | |
| #ifdef _MSC_VER
 | |
|   qbk_name += "_msvc";
 | |
| #else // assume GCC
 | |
|   qbk_name += "_gcc";
 | |
| #endif 
 | |
|   if (fp_hardware != "")
 | |
|   {
 | |
|     qbk_name += fp_hardware;
 | |
|   }
 | |
|   qbk_name += ".qbk";
 | |
| 
 | |
|   fout.open(qbk_name, std::ios_base::out);
 | |
| 
 | |
|   if (fout.is_open())
 | |
|   {
 | |
|     std::cout << "Output root table to " << qbk_name << std::endl;
 | |
|   }
 | |
|   else
 | |
|   { // Failed to open.
 | |
|     std::cout << " Open file " << qbk_name << " for output failed!" << std::endl;
 | |
|     std::cout << "errno " << errno << std::endl;
 | |
|     return errno;
 | |
|   }
 | |
| 
 | |
|   fout <<
 | |
|     "[/"
 | |
|     << qbk_name
 | |
|     << "\n"
 | |
|     "Copyright 2015 Paul A. Bristow.""\n"
 | |
|     "Copyright 2015 John Maddock.""\n"
 | |
|     "Distributed under the Boost Software License, Version 1.0.""\n"
 | |
|     "(See accompanying file LICENSE_1_0.txt or copy at""\n"
 | |
|     "http://www.boost.org/LICENSE_1_0.txt).""\n"
 | |
|     "]""\n"
 | |
|     << std::endl;
 | |
| 
 | |
|   // Print out the program/compiler/stdlib/platform names as a Quickbook comment:
 | |
|   fout << "\n[h6 Program [@../../example/" << short_file_name(sourcefilename) << " " << short_file_name(sourcefilename) << "],\n "
 | |
|     << BOOST_COMPILER << ", "
 | |
|     << BOOST_STDLIB << ", "
 | |
|     << BOOST_PLATFORM << "\n"
 | |
|     << debug_or_optimize 
 | |
|     << ((fp_hardware != "") ? ", " + fp_hardware : "")
 | |
|     << "]" // [h6 close].
 | |
|     << std::endl;
 | |
| 
 | |
|   //fout << "Fraction of full accuracy " << digits_accuracy << std::endl;
 | |
| 
 | |
|   table_root_info(radius, arc);
 | |
| 
 | |
|   fout.close();
 | |
| 
 | |
|   //   table_type_info(digits_accuracy);
 | |
| 
 | |
|   return 0;
 | |
| } // roots_tables
 | |
| 
 | |
| 
 | |
| int main()
 | |
| {
 | |
|   using namespace boost::multiprecision;
 | |
|   using namespace boost::math;
 | |
| 
 | |
| 
 | |
|   try
 | |
|   {
 | |
|     std::cout << "Tests run with " << BOOST_COMPILER << ", "
 | |
|       << BOOST_STDLIB << ", " << BOOST_PLATFORM << ", ";
 | |
| 
 | |
| // How to: Configure Visual C++ Projects to Target 64-Bit Platforms
 | |
| // https://msdn.microsoft.com/en-us/library/9yb4317s.aspx
 | |
| 
 | |
| #ifdef _M_X64 // Defined for compilations that target x64 processors.
 | |
|     std::cout << "X64 " << std::endl;
 | |
|     fp_hardware += "_X64";
 | |
| #else
 | |
| #  ifdef _M_IX86
 | |
|      std::cout << "X32 " << std::endl;
 | |
|      fp_hardware += "_X86";
 | |
| #  endif
 | |
| #endif
 | |
| 
 | |
| #ifdef _M_AMD64
 | |
|     std::cout << "AMD64 " << std::endl;
 | |
|  //   fp_hardware += "_AMD64";
 | |
| #endif
 | |
| 
 | |
| // https://msdn.microsoft.com/en-us/library/7t5yh4fd.aspx  
 | |
| // /arch (x86) options /arch:[IA32|SSE|SSE2|AVX|AVX2]
 | |
| // default is to use SSE and SSE2 instructions by default.
 | |
| // https://msdn.microsoft.com/en-us/library/jj620901.aspx
 | |
| // /arch (x64) options /arch:AVX and /arch:AVX2
 | |
| 
 | |
| // MSVC doesn't bother to set these SSE macros!
 | |
| // http://stackoverflow.com/questions/18563978/sse-sse2-is-enabled-control-in-visual-studio
 | |
| // https://msdn.microsoft.com/en-us/library/b0084kay.aspx  predefined macros.
 | |
| 
 | |
| // But some of these macros are *not* defined by MSVC, 
 | |
| // unlike AVX (but *are* defined by GCC and Clang). 
 | |
| // So the macro code above does define them.
 | |
| #if (defined(_M_AMD64) || defined (_M_X64))
 | |
| #  define _M_X64 
 | |
| #  define __SSE2__
 | |
| #else
 | |
| #  ifdef _M_IX86_FP // Expands to an integer literal value indicating which /arch compiler option was used:
 | |
|     std::cout << "Floating-point _M_IX86_FP = " << _M_IX86_FP << std::endl;
 | |
| #  if (_M_IX86_FP == 2) // 2 if /arch:SSE2, /arch:AVX or /arch:AVX2 
 | |
| #    define __SSE2__ // x32
 | |
| #  elif (_M_IX86_FP == 1) // 1 if /arch:SSE was used.
 | |
| #    define __SSE__ // x32
 | |
| #  elif (_M_IX86_FP == 0) // 0 if /arch:IA32 was used.
 | |
| #    define _X32 // No special FP instructions.
 | |
| #  endif
 | |
| # endif
 | |
| #endif
 | |
| // Set the fp_hardware that is used in the .qbk filename.
 | |
| #ifdef __AVX2__
 | |
|     std::cout << "Floating-point AVX2 " << std::endl;
 | |
|     fp_hardware += "_AVX2";
 | |
| #  else 
 | |
| #    ifdef __AVX__
 | |
|     std::cout << "Floating-point AVX " << std::endl;
 | |
|     fp_hardware += "_AVX";
 | |
| #    else
 | |
| #      ifdef __SSE2__
 | |
|     std::cout << "Floating-point SSE2 " << std::endl;
 | |
|     fp_hardware += "_SSE2";
 | |
| #      else
 | |
| #        ifdef __SSE__
 | |
|     std::cout << "Floating-point SSE " << std::endl;
 | |
|     fp_hardware += "_SSE";
 | |
| #        endif
 | |
| #      endif
 | |
| #   endif
 | |
| # endif
 | |
| 
 | |
| #ifdef _M_IX86
 | |
|     std::cout << "Floating-point X86 _M_IX86 = " << _M_IX86 << std::endl;
 | |
|     // https://msdn.microsoft.com/en-us/library/aa273918%28v=vs.60%29.aspx#_predir_table_1..3
 | |
|     // 600 = Pentium Pro
 | |
| #endif
 | |
| 
 | |
| #ifdef _MSC_FULL_VER
 | |
|     std::cout << "Floating-point _MSC_FULL_VER " << _MSC_FULL_VER << std::endl;
 | |
| #endif
 | |
| 
 | |
| #ifdef __MSVC_RUNTIME_CHECKS
 | |
|     std::cout << "Runtime __MSVC_RUNTIME_CHECKS " << std::endl;
 | |
| #endif
 | |
| 
 | |
|     BOOST_MATH_CONTROL_FP;
 | |
| 
 | |
|     cpp_bin_float_100 radius("28.");
 | |
|     cpp_bin_float_100 arc("300.");
 | |
|     // Compute full answer to more than precision of tests.
 | |
|     //T value = 28.; // integer (exactly representable as floating-point)
 | |
|     // whose cube root is *not* exactly representable.
 | |
|     // Wolfram Alpha command N[28 ^ (1 / 3), 100] computes cube root to 100 decimal digits.
 | |
|     // 3.036588971875662519420809578505669635581453977248111123242141654169177268411884961770250390838097895
 | |
| 
 | |
|     std::cout.precision(100);
 | |
|     std::cout << "radius 1" << radius << std::endl;
 | |
|     std::cout << "arc length" << arc << std::endl;
 | |
|     // std::cout << ",\n""answer = " << full_answer << std::endl;
 | |
|     std::cout.precision(6);
 | |
|    // cbrt cpp_bin_float_100 full_answer("3.036588971875662519420809578505669635581453977248111123242141654169177268411884961770250390838097895");
 | |
| 
 | |
|     // Output the table of types, maxdigits10 and digits and required digits for some accuracies.
 | |
| 
 | |
|     // Output tables for some roots at full accuracy.
 | |
|     roots_tables(radius, arc, 1.);
 | |
| 
 | |
|     // Output tables for some roots at less accuracy.
 | |
|     //roots_tables(full_value, 0.75);
 | |
| 
 | |
|     return boost::exit_success;
 | |
|   }
 | |
|   catch (std::exception ex)
 | |
|   {
 | |
|     std::cout << "exception thrown: " << ex.what() << std::endl;
 | |
|     return boost::exit_failure;
 | |
|   }
 | |
| } // int main()
 | |
| 
 | |
| /*
 | |
| 
 | |
| */
 |