mirror of
				https://github.com/saitohirga/WSJT-X.git
				synced 2025-11-04 05:50:31 -05:00 
			
		
		
		
	
		
			
				
	
	
		
			583 lines
		
	
	
		
			23 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			583 lines
		
	
	
		
			23 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//! \file
 | 
						|
//! \brief Brent_minimise_example.cpp
 | 
						|
 | 
						|
// Copyright Paul A. Bristow 2015.
 | 
						|
 | 
						|
// Use, modification and distribution are subject to the
 | 
						|
// Boost Software License, Version 1.0.
 | 
						|
// (See accompanying file LICENSE_1_0.txt
 | 
						|
// or copy at http://www.boost.org/LICENSE_1_0.txt)
 | 
						|
 | 
						|
// Note that this file contains Quickbook mark-up as well as code
 | 
						|
// and comments, don't change any of the special comment mark-ups!
 | 
						|
 | 
						|
// For some diagnostic information:
 | 
						|
//#define BOOST_MATH_INSTRUMENT
 | 
						|
// If quadmath float128 is available:
 | 
						|
//#define BOOST_HAVE_QUADMATH
 | 
						|
 | 
						|
// Example of finding minimum of a function with Brent's method.
 | 
						|
//[brent_minimise_include_1
 | 
						|
#include <boost/math/tools/minima.hpp>
 | 
						|
//] [/brent_minimise_include_1]
 | 
						|
 | 
						|
#include <boost/math/special_functions/next.hpp>
 | 
						|
#include <boost/multiprecision/cpp_dec_float.hpp>
 | 
						|
#include <boost/math/special_functions/pow.hpp>
 | 
						|
#include <boost/math/constants/constants.hpp>
 | 
						|
#include <boost/test/floating_point_comparison.hpp> // For is_close_to and is_small
 | 
						|
 | 
						|
//[brent_minimise_mp_include_0
 | 
						|
#include <boost/multiprecision/cpp_dec_float.hpp> // For decimal boost::multiprecision::cpp_dec_float_50.
 | 
						|
#include <boost/multiprecision/cpp_bin_float.hpp> // For binary boost::multiprecision::cpp_bin_float_50;
 | 
						|
//] [/brent_minimise_mp_include_0]
 | 
						|
 | 
						|
//#ifndef _MSC_VER  // float128 is not yet supported by Microsoft compiler at 2013.
 | 
						|
#ifdef BOOST_HAVE_QUADMATH  // Define only if GCC or Intel, and have quadmath.lib or .dll library available.
 | 
						|
#  include <boost/multiprecision/float128.hpp>
 | 
						|
#endif
 | 
						|
 | 
						|
#include <iostream>
 | 
						|
// using std::cout; using std::endl;
 | 
						|
#include <iomanip>
 | 
						|
// using std::setw; using std::setprecision;
 | 
						|
#include <limits>
 | 
						|
using std::numeric_limits;
 | 
						|
#include <tuple>
 | 
						|
#include <utility> // pair, make_pair
 | 
						|
#include <type_traits>
 | 
						|
#include <typeinfo>
 | 
						|
 | 
						|
 //typedef boost::multiprecision::number<boost::multiprecision::cpp_dec_float<50>,
 | 
						|
 //   boost::multiprecision::et_off>
 | 
						|
 //   cpp_dec_float_50_et_off;
 | 
						|
 //
 | 
						|
 // typedef boost::multiprecision::number<boost::multiprecision::cpp_bin_float<50>,
 | 
						|
 //   boost::multiprecision::et_off>
 | 
						|
 //   cpp_bin_float_50_et_off;
 | 
						|
 | 
						|
// http://en.wikipedia.org/wiki/Brent%27s_method Brent's method
 | 
						|
 | 
						|
double f(double x)
 | 
						|
{
 | 
						|
  return (x + 3) * (x - 1) * (x - 1);
 | 
						|
}
 | 
						|
 | 
						|
//[brent_minimise_double_functor
 | 
						|
struct funcdouble
 | 
						|
{
 | 
						|
  double operator()(double const& x)
 | 
						|
  { //
 | 
						|
    return (x + 3) * (x - 1) * (x - 1); // (x + 3)(x - 1)^2
 | 
						|
  }
 | 
						|
};
 | 
						|
//] [/brent_minimise_double_functor]
 | 
						|
 | 
						|
//[brent_minimise_T_functor
 | 
						|
struct func
 | 
						|
{
 | 
						|
  template <class T>
 | 
						|
  T operator()(T const& x)
 | 
						|
  { //
 | 
						|
    return (x + 3) * (x - 1) * (x - 1); //
 | 
						|
  }
 | 
						|
};
 | 
						|
//] [/brent_minimise_T_functor]
 | 
						|
 | 
						|
//[brent_minimise_close
 | 
						|
//
 | 
						|
template <class T = double>
 | 
						|
bool close(T expect, T got, T tolerance)
 | 
						|
{
 | 
						|
  using boost::math::fpc::is_close_to;
 | 
						|
  using boost::math::fpc::is_small;
 | 
						|
 | 
						|
  if (is_small<T>(expect, tolerance))
 | 
						|
  {
 | 
						|
    return is_small<T>(got, tolerance);
 | 
						|
  }
 | 
						|
  else
 | 
						|
  {
 | 
						|
    return is_close_to<T>(expect, got, tolerance);
 | 
						|
  }
 | 
						|
}
 | 
						|
 | 
						|
//] [/brent_minimise_close]
 | 
						|
 | 
						|
//[brent_minimise_T_show
 | 
						|
 | 
						|
template <class T>
 | 
						|
void show_minima()
 | 
						|
{
 | 
						|
  using boost::math::tools::brent_find_minima;
 | 
						|
  try
 | 
						|
  { // Always use try'n'catch blocks with Boost.Math to get any error messages.
 | 
						|
 | 
						|
    int bits = std::numeric_limits<T>::digits/2; // Maximum is digits/2;
 | 
						|
    std::streamsize prec = static_cast<int>(2 + sqrt(bits));  // Number of significant decimal digits.
 | 
						|
    std::streamsize precision = std::cout.precision(prec); // Save.
 | 
						|
 | 
						|
    std::cout << "\n\nFor type  " << typeid(T).name()
 | 
						|
      << ",\n  epsilon = " << std::numeric_limits<T>::epsilon()
 | 
						|
      // << ", precision of " << bits << " bits"
 | 
						|
      << ",\n  the maximum theoretical precision from Brent minimization is " << sqrt(std::numeric_limits<T>::epsilon())
 | 
						|
      << "\n  Displaying to std::numeric_limits<T>::digits10 " << prec << " significant decimal digits."
 | 
						|
      << std::endl;
 | 
						|
 | 
						|
    const boost::uintmax_t maxit = 20;
 | 
						|
    boost::uintmax_t it = maxit;
 | 
						|
    // Construct using string, not double, avoids loss of precision.
 | 
						|
    //T bracket_min = static_cast<T>("-4");
 | 
						|
    //T bracket_max = static_cast<T>("1.3333333333333333333333333333333333333333333333333");
 | 
						|
 | 
						|
    //  Construction from double may cause loss of precision for multiprecision types like cpp_bin_float.
 | 
						|
    // but brackets values are good enough for using Brent minimization.
 | 
						|
    T bracket_min = static_cast<T>(-4);
 | 
						|
    T bracket_max = static_cast<T>(1.3333333333333333333333333333333333333333333333333);
 | 
						|
 | 
						|
    std::pair<T, T> r = brent_find_minima<func, T>(func(), bracket_min, bracket_max, bits, it);
 | 
						|
 | 
						|
    std::cout << "  x at minimum = " << r.first << ", f(" << r.first << ") = " << r.second;
 | 
						|
    if (it < maxit)
 | 
						|
    {
 | 
						|
      std::cout << ",\n  met " << bits << " bits precision" << ", after " << it << " iterations." << std::endl;
 | 
						|
    }
 | 
						|
    else
 | 
						|
    {
 | 
						|
      std::cout << ",\n  did NOT meet " << bits << " bits precision" << " after " << it << " iterations!" << std::endl;
 | 
						|
    }
 | 
						|
    // Check that result is that expected (compared to theoretical uncertainty).
 | 
						|
    T uncertainty = sqrt(std::numeric_limits<T>::epsilon());
 | 
						|
    //std::cout << std::boolalpha << "x == 1 (compared to uncertainty " << uncertainty << ") is " << close(static_cast<T>(1), r.first, uncertainty) << std::endl;
 | 
						|
    //std::cout << std::boolalpha << "f(x) == (0 compared to uncertainty " << uncertainty << ") is " << close(static_cast<T>(0), r.second, uncertainty) << std::endl;
 | 
						|
    // Problems with this using multiprecision with expression template on?
 | 
						|
    std::cout.precision(precision);  // Restore.
 | 
						|
  }
 | 
						|
  catch (const std::exception& e)
 | 
						|
  { // Always useful to include try & catch blocks because default policies
 | 
						|
    // are to throw exceptions on arguments that cause errors like underflow, overflow.
 | 
						|
    // Lacking try & catch blocks, the program will abort without a message below,
 | 
						|
    // which may give some helpful clues as to the cause of the exception.
 | 
						|
    std::cout <<
 | 
						|
      "\n""Message from thrown exception was:\n   " << e.what() << std::endl;
 | 
						|
  }
 | 
						|
} // void show_minima()
 | 
						|
 | 
						|
//] [/brent_minimise_T_show]
 | 
						|
 | 
						|
int main()
 | 
						|
{
 | 
						|
  std::cout << "Brent's minimisation example." << std::endl;
 | 
						|
  std::cout << std::boolalpha << std::endl;
 | 
						|
 | 
						|
  // Tip - using
 | 
						|
  // std::cout.precision(std::numeric_limits<T>::digits10);
 | 
						|
  // during debugging is wise because it shows if construction of multiprecision involves conversion from double
 | 
						|
  // by finding random or zero digits after 17.
 | 
						|
 | 
						|
  // Specific type double - unlimited iterations.
 | 
						|
  using boost::math::tools::brent_find_minima;
 | 
						|
 | 
						|
  //[brent_minimise_double_1
 | 
						|
  int bits = std::numeric_limits<double>::digits;
 | 
						|
 | 
						|
  std::pair<double, double> r = brent_find_minima(funcdouble(), -4., 4. / 3, bits);
 | 
						|
 | 
						|
  std::cout.precision(std::numeric_limits<double>::digits10);
 | 
						|
  std::cout << "x at minimum = " << r.first << ", f(" << r.first << ") = " << r.second << std::endl;
 | 
						|
  // x at minimum = 1.00000000112345, f(1.00000000112345) = 5.04852568272458e-018
 | 
						|
  //] [/brent_minimise_double_1]
 | 
						|
 | 
						|
  std::cout << "x at minimum = " << (r.first - 1.) /r.first << std::endl;
 | 
						|
 | 
						|
  double uncertainty = sqrt(std::numeric_limits<double>::epsilon());
 | 
						|
  std::cout << "Uncertainty sqrt(epsilon) =  " << uncertainty << std::endl;
 | 
						|
  // sqrt(epsilon) =  1.49011611938477e-008
 | 
						|
  // (epsilon is always > 0, so no need to take abs value).
 | 
						|
 | 
						|
  using boost::math::fpc::is_close_to;
 | 
						|
  using boost::math::fpc::is_small;
 | 
						|
 | 
						|
  std::cout << is_close_to(1., r.first, uncertainty) << std::endl;
 | 
						|
  std::cout << is_small(r.second, uncertainty) << std::endl;
 | 
						|
 | 
						|
  std::cout << std::boolalpha << "x == 1 (compared to uncertainty " << uncertainty << ") is " << close(1., r.first, uncertainty) << std::endl;
 | 
						|
  std::cout << std::boolalpha << "f(x) == (0 compared to uncertainty " << uncertainty << ") is " << close(0., r.second, uncertainty) << std::endl;
 | 
						|
 | 
						|
  // Specific type double - limit maxit to 20 iterations.
 | 
						|
  std::cout << "Precision bits = " << bits << std::endl;
 | 
						|
//[brent_minimise_double_2
 | 
						|
  const boost::uintmax_t maxit = 20;
 | 
						|
  boost::uintmax_t it = maxit;
 | 
						|
  r = brent_find_minima(funcdouble(), -4., 4. / 3, bits, it);
 | 
						|
  std::cout << "x at minimum = " << r.first << ", f(" << r.first << ") = " << r.second
 | 
						|
  << " after " << it << " iterations. " << std::endl;
 | 
						|
//] [/brent_minimise_double_2]
 | 
						|
  // x at minimum = 1.00000000112345, f(1.00000000112345) = 5.04852568272458e-018
 | 
						|
 | 
						|
//[brent_minimise_double_3
 | 
						|
 | 
						|
  std::streamsize prec = static_cast<int>(2 + sqrt(bits));  // Number of significant decimal digits.
 | 
						|
  std::cout << "Showing " << bits << " bits precision with " << prec
 | 
						|
    << " decimal digits from tolerance " << sqrt(std::numeric_limits<double>::epsilon())
 | 
						|
    << std::endl;
 | 
						|
  std::streamsize precision = std::cout.precision(prec); // Save.
 | 
						|
 | 
						|
  std::cout << "x at minimum = " << r.first << ", f(" << r.first << ") = " << r.second
 | 
						|
    << " after " << it << " iterations. " << std::endl;
 | 
						|
 | 
						|
//] [/brent_minimise_double_3]
 | 
						|
  // Showing 53 bits precision with 9 decimal digits from tolerance 1.49011611938477e-008
 | 
						|
  //  x at minimum = 1, f(1) = 5.04852568e-018
 | 
						|
 | 
						|
  {
 | 
						|
//[brent_minimise_double_4
 | 
						|
  bits /= 2; // Half digits precision (effective maximum).
 | 
						|
  double epsilon_2 = boost::math::pow<-(std::numeric_limits<double>::digits/2 - 1), double>(2);
 | 
						|
 | 
						|
  std::cout << "Showing " << bits << " bits precision with " << prec
 | 
						|
    << " decimal digits from tolerance " << sqrt(epsilon_2)
 | 
						|
    << std::endl;
 | 
						|
  std::streamsize precision = std::cout.precision(prec); // Save.
 | 
						|
 | 
						|
  boost::uintmax_t it = maxit;
 | 
						|
  r = brent_find_minima(funcdouble(), -4., 4. / 3, bits, it);
 | 
						|
  std::cout << "x at minimum = " << r.first << ", f(" << r.first << ") = " << r.second << std::endl;
 | 
						|
  std::cout << it << " iterations. " << std::endl;
 | 
						|
//] [/brent_minimise_double_4]
 | 
						|
  }
 | 
						|
  // x at minimum = 1, f(1) = 5.04852568e-018
 | 
						|
 | 
						|
  {
 | 
						|
  //[brent_minimise_double_5
 | 
						|
    bits /= 2; // Quarter precision.
 | 
						|
    double epsilon_4 = boost::math::pow<-(std::numeric_limits<double>::digits / 4 - 1), double>(2);
 | 
						|
 | 
						|
    std::cout << "Showing " << bits << " bits precision with " << prec
 | 
						|
      << " decimal digits from tolerance " << sqrt(epsilon_4)
 | 
						|
      << std::endl;
 | 
						|
    std::streamsize precision = std::cout.precision(prec); // Save.
 | 
						|
 | 
						|
    boost::uintmax_t it = maxit;
 | 
						|
    r = brent_find_minima(funcdouble(), -4., 4. / 3, bits, it);
 | 
						|
    std::cout << "x at minimum = " << r.first << ", f(" << r.first << ") = " << r.second
 | 
						|
    << ", after " << it << " iterations. " << std::endl;
 | 
						|
  //] [/brent_minimise_double_5]
 | 
						|
  }
 | 
						|
 | 
						|
  // Showing 13 bits precision with 9 decimal digits from tolerance 0.015625
 | 
						|
  // x at minimum = 0.9999776, f(0.9999776) = 2.0069572e-009
 | 
						|
  //  7 iterations.
 | 
						|
 | 
						|
  {
 | 
						|
//[brent_minimise_template_1
 | 
						|
    std::cout.precision(std::numeric_limits<long double>::digits10);
 | 
						|
    long double bracket_min = -4.;
 | 
						|
    long double bracket_max = 4. / 3;
 | 
						|
    int bits = std::numeric_limits<long double>::digits;
 | 
						|
    const boost::uintmax_t maxit = 20;
 | 
						|
    boost::uintmax_t it = maxit;
 | 
						|
 | 
						|
    std::pair<long double, long double> r = brent_find_minima(func(), bracket_min, bracket_max, bits, it);
 | 
						|
    std::cout << "x at minimum = " << r.first << ", f(" << r.first << ") = " << r.second
 | 
						|
      << ", after " << it << " iterations. " << std::endl;
 | 
						|
//] [/brent_minimise_template_1]
 | 
						|
  }
 | 
						|
 | 
						|
  // Show use of built-in type Template versions.
 | 
						|
  // (Will not work if construct bracket min and max from string).
 | 
						|
 | 
						|
//[brent_minimise_template_fd
 | 
						|
  show_minima<float>();
 | 
						|
  show_minima<double>();
 | 
						|
  show_minima<long double>();
 | 
						|
//] [/brent_minimise_template_fd]
 | 
						|
 | 
						|
  using boost::multiprecision::cpp_bin_float_50; // binary.
 | 
						|
 | 
						|
//[brent_minimise_mp_include_1
 | 
						|
#ifdef BOOST_HAVE_QUADMATH  // Define only if GCC or Intel and have quadmath.lib or .dll library available.
 | 
						|
  using boost::multiprecision::float128;
 | 
						|
#endif
 | 
						|
//] [/brent_minimise_mp_include_1]
 | 
						|
 | 
						|
//[brent_minimise_template_quad
 | 
						|
// #ifndef _MSC_VER
 | 
						|
#ifdef BOOST_HAVE_QUADMATH  // Define only if GCC or Intel and have quadmath.lib or .dll library available.
 | 
						|
  show_minima<float128>(); // Needs quadmath_snprintf, sqrtQ, fabsq that are in in quadmath library.
 | 
						|
#endif
 | 
						|
//] [/brent_minimise_template_quad
 | 
						|
 | 
						|
  // User-defined floating-point template.
 | 
						|
 | 
						|
//[brent_minimise_mp_typedefs
 | 
						|
  using boost::multiprecision::cpp_bin_float_50; // binary.
 | 
						|
 | 
						|
  typedef boost::multiprecision::number<boost::multiprecision::cpp_bin_float<50>,
 | 
						|
    boost::multiprecision::et_on>
 | 
						|
    cpp_bin_float_50_et_on;  // et_on is default so is same as cpp_bin_float_50.
 | 
						|
 | 
						|
  typedef boost::multiprecision::number<boost::multiprecision::cpp_bin_float<50>,
 | 
						|
    boost::multiprecision::et_off>
 | 
						|
    cpp_bin_float_50_et_off;
 | 
						|
 | 
						|
  using boost::multiprecision::cpp_dec_float_50; // decimal.
 | 
						|
 | 
						|
  typedef boost::multiprecision::number<boost::multiprecision::cpp_dec_float<50>,
 | 
						|
    boost::multiprecision::et_on> // et_on is default so is same as cpp_dec_float_50.
 | 
						|
    cpp_dec_float_50_et_on;
 | 
						|
 | 
						|
  typedef boost::multiprecision::number<boost::multiprecision::cpp_dec_float<50>,
 | 
						|
    boost::multiprecision::et_off>
 | 
						|
    cpp_dec_float_50_et_off;
 | 
						|
//] [/brent_minimise_mp_typedefs]
 | 
						|
 | 
						|
  { // binary ET on by default.
 | 
						|
//[brent_minimise_mp_1
 | 
						|
    std::cout.precision(std::numeric_limits<cpp_bin_float_50>::digits10);
 | 
						|
 | 
						|
    cpp_bin_float_50 fpv("-1.2345");
 | 
						|
    cpp_bin_float_50 absv;
 | 
						|
 | 
						|
    absv = fpv < static_cast<cpp_bin_float_50>(0) ? -fpv : fpv;
 | 
						|
    std::cout << fpv << ' ' << absv << std::endl;
 | 
						|
 | 
						|
 | 
						|
    int bits = std::numeric_limits<cpp_bin_float_50>::digits / 2 - 2;
 | 
						|
 | 
						|
    cpp_bin_float_50 bracket_min = static_cast<cpp_bin_float_50>("-4");
 | 
						|
    cpp_bin_float_50 bracket_max = static_cast<cpp_bin_float_50>("1.3333333333333333333333333333333333333333333333333");
 | 
						|
 | 
						|
    std::cout << bracket_min << " " << bracket_max << std::endl;
 | 
						|
    const boost::uintmax_t maxit = 20;
 | 
						|
    boost::uintmax_t it = maxit;
 | 
						|
    std::pair<cpp_bin_float_50, cpp_bin_float_50> r = brent_find_minima(func(), bracket_min, bracket_max, bits, it);
 | 
						|
 | 
						|
    std::cout << "x at minimum = " << r.first << ", f(" << r.first << ") = " << r.second
 | 
						|
    // x at minimum = 1, f(1) = 5.04853e-018
 | 
						|
      << ", after " << it << " iterations. " << std::endl;
 | 
						|
 | 
						|
    close(static_cast<cpp_bin_float_50>(1), r.first, sqrt(std::numeric_limits<cpp_bin_float_50>::epsilon()));
 | 
						|
 | 
						|
//] [/brent_minimise_mp_1]
 | 
						|
 | 
						|
/*
 | 
						|
//[brent_minimise_mp_output_1
 | 
						|
    For type  class boost::multiprecision::number<class boost::multiprecision::backends::cpp_bin_float<50, 10, void, int, 0, 0>, 1>,
 | 
						|
      epsilon = 5.3455294202e-51,
 | 
						|
      the maximum theoretical precision from Brent minimization is 7.311312755e-26
 | 
						|
      Displaying to std::numeric_limits<T>::digits10 11 significant decimal digits.
 | 
						|
      x at minimum = 1, f(1) = 5.6273022713e-58,
 | 
						|
      met 84 bits precision, after 14 iterations.
 | 
						|
//] [/brent_minimise_mp_output_1]
 | 
						|
*/
 | 
						|
//[brent_minimise_mp_2
 | 
						|
    show_minima<cpp_bin_float_50_et_on>(); //
 | 
						|
//] [/brent_minimise_mp_2]
 | 
						|
 | 
						|
/*
 | 
						|
//[brent_minimise_mp_output_2
 | 
						|
    For type  class boost::multiprecision::number<class boost::multiprecision::backends::cpp_bin_float<50, 10, void, int, 0, 0>, 1>,
 | 
						|
 | 
						|
//] [/brent_minimise_mp_output_1]
 | 
						|
*/
 | 
						|
  }
 | 
						|
 | 
						|
  { // binary ET on explicit
 | 
						|
    std::cout.precision(std::numeric_limits<cpp_bin_float_50_et_on>::digits10);
 | 
						|
 | 
						|
    int bits = std::numeric_limits<cpp_bin_float_50_et_on>::digits / 2 - 2;
 | 
						|
 | 
						|
    cpp_bin_float_50_et_on bracket_min = static_cast<cpp_bin_float_50_et_on>("-4");
 | 
						|
    cpp_bin_float_50_et_on bracket_max = static_cast<cpp_bin_float_50_et_on>("1.3333333333333333333333333333333333333333333333333");
 | 
						|
 | 
						|
    std::cout << bracket_min << " " << bracket_max << std::endl;
 | 
						|
    const boost::uintmax_t maxit = 20;
 | 
						|
    boost::uintmax_t it = maxit;
 | 
						|
    std::pair<cpp_bin_float_50_et_on, cpp_bin_float_50_et_on> r = brent_find_minima(func(), bracket_min, bracket_max, bits, it);
 | 
						|
 | 
						|
    std::cout << "x at minimum = " << r.first << ", f(" << r.first << ") = " << r.second << std::endl;
 | 
						|
    // x at minimum = 1, f(1) = 5.04853e-018
 | 
						|
    std::cout << it << " iterations. " << std::endl;
 | 
						|
 | 
						|
    show_minima<cpp_bin_float_50_et_on>(); //
 | 
						|
 | 
						|
  }
 | 
						|
  return 0;
 | 
						|
 | 
						|
  { // binary ET off
 | 
						|
    std::cout.precision(std::numeric_limits<cpp_bin_float_50_et_off>::digits10);
 | 
						|
 | 
						|
    int bits = std::numeric_limits<cpp_bin_float_50_et_off>::digits / 2 - 2;
 | 
						|
    cpp_bin_float_50_et_off bracket_min = static_cast<cpp_bin_float_50_et_off>("-4");
 | 
						|
    cpp_bin_float_50_et_off bracket_max = static_cast<cpp_bin_float_50_et_off>("1.3333333333333333333333333333333333333333333333333");
 | 
						|
 | 
						|
    std::cout << bracket_min << " " << bracket_max << std::endl;
 | 
						|
    const boost::uintmax_t maxit = 20;
 | 
						|
    boost::uintmax_t it = maxit;
 | 
						|
    std::pair<cpp_bin_float_50_et_off, cpp_bin_float_50_et_off> r = brent_find_minima(func(), bracket_min, bracket_max, bits, it);
 | 
						|
 | 
						|
    std::cout << "x at minimum = " << r.first << ", f(" << r.first << ") = " << r.second << std::endl;
 | 
						|
    // x at minimum = 1, f(1) = 5.04853e-018
 | 
						|
    std::cout << it << " iterations. " << std::endl;
 | 
						|
 | 
						|
    show_minima<cpp_bin_float_50_et_off>(); //
 | 
						|
  }
 | 
						|
 | 
						|
  { // decimal ET on by default
 | 
						|
    std::cout.precision(std::numeric_limits<cpp_dec_float_50>::digits10);
 | 
						|
 | 
						|
    int bits = std::numeric_limits<cpp_dec_float_50>::digits / 2 - 2;
 | 
						|
 | 
						|
    cpp_dec_float_50 bracket_min = static_cast<cpp_dec_float_50>("-4");
 | 
						|
    cpp_dec_float_50 bracket_max = static_cast<cpp_dec_float_50>("1.3333333333333333333333333333333333333333333333333");
 | 
						|
 | 
						|
    std::cout << bracket_min << " " << bracket_max << std::endl;
 | 
						|
    const boost::uintmax_t maxit = 20;
 | 
						|
    boost::uintmax_t it = maxit;
 | 
						|
    std::pair<cpp_dec_float_50, cpp_dec_float_50> r = brent_find_minima(func(), bracket_min, bracket_max, bits, it);
 | 
						|
 | 
						|
    std::cout << "x at minimum = " << r.first << ", f(" << r.first << ") = " << r.second << std::endl;
 | 
						|
    // x at minimum = 1, f(1) = 5.04853e-018
 | 
						|
    std::cout << it << " iterations. " << std::endl;
 | 
						|
 | 
						|
    show_minima<cpp_dec_float_50>();
 | 
						|
  }
 | 
						|
 | 
						|
  { // decimal ET on
 | 
						|
    std::cout.precision(std::numeric_limits<cpp_dec_float_50_et_on>::digits10);
 | 
						|
 | 
						|
    int bits = std::numeric_limits<cpp_dec_float_50_et_on>::digits / 2 - 2;
 | 
						|
 | 
						|
    cpp_dec_float_50_et_on bracket_min = static_cast<cpp_dec_float_50_et_on>("-4");
 | 
						|
    cpp_dec_float_50_et_on bracket_max = static_cast<cpp_dec_float_50_et_on>("1.3333333333333333333333333333333333333333333333333");
 | 
						|
    std::cout << bracket_min << " " << bracket_max << std::endl;
 | 
						|
    const boost::uintmax_t maxit = 20;
 | 
						|
    boost::uintmax_t it = maxit;
 | 
						|
    std::pair<cpp_dec_float_50_et_on, cpp_dec_float_50_et_on> r = brent_find_minima(func(), bracket_min, bracket_max, bits, it);
 | 
						|
 | 
						|
    std::cout << "x at minimum = " << r.first << ", f(" << r.first << ") = " << r.second << std::endl;
 | 
						|
    // x at minimum = 1, f(1) = 5.04853e-018
 | 
						|
    std::cout << it << " iterations. " << std::endl;
 | 
						|
 | 
						|
    show_minima<cpp_dec_float_50_et_on>();
 | 
						|
 | 
						|
  }
 | 
						|
 | 
						|
  { // decimal ET off
 | 
						|
    std::cout.precision(std::numeric_limits<cpp_dec_float_50_et_off>::digits10);
 | 
						|
 | 
						|
    int bits = std::numeric_limits<cpp_dec_float_50_et_off>::digits / 2 - 2;
 | 
						|
 | 
						|
    cpp_dec_float_50_et_off bracket_min = static_cast<cpp_dec_float_50_et_off>("-4");
 | 
						|
    cpp_dec_float_50_et_off bracket_max = static_cast<cpp_dec_float_50_et_off>("1.3333333333333333333333333333333333333333333333333");
 | 
						|
 | 
						|
    std::cout << bracket_min << " " << bracket_max << std::endl;
 | 
						|
    const boost::uintmax_t maxit = 20;
 | 
						|
    boost::uintmax_t it = maxit;
 | 
						|
    std::pair<cpp_dec_float_50_et_off, cpp_dec_float_50_et_off> r = brent_find_minima(func(), bracket_min, bracket_max, bits, it);
 | 
						|
 | 
						|
    std::cout << "x at minimum = " << r.first << ", f(" << r.first << ") = " << r.second << std::endl;
 | 
						|
    // x at minimum = 1, f(1) = 5.04853e-018
 | 
						|
    std::cout << it << " iterations. " << std::endl;
 | 
						|
 | 
						|
    show_minima<cpp_dec_float_50_et_off>();
 | 
						|
  }
 | 
						|
 | 
						|
  return 0;
 | 
						|
} // int main()
 | 
						|
 | 
						|
 | 
						|
/*
 | 
						|
 | 
						|
 | 
						|
 | 
						|
 // GCC 4.9.1 with quadmath
 | 
						|
 | 
						|
 Brent's minimisation example.
 | 
						|
x at minimum = 1.00000000112345, f(1.00000000112345) = 5.04852568272458e-018
 | 
						|
x at minimum = 1.12344622367552e-009
 | 
						|
Uncertainty sqrt(epsilon) =  1.49011611938477e-008
 | 
						|
x == 1 (compared to uncertainty 1.49011611938477e-008) is true
 | 
						|
f(x) == (0 compared to uncertainty 1.49011611938477e-008) is true
 | 
						|
Precision bits = 53
 | 
						|
x at minimum = 1.00000000112345, f(1.00000000112345) = 5.04852568272458e-018 after 10 iterations.
 | 
						|
Showing 53 bits precision with 9 decimal digits from tolerance 1.49011611938477e-008
 | 
						|
x at minimum = 1, f(1) = 5.04852568e-018 after 10 iterations.
 | 
						|
Showing 26 bits precision with 9 decimal digits from tolerance 0.000172633492
 | 
						|
x at minimum = 1, f(1) = 5.04852568e-018
 | 
						|
10 iterations.
 | 
						|
Showing 13 bits precision with 9 decimal digits from tolerance 0.015625
 | 
						|
x at minimum = 0.9999776, f(0.9999776) = 2.0069572e-009, after 7 iterations.
 | 
						|
x at minimum = 1.00000000000137302, f(1.00000000000137302) = 7.5407901369731193e-024, after 10 iterations.
 | 
						|
 | 
						|
 | 
						|
For type  f,
 | 
						|
  epsilon = 1.1921e-007,
 | 
						|
  the maximum theoretical precision from Brent minimization is 0.00034527
 | 
						|
  Displaying to std::numeric_limits<T>::digits10 5 significant decimal digits.
 | 
						|
  x at minimum = 1.0002, f(1.0002) = 1.9017e-007,
 | 
						|
  met 12 bits precision, after 7 iterations.
 | 
						|
x == 1 (compared to uncertainty 0.00034527) is true
 | 
						|
f(x) == (0 compared to uncertainty 0.00034527) is true
 | 
						|
 | 
						|
 | 
						|
For type  d,
 | 
						|
  epsilon = 2.220446e-016,
 | 
						|
  the maximum theoretical precision from Brent minimization is 1.490116e-008
 | 
						|
  Displaying to std::numeric_limits<T>::digits10 7 significant decimal digits.
 | 
						|
  x at minimum = 1, f(1) = 5.048526e-018,
 | 
						|
  met 26 bits precision, after 10 iterations.
 | 
						|
x == 1 (compared to uncertainty 1.490116e-008) is true
 | 
						|
f(x) == (0 compared to uncertainty 1.490116e-008) is true
 | 
						|
 | 
						|
 | 
						|
For type  e,
 | 
						|
  epsilon = 1.084202e-019,
 | 
						|
  the maximum theoretical precision from Brent minimization is 3.292723e-010
 | 
						|
  Displaying to std::numeric_limits<T>::digits10 7 significant decimal digits.
 | 
						|
  x at minimum = 1, f(1) = 7.54079e-024,
 | 
						|
  met 32 bits precision, after 10 iterations.
 | 
						|
x == 1 (compared to uncertainty 3.292723e-010) is true
 | 
						|
f(x) == (0 compared to uncertainty 3.292723e-010) is true
 | 
						|
 | 
						|
 | 
						|
For type  N5boost14multiprecision6numberINS0_8backends16float128_backendELNS0_26expression_template_optionE0EEE,
 | 
						|
  epsilon = 1.92592994e-34,
 | 
						|
  the maximum theoretical precision from Brent minimization is 1.38777878e-17
 | 
						|
  Displaying to std::numeric_limits<T>::digits10 9 significant decimal digits.
 | 
						|
  x at minimum = 1, f(1) = 1.48695468e-43,
 | 
						|
  met 56 bits precision, after 12 iterations.
 | 
						|
x == 1 (compared to uncertainty 1.38777878e-17) is true
 | 
						|
f(x) == (0 compared to uncertainty 1.38777878e-17) is true
 | 
						|
-4 1.3333333333333333333333333333333333333333333333333
 | 
						|
x at minimum = 0.99999999999999999999999999998813903221565569205253, f(0.99999999999999999999999999998813903221565569205253) = 5.6273022712501408640665300316078046703496236636624e-58, after 14 iterations.
 | 
						|
 | 
						|
 | 
						|
For type  N5boost14multiprecision6numberINS0_8backends13cpp_bin_floatILj50ELNS2_15digit_base_typeE10EviLi0ELi0EEELNS0_26expression_template_optionE1EEE,
 | 
						|
  epsilon = 5.3455294202e-51,
 | 
						|
  the maximum theoretical precision from Brent minimization is 7.311312755e-26
 | 
						|
  Displaying to std::numeric_limits<T>::digits10 11 significant decimal digits.
 | 
						|
  x at minimum = 1, f(1) = 5.6273022713e-58,
 | 
						|
  met 84 bits precision, after 14 iterations.
 | 
						|
x == 1 (compared to uncertainty 7.311312755e-26) is true
 | 
						|
f(x) == (0 compared to uncertainty 7.311312755e-26) is true
 | 
						|
-4 1.3333333333333333333333333333333333333333333333333
 | 
						|
x at minimum = 0.99999999999999999999999999998813903221565569205253, f(0.99999999999999999999999999998813903221565569205253) = 5.6273022712501408640665300316078046703496236636624e-58
 | 
						|
14 iterations.
 | 
						|
 | 
						|
 | 
						|
For type  N5boost14multiprecision6numberINS0_8backends13cpp_bin_floatILj50ELNS2_15digit_base_typeE10EviLi0ELi0EEELNS0_26expression_template_optionE1EEE,
 | 
						|
  epsilon = 5.3455294202e-51,
 | 
						|
  the maximum theoretical precision from Brent minimization is 7.311312755e-26
 | 
						|
  Displaying to std::numeric_limits<T>::digits10 11 significant decimal digits.
 | 
						|
  x at minimum = 1, f(1) = 5.6273022713e-58,
 | 
						|
  met 84 bits precision, after 14 iterations.
 | 
						|
x == 1 (compared to uncertainty 7.311312755e-26) is true
 | 
						|
f(x) == (0 compared to uncertainty 7.311312755e-26) is true
 | 
						|
 | 
						|
RUN SUCCESSFUL (total time: 90ms)
 | 
						|
 | 
						|
 | 
						|
*/
 |