mirror of
				https://github.com/saitohirga/WSJT-X.git
				synced 2025-10-30 20:40:28 -04:00 
			
		
		
		
	
		
			
				
	
	
		
			297 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			297 lines
		
	
	
		
			11 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //  Copyright John Maddock 2006.
 | |
| //  Use, modification and distribution are subject to the
 | |
| //  Boost Software License, Version 1.0. (See accompanying file
 | |
| //  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
 | |
| 
 | |
| #ifdef _MSC_VER
 | |
| #  pragma warning(disable: 4127) // conditional expression is constant.
 | |
| #  pragma warning(disable: 4245) // int/unsigned int conversion
 | |
| #endif
 | |
| 
 | |
| // Return infinities not exceptions:
 | |
| #define BOOST_MATH_OVERFLOW_ERROR_POLICY ignore_error
 | |
| 
 | |
| #include <boost/cstdfloat.hpp>
 | |
| #define BOOST_TEST_MAIN
 | |
| #include <boost/test/unit_test.hpp>
 | |
| #include <boost/test/floating_point_comparison.hpp>
 | |
| #include <boost/math/special_functions/factorials.hpp>
 | |
| #include <boost/math/special_functions/gamma.hpp>
 | |
| #include <boost/math/tools/stats.hpp>
 | |
| #include <boost/math/tools/test.hpp>
 | |
| 
 | |
| #include <iostream>
 | |
|   using std::cout;
 | |
|   using std::endl;
 | |
| 
 | |
| template <class T>
 | |
| T naive_falling_factorial(T x, unsigned n)
 | |
| {
 | |
|    if(n == 0)
 | |
|       return 1;
 | |
|    T result = x;
 | |
|    while(--n)
 | |
|    {
 | |
|       x -= 1;
 | |
|       result *= x;
 | |
|    }
 | |
|    return result;
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| void test_spots(T)
 | |
| {
 | |
|    //
 | |
|    // Basic sanity checks.
 | |
|    //
 | |
|    T tolerance = boost::math::tools::epsilon<T>() * 100 * 2;  // 2 eps as a percent.
 | |
|    BOOST_CHECK_CLOSE(
 | |
|       ::boost::math::factorial<T>(0),
 | |
|       static_cast<T>(1), tolerance);
 | |
|    BOOST_CHECK_CLOSE(
 | |
|       ::boost::math::factorial<T>(1),
 | |
|       static_cast<T>(1), tolerance);
 | |
|    BOOST_CHECK_CLOSE(
 | |
|       ::boost::math::factorial<T>(10),
 | |
|       static_cast<T>(3628800L), tolerance);
 | |
|    BOOST_CHECK_CLOSE(
 | |
|       ::boost::math::unchecked_factorial<T>(0),
 | |
|       static_cast<T>(1), tolerance);
 | |
|    BOOST_CHECK_CLOSE(
 | |
|       ::boost::math::unchecked_factorial<T>(1),
 | |
|       static_cast<T>(1), tolerance);
 | |
|    BOOST_CHECK_CLOSE(
 | |
|       ::boost::math::unchecked_factorial<T>(10),
 | |
|       static_cast<T>(3628800L), tolerance);
 | |
| 
 | |
|    //
 | |
|    // Try some double factorials:
 | |
|    //
 | |
|    BOOST_CHECK_CLOSE(
 | |
|       ::boost::math::double_factorial<T>(0),
 | |
|       static_cast<T>(1), tolerance);
 | |
|    BOOST_CHECK_CLOSE(
 | |
|       ::boost::math::double_factorial<T>(1),
 | |
|       static_cast<T>(1), tolerance);
 | |
|    BOOST_CHECK_CLOSE(
 | |
|       ::boost::math::double_factorial<T>(2),
 | |
|       static_cast<T>(2), tolerance);
 | |
|    BOOST_CHECK_CLOSE(
 | |
|       ::boost::math::double_factorial<T>(5),
 | |
|       static_cast<T>(15), tolerance);
 | |
|    BOOST_CHECK_CLOSE(
 | |
|       ::boost::math::double_factorial<T>(10),
 | |
|       static_cast<T>(3840), tolerance);
 | |
|    BOOST_CHECK_CLOSE(
 | |
|       ::boost::math::double_factorial<T>(19),
 | |
|       static_cast<T>(6.547290750e8Q), tolerance);
 | |
|    BOOST_CHECK_CLOSE(
 | |
|       ::boost::math::double_factorial<T>(24),
 | |
|       static_cast<T>(1.961990553600000e12Q), tolerance);
 | |
|    BOOST_CHECK_CLOSE(
 | |
|       ::boost::math::double_factorial<T>(33),
 | |
|       static_cast<T>(6.33265987076285062500000e18Q), tolerance);
 | |
|    BOOST_CHECK_CLOSE(
 | |
|       ::boost::math::double_factorial<T>(42),
 | |
|       static_cast<T>(1.0714547155728479551488000000e26Q), tolerance);
 | |
|    BOOST_CHECK_CLOSE(
 | |
|       ::boost::math::double_factorial<T>(47),
 | |
|       static_cast<T>(1.19256819277443412353990764062500000e30Q), tolerance);
 | |
| 
 | |
|    if((std::numeric_limits<T>::has_infinity) && (std::numeric_limits<T>::max_exponent <= 1024))
 | |
|    {
 | |
|       BOOST_CHECK_EQUAL(
 | |
|          ::boost::math::double_factorial<T>(320),
 | |
|          std::numeric_limits<T>::infinity());
 | |
|       BOOST_CHECK_EQUAL(
 | |
|          ::boost::math::double_factorial<T>(301),
 | |
|          std::numeric_limits<T>::infinity());
 | |
|    }
 | |
|    //
 | |
|    // Rising factorials:
 | |
|    //
 | |
|    tolerance = boost::math::tools::epsilon<T>() * 100 * 20;  // 20 eps as a percent.
 | |
|    if(std::numeric_limits<T>::is_specialized == 0)
 | |
|       tolerance *= 5;  // higher error rates without Lanczos support
 | |
|    BOOST_CHECK_CLOSE(
 | |
|       ::boost::math::rising_factorial(static_cast<T>(3), 4),
 | |
|       static_cast<T>(360), tolerance);
 | |
|    BOOST_CHECK_CLOSE(
 | |
|       ::boost::math::rising_factorial(static_cast<T>(7), -4),
 | |
|       static_cast<T>(0.00277777777777777777777777777777777777777777777777777777777778Q), tolerance);
 | |
|    BOOST_CHECK_CLOSE(
 | |
|       ::boost::math::rising_factorial(static_cast<T>(120.5f), 8),
 | |
|       static_cast<T>(5.58187566784927180664062500e16Q), tolerance);
 | |
|    BOOST_CHECK_CLOSE(
 | |
|       ::boost::math::rising_factorial(static_cast<T>(120.5f), -4),
 | |
|       static_cast<T>(5.15881498170104646868208445266116850161120996179812063177241e-9Q), tolerance);
 | |
|    BOOST_CHECK_CLOSE(
 | |
|       ::boost::math::rising_factorial(static_cast<T>(5000.25f), 8),
 | |
|       static_cast<T>(3.92974581976666067544013393509103775024414062500000e29Q), tolerance);
 | |
|    BOOST_CHECK_CLOSE(
 | |
|       ::boost::math::rising_factorial(static_cast<T>(5000.25f), -7),
 | |
|       static_cast<T>(1.28674092710208810281923019294164707555099052561945725535047e-26Q), tolerance);
 | |
|    BOOST_CHECK_CLOSE(
 | |
|       ::boost::math::rising_factorial(static_cast<T>(30.25), 21),
 | |
|       static_cast<T>(3.93286957998925490693364184100209193343633629069699964020401e33Q), tolerance * 2);
 | |
|    BOOST_CHECK_CLOSE(
 | |
|       ::boost::math::rising_factorial(static_cast<T>(30.25), -21),
 | |
|       static_cast<T>(3.35010902064291983728782493133164809108646650368560147505884e-27Q), tolerance);
 | |
|    BOOST_CHECK_CLOSE(
 | |
|       ::boost::math::rising_factorial(static_cast<T>(-30.25), 21),
 | |
|       static_cast<T>(-9.76168312768123676601980433377916854311706629232503473758698e26Q), tolerance * 2);
 | |
|    BOOST_CHECK_CLOSE(
 | |
|       ::boost::math::rising_factorial(static_cast<T>(-30.25), -21),
 | |
|       static_cast<T>(-1.50079704000923674318934280259377728203516775215430875839823e-34Q), 2 * tolerance);
 | |
|    BOOST_CHECK_CLOSE(
 | |
|       ::boost::math::rising_factorial(static_cast<T>(-30.25), 5),
 | |
|       static_cast<T>(-1.78799177197265625000000e7Q), tolerance);
 | |
|    BOOST_CHECK_CLOSE(
 | |
|       ::boost::math::rising_factorial(static_cast<T>(-30.25), -5),
 | |
|       static_cast<T>(-2.47177487004482195012362027432181137141899692171397467859150e-8Q), tolerance);
 | |
|    BOOST_CHECK_CLOSE(
 | |
|       ::boost::math::rising_factorial(static_cast<T>(-30.25), 6),
 | |
|       static_cast<T>(4.5146792242309570312500000e8Q), tolerance);
 | |
|    BOOST_CHECK_CLOSE(
 | |
|       ::boost::math::rising_factorial(static_cast<T>(-30.25), -6),
 | |
|       static_cast<T>(6.81868929667537089689274558433603136943171564610751635473516e-10Q), tolerance);
 | |
|    BOOST_CHECK_CLOSE(
 | |
|       ::boost::math::rising_factorial(static_cast<T>(-3), 6),
 | |
|       static_cast<T>(0), tolerance);
 | |
|    BOOST_CHECK_CLOSE(
 | |
|       ::boost::math::rising_factorial(static_cast<T>(-3.25), 6),
 | |
|       static_cast<T>(2.99926757812500Q), tolerance);
 | |
|    BOOST_CHECK_CLOSE(
 | |
|       ::boost::math::rising_factorial(static_cast<T>(-5.25), 6),
 | |
|       static_cast<T>(50.987548828125000000000000Q), tolerance);
 | |
|    BOOST_CHECK_CLOSE(
 | |
|       ::boost::math::rising_factorial(static_cast<T>(-5.25), 13),
 | |
|       static_cast<T>(127230.91046623885631561279296875000Q), tolerance);
 | |
|    BOOST_CHECK_CLOSE(
 | |
|       ::boost::math::rising_factorial(static_cast<T>(-3.25), -6),
 | |
|       static_cast<T>(0.0000129609865918182348202632178291407500332449622510474437452125Q), tolerance);
 | |
|    BOOST_CHECK_CLOSE(
 | |
|       ::boost::math::rising_factorial(static_cast<T>(-5.25), -6),
 | |
|       static_cast<T>(2.50789821857946332294524052303699065683926911849535903362649e-6Q), tolerance);
 | |
|    BOOST_CHECK_CLOSE(
 | |
|       ::boost::math::rising_factorial(static_cast<T>(-5.25), -13),
 | |
|       static_cast<T>(-1.38984989447269128946284683518361786049649013886981662962096e-14Q), tolerance);
 | |
| 
 | |
|    //
 | |
|    // Falling factorials:
 | |
|    //
 | |
|    BOOST_CHECK_CLOSE(
 | |
|       ::boost::math::falling_factorial(static_cast<T>(30.25), 0),
 | |
|       static_cast<T>(naive_falling_factorial(30.25Q, 0)),
 | |
|       tolerance);
 | |
|    BOOST_CHECK_CLOSE(
 | |
|       ::boost::math::falling_factorial(static_cast<T>(30.25), 1),
 | |
|       static_cast<T>(naive_falling_factorial(30.25Q, 1)),
 | |
|       tolerance);
 | |
|    BOOST_CHECK_CLOSE(
 | |
|       ::boost::math::falling_factorial(static_cast<T>(30.25), 2),
 | |
|       static_cast<T>(naive_falling_factorial(30.25Q, 2)),
 | |
|       tolerance);
 | |
|    BOOST_CHECK_CLOSE(
 | |
|       ::boost::math::falling_factorial(static_cast<T>(30.25), 5),
 | |
|       static_cast<T>(naive_falling_factorial(30.25Q, 5)),
 | |
|       tolerance);
 | |
|    BOOST_CHECK_CLOSE(
 | |
|       ::boost::math::falling_factorial(static_cast<T>(30.25), 22),
 | |
|       static_cast<T>(naive_falling_factorial(30.25Q, 22)),
 | |
|       tolerance);
 | |
|    BOOST_CHECK_CLOSE(
 | |
|       ::boost::math::falling_factorial(static_cast<T>(100.5), 6),
 | |
|       static_cast<T>(naive_falling_factorial(100.5Q, 6)),
 | |
|       tolerance);
 | |
|    BOOST_CHECK_CLOSE(
 | |
|       ::boost::math::falling_factorial(static_cast<T>(30.75), 30),
 | |
|       static_cast<T>(naive_falling_factorial(30.75Q, 30)),
 | |
|       tolerance * 3);
 | |
|    if(boost::math::policies::digits<T, boost::math::policies::policy<> >() > 50)
 | |
|    {
 | |
|       BOOST_CHECK_CLOSE(
 | |
|          ::boost::math::falling_factorial(static_cast<T>(-30.75Q), 30),
 | |
|          static_cast<T>(naive_falling_factorial(-30.75Q, 30)),
 | |
|          tolerance * 3);
 | |
|       BOOST_CHECK_CLOSE(
 | |
|          ::boost::math::falling_factorial(static_cast<T>(-30.75Q), 27),
 | |
|          static_cast<T>(naive_falling_factorial(-30.75Q, 27)),
 | |
|          tolerance * 3);
 | |
|    }
 | |
|    BOOST_CHECK_CLOSE(
 | |
|       ::boost::math::falling_factorial(static_cast<T>(-12.0), 6),
 | |
|       static_cast<T>(naive_falling_factorial(-12.0Q, 6)),
 | |
|       tolerance);
 | |
|    BOOST_CHECK_CLOSE(
 | |
|       ::boost::math::falling_factorial(static_cast<T>(-12), 5),
 | |
|       static_cast<T>(naive_falling_factorial(-12.0Q, 5)),
 | |
|       tolerance);
 | |
|    BOOST_CHECK_CLOSE(
 | |
|       ::boost::math::falling_factorial(static_cast<T>(-3.0), 6),
 | |
|       static_cast<T>(naive_falling_factorial(-3.0Q, 6)),
 | |
|       tolerance);
 | |
|    BOOST_CHECK_CLOSE(
 | |
|       ::boost::math::falling_factorial(static_cast<T>(-3), 5),
 | |
|       static_cast<T>(naive_falling_factorial(-3.0Q, 5)),
 | |
|       tolerance);
 | |
|    BOOST_CHECK_CLOSE(
 | |
|       ::boost::math::falling_factorial(static_cast<T>(3.0), 6),
 | |
|       static_cast<T>(naive_falling_factorial(3.0Q, 6)),
 | |
|       tolerance);
 | |
|    BOOST_CHECK_CLOSE(
 | |
|       ::boost::math::falling_factorial(static_cast<T>(3), 5),
 | |
|       static_cast<T>(naive_falling_factorial(3.0Q, 5)),
 | |
|       tolerance);
 | |
|    BOOST_CHECK_CLOSE(
 | |
|       ::boost::math::falling_factorial(static_cast<T>(3.25), 4),
 | |
|       static_cast<T>(naive_falling_factorial(3.25Q, 4)),
 | |
|       tolerance);
 | |
|    BOOST_CHECK_CLOSE(
 | |
|       ::boost::math::falling_factorial(static_cast<T>(3.25), 5),
 | |
|       static_cast<T>(naive_falling_factorial(3.25Q, 5)),
 | |
|       tolerance);
 | |
|    BOOST_CHECK_CLOSE(
 | |
|       ::boost::math::falling_factorial(static_cast<T>(3.25), 6),
 | |
|       static_cast<T>(naive_falling_factorial(3.25Q, 6)),
 | |
|       tolerance);
 | |
|    BOOST_CHECK_CLOSE(
 | |
|       ::boost::math::falling_factorial(static_cast<T>(3.25), 7),
 | |
|       static_cast<T>(naive_falling_factorial(3.25Q, 7)),
 | |
|       tolerance);
 | |
|    BOOST_CHECK_CLOSE(
 | |
|       ::boost::math::falling_factorial(static_cast<T>(8.25), 12),
 | |
|       static_cast<T>(naive_falling_factorial(8.25Q, 12)),
 | |
|       tolerance);
 | |
| 
 | |
| 
 | |
|    tolerance = boost::math::tools::epsilon<T>() * 100 * 20;  // 20 eps as a percent.
 | |
|    unsigned i = boost::math::max_factorial<T>::value;
 | |
|    if((boost::is_floating_point<T>::value) && (sizeof(T) <= sizeof(double)))
 | |
|    {
 | |
|       // Without Lanczos support, tgamma isn't accurate enough for this test:
 | |
|       BOOST_CHECK_CLOSE(
 | |
|          ::boost::math::unchecked_factorial<T>(i),
 | |
|          boost::math::tgamma(static_cast<T>(i+1)), tolerance);
 | |
|    }
 | |
| 
 | |
|    i += 10;
 | |
|    while(boost::math::lgamma(static_cast<T>(i+1)) < boost::math::tools::log_max_value<T>())
 | |
|    {
 | |
|       BOOST_CHECK_CLOSE(
 | |
|          ::boost::math::factorial<T>(i),
 | |
|          boost::math::tgamma(static_cast<T>(i+1)), tolerance);
 | |
|       i += 10;
 | |
|    }
 | |
| } // template <class T> void test_spots(T)
 | |
| 
 | |
| BOOST_AUTO_TEST_CASE( test_main )
 | |
| {
 | |
|    BOOST_MATH_CONTROL_FP;
 | |
|    test_spots(0.0Q);
 | |
|    cout << "max factorial for __float128"  << boost::math::max_factorial<boost::floatmax_t>::value  << endl;
 | |
| }
 | |
| 
 | |
| 
 | |
| 
 |