mirror of
				https://github.com/saitohirga/WSJT-X.git
				synced 2025-10-31 04:50:34 -04:00 
			
		
		
		
	
		
			
				
	
	
		
			69 lines
		
	
	
		
			1.9 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			69 lines
		
	
	
		
			1.9 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| /* Boost libs/numeric/odeint/examples/multiprecision/cmp_precision.cpp
 | |
| 
 | |
|  Copyright 2013 Karsten Ahnert
 | |
|  Copyright 2013 Mario Mulansky
 | |
| 
 | |
|  example comparing double to multiprecision using Boost.Multiprecision
 | |
| 
 | |
|  Distributed under the Boost Software License, Version 1.0.
 | |
| (See accompanying file LICENSE_1_0.txt or
 | |
|  copy at http://www.boost.org/LICENSE_1_0.txt)
 | |
|  */
 | |
| 
 | |
| 
 | |
| #include <iostream>
 | |
| #include <boost/numeric/odeint.hpp>
 | |
| #include <boost/multiprecision/cpp_dec_float.hpp>
 | |
| 
 | |
| using namespace std;
 | |
| using namespace boost::numeric::odeint;
 | |
| 
 | |
| typedef boost::multiprecision::cpp_dec_float_50 mp_50;
 | |
| 
 | |
| /* we solve the simple ODE x' = 3/(2t^2) + x/(2t)
 | |
|  * with initial condition x(1) = 0.
 | |
|  * Analytic solution is x(t) = sqrt(t) - 1/t
 | |
|  */
 | |
| 
 | |
| void rhs_m( const mp_50 x , mp_50 &dxdt , const mp_50 t )
 | |
| {   // version for multiprecision
 | |
|     dxdt = mp_50(3)/(mp_50(2)*t*t) + x/(mp_50(2)*t);
 | |
| }
 | |
| 
 | |
| void rhs_d( const double x , double &dxdt , const double t )
 | |
| {   // version for double precision
 | |
|     dxdt = 3.0/(2.0*t*t) + x/(2.0*t);
 | |
| }
 | |
| 
 | |
| // state_type = mp_50 = deriv_type = time_type = mp_50
 | |
| typedef runge_kutta4< mp_50 , mp_50 , mp_50 , mp_50 , vector_space_algebra , default_operations , never_resizer > stepper_type_m;
 | |
| 
 | |
| typedef runge_kutta4< double , double , double , double , vector_space_algebra , default_operations , never_resizer > stepper_type_d;
 | |
| 
 | |
| int main()
 | |
| {
 | |
| 
 | |
|     stepper_type_m stepper_m;
 | |
|     stepper_type_d stepper_d;
 | |
| 
 | |
|     mp_50 dt_m( 0.5 );
 | |
|     double dt_d( 0.5 );
 | |
| 
 | |
|     cout << "dt" << '\t' << "mp" << '\t' << "double" << endl;
 | |
|     
 | |
|     while( dt_m > 1E-20 )
 | |
|     {
 | |
| 
 | |
|         mp_50 x_m = 0; //initial value x(1) = 0
 | |
|         stepper_m.do_step( rhs_m , x_m , mp_50( 1 ) , dt_m );
 | |
|         double x_d = 0;
 | |
|         stepper_d.do_step( rhs_d , x_d , 1.0 , dt_d );        
 | |
| 
 | |
|         cout << dt_m << '\t';
 | |
|         cout << abs((x_m - (sqrt(1+dt_m)-mp_50(1)/(1+dt_m)))/x_m) << '\t' ;
 | |
|         cout << abs((x_d - (sqrt(1+dt_d)-mp_50(1)/(1+dt_d)))/x_d) << endl ;
 | |
|         dt_m /= 2;
 | |
|         dt_d /= 2;
 | |
|     }
 | |
| }
 |