mirror of
				https://github.com/saitohirga/WSJT-X.git
				synced 2025-10-31 13:10:19 -04:00 
			
		
		
		
	
		
			
				
	
	
		
			890 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			890 lines
		
	
	
		
			26 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
| // q65.c
 | |
| // q65 modes encoding/decoding functions
 | |
| // 
 | |
| // (c) 2020 - Nico Palermo, IV3NWV - Microtelecom Srl, Italy
 | |
| // ------------------------------------------------------------------------------
 | |
| // This file is part of the qracodes project, a Forward Error Control
 | |
| // encoding/decoding package based on Q-ary RA (Repeat and Accumulate) LDPC codes.
 | |
| //
 | |
| //    qracodes is free software: you can redistribute it and/or modify
 | |
| //    it under the terms of the GNU General Public License as published by
 | |
| //    the Free Software Foundation, either version 3 of the License, or
 | |
| //    (at your option) any later version.
 | |
| //    qracodes is distributed in the hope that it will be useful,
 | |
| //    but WITHOUT ANY WARRANTY; without even the implied warranty of
 | |
| //    MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | |
| //    GNU General Public License for more details.
 | |
| 
 | |
| //    You should have received a copy of the GNU General Public License
 | |
| //    along with qracodes source distribution.  
 | |
| //    If not, see <http://www.gnu.org/licenses/>.
 | |
| 
 | |
| #include <stdlib.h>
 | |
| #include <stdio.h>
 | |
| #include <math.h>
 | |
| 
 | |
| #include "q65.h"
 | |
| #include "pdmath.h"	
 | |
| 
 | |
| // Minimum codeword loglikelihood for decoding
 | |
| #define Q65_LLH_THRESHOLD -260.0f 
 | |
| 
 | |
| // This value produce the same WER performance in decode_fullaplist
 | |
| // #define Q65_LLH_THRESHOLD -262.0f 
 | |
| 
 | |
| 
 | |
| static int	_q65_crc6(int *x, int sz);
 | |
| static void _q65_crc12(int *y, int *x, int sz);
 | |
| 
 | |
| float q65_llh;
 | |
| 
 | |
| int q65_init(q65_codec_ds *pCodec, 	const qracode *pqracode)
 | |
| {
 | |
| 	// Eb/No value for which we optimize the decoder metric (AWGN/Rayleigh cases)
 | |
| 	const float EbNodBMetric = 2.8f;	
 | |
| 	const float EbNoMetric   = (float)pow(10,EbNodBMetric/10);
 | |
| 
 | |
| 	float	R;		// code effective rate (after puncturing)
 | |
| 	int		nm;		// bits per symbol
 | |
| 
 | |
| 	if (!pCodec)
 | |
| 		return -1;		// why do you called me?
 | |
| 
 | |
| 	if (!pqracode)
 | |
| 		return -2;		// invalid qra code
 | |
| 
 | |
| 	if (pqracode->M!=64)
 | |
| 		return -3;		// q65 supports only codes over GF(64)
 | |
| 
 | |
| 	pCodec->pQraCode = pqracode;
 | |
| 
 | |
| 	// allocate buffers used by encoding/decoding functions
 | |
| 	pCodec->x			= (int*)malloc(pqracode->K*sizeof(int));
 | |
| 	pCodec->y			= (int*)malloc(pqracode->N*sizeof(int));
 | |
| 	pCodec->qra_v2cmsg	= (float*)malloc(pqracode->NMSG*pqracode->M*sizeof(float));
 | |
| 	pCodec->qra_c2vmsg	= (float*)malloc(pqracode->NMSG*pqracode->M*sizeof(float));
 | |
| 	pCodec->ix			= (float*)malloc(pqracode->N*pqracode->M*sizeof(float));
 | |
| 	pCodec->ex			= (float*)malloc(pqracode->N*pqracode->M*sizeof(float));
 | |
| 
 | |
| 	if (pCodec->x== NULL			||
 | |
| 		pCodec->y== NULL			||
 | |
| 		pCodec->qra_v2cmsg== NULL	||
 | |
| 		pCodec->qra_c2vmsg== NULL	||
 | |
| 		pCodec->ix== NULL			||
 | |
| 		pCodec->ex== NULL) {
 | |
| 			q65_free(pCodec);
 | |
| 			return -4; // out of memory
 | |
| 		}
 | |
| 
 | |
| 	// compute and store the AWGN/Rayleigh Es/No ratio for which we optimize
 | |
| 	// the decoder metric
 | |
| 	nm = _q65_get_bits_per_symbol(pqracode);
 | |
| 	R  = _q65_get_code_rate(pqracode);
 | |
| 	pCodec->decoderEsNoMetric   = 1.0f*nm*R*EbNoMetric;
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| void q65_free(q65_codec_ds *pCodec)
 | |
| {
 | |
| 	if (!pCodec)
 | |
| 		return;
 | |
| 
 | |
| 	// free internal buffers
 | |
| 	if (pCodec->x!=NULL)
 | |
| 		free(pCodec->x);
 | |
| 
 | |
| 	if (pCodec->y!=NULL)
 | |
| 		free(pCodec->y);
 | |
| 
 | |
| 	if (pCodec->qra_v2cmsg!=NULL)
 | |
| 		free(pCodec->qra_v2cmsg);
 | |
| 
 | |
| 	if (pCodec->qra_c2vmsg!=NULL)
 | |
| 		free(pCodec->qra_c2vmsg);
 | |
| 
 | |
| 	if (pCodec->ix!=NULL)
 | |
| 		free(pCodec->ix);
 | |
| 
 | |
| 	if (pCodec->ex!=NULL)
 | |
| 		free(pCodec->ex);
 | |
| 
 | |
| 	pCodec->pQraCode	= NULL;
 | |
| 	pCodec->x			= NULL;
 | |
| 	pCodec->y			= NULL;
 | |
| 	pCodec->qra_v2cmsg	= NULL;
 | |
| 	pCodec->qra_c2vmsg	= NULL;
 | |
| 	pCodec->qra_v2cmsg	= NULL;
 | |
| 	pCodec->ix			= NULL;
 | |
| 	pCodec->ex			= NULL;
 | |
| 
 | |
| 	return;
 | |
| }
 | |
| 
 | |
| int q65_encode(const q65_codec_ds *pCodec, int *pOutputCodeword, const int *pInputMsg)
 | |
| {
 | |
| 	const qracode *pQraCode;
 | |
| 	int *px;
 | |
| 	int *py;
 | |
| 	int nK;
 | |
| 	int nN;
 | |
| 
 | |
| 	if (!pCodec)
 | |
| 		return -1;	// which codec?
 | |
| 
 | |
| 	pQraCode = pCodec->pQraCode;
 | |
| 	px = pCodec->x;
 | |
| 	py = pCodec->y;
 | |
| 	nK = _q65_get_message_length(pQraCode);
 | |
| 	nN = _q65_get_codeword_length(pQraCode);
 | |
| 
 | |
| 	// copy the information symbols into the internal buffer
 | |
| 	memcpy(px,pInputMsg,nK*sizeof(int));
 | |
| 
 | |
| 	// compute and append the appropriate CRC if required
 | |
| 	switch (pQraCode->type) {
 | |
| 		case QRATYPE_NORMAL:
 | |
| 			break;
 | |
| 		case QRATYPE_CRC:
 | |
| 		case QRATYPE_CRCPUNCTURED:
 | |
| 			px[nK] = _q65_crc6(px,nK);
 | |
| 			break;
 | |
| 		case QRATYPE_CRCPUNCTURED2:
 | |
| 			_q65_crc12(px+nK,px,nK);
 | |
| 			break;
 | |
| 		default:
 | |
| 			return -2;	// code type not supported
 | |
| 	}
 | |
| 
 | |
| 	// encode with the given qra code
 | |
| 	qra_encode(pQraCode,py,px);
 | |
| 
 | |
| 	// puncture the CRC symbols as required
 | |
| 	// and copy the result to the destination buffer
 | |
| 	switch (pQraCode->type) {
 | |
| 		case QRATYPE_NORMAL:
 | |
| 		case QRATYPE_CRC:
 | |
| 			// no puncturing
 | |
| 			memcpy(pOutputCodeword,py,nN*sizeof(int));
 | |
| 			break;
 | |
| 		case QRATYPE_CRCPUNCTURED:
 | |
| 			// strip the single CRC symbol from the encoded codeword
 | |
| 			memcpy(pOutputCodeword,py,nK*sizeof(int));				// copy the systematic symbols 
 | |
| 			memcpy(pOutputCodeword+nK,py+nK+1,(nN-nK)*sizeof(int));	// copy the check symbols skipping the CRC symbol
 | |
| 			break;
 | |
| 		case QRATYPE_CRCPUNCTURED2:
 | |
| 			// strip the 2 CRC symbols from the encoded codeword
 | |
| 			memcpy(pOutputCodeword,py,nK*sizeof(int));				// copy the systematic symbols
 | |
| 			memcpy(pOutputCodeword+nK,py+nK+2,(nN-nK)*sizeof(int)); // copy the check symbols skipping the two CRC symbols 
 | |
| 			break;
 | |
| 		default:
 | |
| 			return -2;	// code type unsupported
 | |
| 	}
 | |
| 
 | |
| 	return 1; // ok
 | |
| }
 | |
| 
 | |
| int q65_intrinsics(q65_codec_ds *pCodec, float *pIntrinsics, const float *pInputEnergies)
 | |
| {
 | |
| 	// compute observations intrinsics probabilities
 | |
| 	// for the AWGN/Rayleigh channels
 | |
| 
 | |
| 	// NOTE:
 | |
| 	// A true Rayleigh channel metric would require that the channel gains were known
 | |
| 	// for each symbol in the codeword. Such gains cannot be estimated reliably when
 | |
| 	// the Es/No ratio is small. Therefore we compute intrinsic probabilities assuming
 | |
| 	// that, on average, these channel gains are unitary.
 | |
| 	// In general it is even difficult to estimate the Es/No ratio for the AWGN channel
 | |
| 	// Therefore we always compute the intrinsic probabilities assuming that the Es/No
 | |
| 	// ratio is known and equal to the constant decoderEsNoMetric. This assumption will
 | |
| 	// generate the true intrinsic probabilities only when the actual Eb/No ratio is
 | |
| 	// equal to this constant. As in all the other cases the probabilities are evaluated
 | |
| 	// with a wrong scaling constant we can expect that the decoder performance at different
 | |
| 	// Es/No will be worse. Anyway, since the EsNoMetric constant has been chosen so that the 
 | |
| 	// decoder error rate is about 50%, we obtain almost optimal error rates down to
 | |
| 	// any useful Es/No ratio.
 | |
| 
 | |
| 	const qracode *pQraCode;
 | |
| 	int	nN, nBits;
 | |
| 	float EsNoMetric;
 | |
| 
 | |
| 	if (pCodec==NULL)
 | |
| 		return -1;		// which codec?
 | |
| 
 | |
| 	pQraCode = pCodec->pQraCode;
 | |
| 	nN		 = _q65_get_codeword_length(pQraCode);
 | |
| 	nBits	 = pQraCode->m;
 | |
| 
 | |
| 	EsNoMetric = pCodec->decoderEsNoMetric;
 | |
| 	qra_mfskbesselmetric(pIntrinsics,pInputEnergies,nBits,nN,EsNoMetric);
 | |
| 
 | |
| 	return 1;	// success
 | |
| }
 | |
| 
 | |
| int q65_esnodb(const q65_codec_ds *pCodec, float *pEsNodB, const int *ydec, const float *pInputEnergies)
 | |
| {
 | |
| 	// compute average Es/No for the AWGN/Rayleigh channel cases
 | |
| 
 | |
| 	int k,j;
 | |
| 	float sigplusnoise=0;
 | |
| 	float noise=0;
 | |
| 	int nN, nM;
 | |
| 	const float *pIn = pInputEnergies;
 | |
| 	const int *py = ydec;
 | |
| 	float EsNodB;
 | |
| 
 | |
| 	nN = q65_get_codeword_length(pCodec);
 | |
| 	nM = q65_get_alphabet_size(pCodec);
 | |
| 
 | |
| 	for (k=0;k<nN;k++)  {
 | |
| 
 | |
| 		for (j=0;j<nM;j++) 
 | |
| 			if (j==py[0])
 | |
| 				sigplusnoise += pIn[j];
 | |
| 			else
 | |
| 				noise +=pIn[j];
 | |
| 
 | |
| 		pIn += nM;
 | |
| 		py++;
 | |
| 		}
 | |
| 
 | |
| 	sigplusnoise = sigplusnoise/nN;			// average Es+No
 | |
| 	noise = noise/(nN*(nM-1));				// average No
 | |
| 
 | |
| 	if (noise==0.0f)
 | |
| 		EsNodB =  50.0f;	// output an arbitrary +50 dB value avoiding division overflows
 | |
| 	else {
 | |
| 		float sig;
 | |
| 		if (sigplusnoise<noise)
 | |
| 			sigplusnoise = 1.316f*noise; // limit the minimum Es/No ratio to -5 dB;
 | |
| 		sig = sigplusnoise-noise;
 | |
| 		EsNodB = 10.0f*log10f(sig/noise);
 | |
| 	}
 | |
| 
 | |
| 	*pEsNodB = EsNodB;
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| //
 | |
| // Fast-fading channel metric ----------------------------------------------
 | |
| //
 | |
| // Tables of fading energies coefficients for Ts=6912/12000 (QRA64)
 | |
| #include "fadengauss.c"
 | |
| #include "fadenlorentz.c"
 | |
| // As the fading is assumed to be symmetric around the nominal frequency
 | |
| // only the leftmost and the central coefficient are stored in the tables.
 | |
| // (files have been generated with the Matlab code efgengaussenergy.m and efgenlorentzenergy.m)
 | |
| 
 | |
| // Symbol time interval in seconds
 | |
| #define TS_QRA64 0.576
 | |
| // #define TS_Q65   0.640 // T/R = 60 s
 | |
| // The tables are computed assuming that the bin spacing is that of QRA64, that's to say
 | |
| // 1/Ts = 12000/6912 Hz, but in Q65 Ts depends on the T/R interval and the table index
 | |
| // corresponding to a given B90 must be scaled appropriately.
 | |
| // See below.
 | |
| 
 | |
| int q65_intrinsics_fastfading(q65_codec_ds *pCodec, 
 | |
| 								float *pIntrinsics,				// intrinsic symbol probabilities output
 | |
| 								const float *pInputEnergies,	// received energies input
 | |
| 								const int submode,				// submode idx (0=A ... 4=E)
 | |
| 								const float B90Ts,				// spread bandwidth (90% fractional energy)
 | |
| 								const int fadingModel)			// 0=Gaussian 1=Lorentzian fade model
 | |
| {
 | |
| 	int n, k, j;
 | |
| 	int nM, nN, nBinsPerTone, nBinsPerSymbol, nBinsPerCodeword;
 | |
| 	int hidx, hlen, hhsz, hlast;
 | |
| 	const float *hptr;
 | |
| 	float fTemp, fNoiseVar, sumix, maxlogp;
 | |
| 	float EsNoMetric,B90;
 | |
| 	float *weight;
 | |
| 	const float *pCurSym, *pCurBin;
 | |
| 	float *pCurIx;
 | |
| 
 | |
| 	//	printf("pcodec=%08x submode=%d fadingmodel=%d B90Ts=%f\n",pCodec, submode,fadingModel, B90Ts);
 | |
| 	if (pCodec==NULL)
 | |
| 		return Q65_DECODE_INVPARAMS;	// invalid pCodec pointer
 | |
| 
 | |
| 	
 | |
| 	if (submode<0 || submode>4)
 | |
| 		return Q65_DECODE_INVPARAMS;	// invalid submode
 | |
| 
 | |
| 	// As the symbol duration in q65 is different than in QRA64,
 | |
| 	// the fading tables continue to be valid if the B90Ts parameter 
 | |
| 	// is properly scaled to the QRA64 symbol interval
 | |
| 	// Compute index to most appropriate weighting function coefficients
 | |
| 	B90 = B90Ts/TS_QRA64;
 | |
|     hidx = (int)(logf(B90)/logf(1.09f) - 0.499f);
 | |
| 
 | |
| 	// Unlike in QRA64 we accept any B90, anyway limiting it to
 | |
| 	// the extreme cases (0.9 to 210 Hz approx.)
 | |
| 	if (hidx<0)
 | |
| 		hidx = 0;
 | |
| 	else
 | |
| 	  if (hidx > 63)   //Changed by K1JT: previously max was 64.
 | |
| 	    hidx=63;       //Changed by K1JT: previously max was 64.
 | |
| 
 | |
| 	// select the appropriate weighting fading coefficients array
 | |
| 	if (fadingModel==0) {	 // gaussian fading model
 | |
| 		// point to gaussian energy weighting taps
 | |
| 		hlen = glen_tab_gauss[hidx];	 // hlen = (L+1)/2 (where L=(odd) number of taps of w fun)
 | |
| 		hptr = gptr_tab_gauss[hidx];     // pointer to the first (L+1)/2 coefficients of w fun
 | |
| 		}
 | |
| 	else if (fadingModel==1) {
 | |
| 		// point to lorentzian energy weighting taps
 | |
| 		hlen = glen_tab_lorentz[hidx];	 // hlen = (L+1)/2 (where L=(odd) number of taps of w fun)
 | |
| 		hptr = gptr_tab_lorentz[hidx];   // pointer to the first (L+1)/2 coefficients of w fun
 | |
| 		}
 | |
| 	else 
 | |
| 		return Q65_DECODE_INVPARAMS;	 // invalid fading model
 | |
| 
 | |
| 	// compute (euristically) the optimal decoder metric accordingly the given spread amount
 | |
| 	// We assume that the decoder 50% decoding threshold is:
 | |
| 	// Es/No(dB) = Es/No(AWGN)(dB) + 8*log(B90)/log(240)(dB)
 | |
| 	// that's to say, at the maximum Doppler spread bandwidth (240 Hz for QRA64) 
 | |
| 	// there's a ~8 dB Es/No degradation over the AWGN case
 | |
| 	fTemp = 8.0f*logf(B90)/logf(240.0f); // assumed Es/No degradation for the given fading bandwidth
 | |
| 	EsNoMetric = pCodec->decoderEsNoMetric*powf(10.0f,fTemp/10.0f);
 | |
| 
 | |
| 	nM = q65_get_alphabet_size(pCodec);
 | |
| 	nN = q65_get_codeword_length(pCodec);
 | |
| 	nBinsPerTone   = 1<<submode;
 | |
| 
 | |
| 	nBinsPerSymbol = nM*(2+nBinsPerTone);
 | |
| 	nBinsPerCodeword = nN*nBinsPerSymbol;
 | |
| 
 | |
| 	// In the fast fading case , the intrinsic probabilities can be computed only
 | |
| 	// if both the noise spectral density and the average Es/No ratio are known.
 | |
| 
 | |
| 	// Assuming that the energy of a tone is spread, on average, over adjacent bins
 | |
| 	// with the weights given in the precomputed fast-fading tables, it turns out
 | |
| 	// that the probability that the transmitted tone was tone j when we observed
 | |
| 	// the energies En(1)...En(N) is:
 | |
| 
 | |
| 	// prob(tone j| en1....enN) proportional to exp(sum(En(k,j)*w(k)/No))
 | |
| 	// where w(k) = (g(k)*Es/No)/(1 + g(k)*Es/No),
 | |
| 	// g(k) are constant coefficients given on the fading tables,
 | |
| 	// and En(k,j) denotes the Energy at offset k from the central bin of tone j
 | |
| 
 | |
| 	// Therefore we:
 | |
| 	// 1) compute No - the noise spectral density (or noise variance)
 | |
| 	// 2) compute the coefficients w(k) given the coefficient g(k) for the given decodeer Es/No metric
 | |
| 	// 3) compute the logarithm of prob(tone j| en1....enN) which is simply = sum(En(k,j)*w(k)/No
 | |
| 	// 4) subtract from the logarithm of the probabilities their maximum, 
 | |
| 	// 5) exponentiate the logarithms
 | |
| 	// 6) normalize the result to a probability distribution dividing each value 
 | |
| 	//    by the sum of all of them
 | |
| 
 | |
| 
 | |
| 	// Evaluate the average noise spectral density
 | |
| 	fNoiseVar = 0;
 | |
| 	for (k=0;k<nBinsPerCodeword;k++) 
 | |
| 		fNoiseVar += pInputEnergies[k];
 | |
| 	fNoiseVar = fNoiseVar/nBinsPerCodeword;
 | |
| 	// The noise spectral density so computed includes also the signal power.
 | |
| 	// Therefore we scale it accordingly to the Es/No assumed by the decoder
 | |
| 	fNoiseVar = fNoiseVar/(1.0f+EsNoMetric/nBinsPerSymbol); 
 | |
| 	// The value so computed is an overestimate of the true noise spectral density
 | |
| 	// by the (unknown) factor (1+Es/No(true)/nBinsPerSymbol)/(1+EsNoMetric/nBinsPerSymbol)
 | |
| 	// We will take this factor in account when computing the true Es/No ratio
 | |
| 
 | |
| 	// store in the pCodec structure for later use in the estimation of the Es/No ratio
 | |
| 	pCodec->ffNoiseVar		= fNoiseVar;
 | |
| 	pCodec->ffEsNoMetric	= EsNoMetric;
 | |
| 	pCodec->nBinsPerTone    = nBinsPerTone;
 | |
| 	pCodec->nBinsPerSymbol  = nBinsPerSymbol;
 | |
| 	pCodec->nWeights        = hlen;
 | |
| 	weight					= pCodec->ffWeight;
 | |
| 
 | |
| 	// compute the fast fading weights accordingly to the Es/No ratio
 | |
| 	// for which we compute the exact intrinsics probabilities
 | |
| 	for (k=0;k<hlen;k++) {	
 | |
| 		fTemp = hptr[k]*EsNoMetric;
 | |
| 		//		printf("%d  %d  %f  %f  %f\n",hlen,k,EsNoMetric,hptr[k],fTemp);
 | |
| 		weight[k] = fTemp/(1.0f+fTemp)/fNoiseVar;
 | |
| 		}
 | |
| 
 | |
| 	// Compute now the instrinsics as indicated above
 | |
| 	pCurSym = pInputEnergies + nM;	// point to the central bin of the the first symbol tone
 | |
| 	pCurIx  = pIntrinsics;			// point to the first intrinsic
 | |
| 
 | |
| 	hhsz  = hlen-1;		// number of symmetric taps
 | |
| 	hlast = 2*hhsz;		// index of the central tap
 | |
| 
 | |
| 	for (n=0;n<nN;n++) {			// for each symbol in the message
 | |
| 
 | |
| 		// compute the logarithm of the tone probability
 | |
| 		// as a weighted sum of the pertaining energies
 | |
| 		pCurBin = pCurSym -hlen+1;	// point to the first bin of the current symbol
 | |
| 
 | |
| 		maxlogp = 0.0f;
 | |
| 		for (k=0;k<nM;k++) {		// for each tone in the current symbol
 | |
| 			// do a symmetric weighted sum
 | |
| 			fTemp = 0.0f;
 | |
| 			for (j=0;j<hhsz;j++) 
 | |
| 				fTemp += weight[j]*(pCurBin[j] + pCurBin[hlast-j]);	
 | |
| 			fTemp += weight[hhsz]*pCurBin[hhsz];
 | |
| 
 | |
| 			if (fTemp>maxlogp)		// keep track of the max 
 | |
| 				maxlogp = fTemp;
 | |
| 			pCurIx[k]=fTemp;
 | |
| 
 | |
| 			pCurBin += nBinsPerTone;	// next tone
 | |
| 			}
 | |
| 
 | |
| 		// exponentiate and accumulate the normalization constant
 | |
| 		sumix = 0.0f;
 | |
| 		for (k=0;k<nM;k++) {
 | |
| 		  float x=pCurIx[k]-maxlogp;
 | |
| 		  if(x < -85.0) x=-85.0;
 | |
| 		  if(x >  85.0) x= 85.0;
 | |
| 		  fTemp = expf(x);
 | |
| 		  pCurIx[k]=fTemp;
 | |
| 		  sumix  +=fTemp;
 | |
| 		}
 | |
| 
 | |
| 		// scale to a probability distribution
 | |
| 		sumix = 1.0f/sumix;
 | |
| 		for (k=0;k<nM;k++) 
 | |
| 			pCurIx[k] = pCurIx[k]*sumix;
 | |
| 
 | |
| 		pCurSym +=nBinsPerSymbol;	// next symbol input energies
 | |
| 		pCurIx  +=nM;				// next symbol intrinsics
 | |
| 		}
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| int q65_esnodb_fastfading(
 | |
| 			const q65_codec_ds *pCodec,
 | |
| 			float		*pEsNodB,
 | |
| 			const int   *ydec,
 | |
| 			const float *pInputEnergies)
 | |
| {
 | |
| 	// Estimate the Es/No ratio of the decoded codeword
 | |
| 
 | |
| 	int n,j;
 | |
| 	int nN, nM, nBinsPerSymbol, nBinsPerTone, nWeights, nTotWeights;
 | |
| 	const float *pCurSym, *pCurTone, *pCurBin;
 | |
| 	float EsPlusWNo,u, minu, ffNoiseVar, ffEsNoMetric;
 | |
| 
 | |
| 	if (pCodec==NULL)
 | |
| 		return Q65_DECODE_INVPARAMS;
 | |
| 
 | |
| 	nN = q65_get_codeword_length(pCodec);
 | |
| 	nM = q65_get_alphabet_size(pCodec);
 | |
| 
 | |
| 	nBinsPerTone   = pCodec->nBinsPerTone;
 | |
| 	nBinsPerSymbol = pCodec->nBinsPerSymbol;
 | |
| 	nWeights       = pCodec->nWeights;
 | |
| 	ffNoiseVar	   = pCodec->ffNoiseVar;
 | |
| 	ffEsNoMetric   = pCodec->ffEsNoMetric;
 | |
| 	nTotWeights    = 2*nWeights-1;
 | |
| 
 | |
| 	// compute symbols energy (noise included) summing the 
 | |
| 	// energies pertaining to the decoded symbols in the codeword
 | |
| 
 | |
| 	EsPlusWNo = 0.0f;
 | |
| 	pCurSym = pInputEnergies + nM;	// point to first central bin of first symbol tone
 | |
| 	for (n=0;n<nN;n++) {					
 | |
| 		pCurTone = pCurSym + ydec[n]*nBinsPerTone;	 // point to the central bin of the current decoded symbol
 | |
| 		pCurBin  = pCurTone - nWeights+1;			 // point to first bin 
 | |
| 		
 | |
| 		// sum over all the pertaining bins
 | |
| 		for (j=0;j<nTotWeights;j++)
 | |
| 			EsPlusWNo += pCurBin[j];		
 | |
| 
 | |
| 		pCurSym +=nBinsPerSymbol;
 | |
| 
 | |
| 		}
 | |
| 	EsPlusWNo =  EsPlusWNo/nN;	// Es + nTotWeigths*No
 | |
| 
 | |
| 
 | |
| 	// The noise power ffNoiseVar computed in the q65_intrisics_fastading(...) function
 | |
| 	// is not the true noise power as it includes part of the signal energy.
 | |
| 	// The true noise variance is:
 | |
| 	// No = ffNoiseVar*(1+EsNoMetric/nBinsPerSymbol)/(1+EsNo/nBinsPerSymbol)
 | |
| 
 | |
| 	// Therefore:
 | |
| 	// Es/No = EsPlusWNo/No - W = EsPlusWNo/ffNoiseVar*(1+Es/No/nBinsPerSymbol)/(1+Es/NoMetric/nBinsPerSymbol) - W
 | |
| 	// and:
 | |
| 	// Es/No*(1-u/nBinsPerSymbol) = u-W or Es/No = (u-W)/(1-u/nBinsPerSymbol)
 | |
| 	// where:
 | |
| 	// u = EsPlusNo/ffNoiseVar/(1+EsNoMetric/nBinsPerSymbol)
 | |
| 
 | |
| 	u = EsPlusWNo/(ffNoiseVar*(1+ffEsNoMetric/nBinsPerSymbol));
 | |
| 
 | |
| 	minu = nTotWeights+0.316f;
 | |
| 	if (u<minu)
 | |
| 		u = minu;		// Limit the minimum Es/No to -5 dB approx.
 | |
| 
 | |
| 	u = (u-nTotWeights)/(1.0f -u/nBinsPerSymbol);  // linear scale Es/No
 | |
| 	*pEsNodB = 10.0f*log10f(u);
 | |
| 
 | |
| 	return 1;
 | |
| }
 | |
| 
 | |
| 
 | |
| int q65_decode(q65_codec_ds *pCodec, int* pDecodedCodeword, int *pDecodedMsg,
 | |
| 	       const float *pIntrinsics, const int *pAPMask,
 | |
| 	       const int *pAPSymbols, const int maxiters)
 | |
| {
 | |
| 	const qracode *pQraCode;
 | |
| 	float	*ix, *ex;
 | |
| 	int		*px;
 | |
| 	int		*py;
 | |
| 	int		nK, nN, nM,nBits;
 | |
| 	int		rc;
 | |
| 	int		crc6;
 | |
| 	int		crc12[2];
 | |
| 
 | |
| 	if (!pCodec)
 | |
| 		return Q65_DECODE_INVPARAMS;	// which codec?
 | |
| 
 | |
| 	pQraCode	= pCodec->pQraCode;
 | |
| 	ix			= pCodec->ix;
 | |
| 	ex			= pCodec->ex;
 | |
| 
 | |
| 	nK			= _q65_get_message_length(pQraCode);
 | |
| 	nN			= _q65_get_codeword_length(pQraCode);
 | |
| 	nM			= pQraCode->M;
 | |
| 	nBits		= pQraCode->m;
 | |
| 
 | |
| 	px			= pCodec->x;
 | |
| 	py			= pCodec->y;
 | |
| 
 | |
| 	// Depuncture intrinsics observations as required by the code type
 | |
| 	switch (pQraCode->type) {
 | |
| 		case QRATYPE_CRCPUNCTURED:
 | |
| 			memcpy(ix,pIntrinsics,nK*nM*sizeof(float));							// information symbols
 | |
| 			pd_init(PD_ROWADDR(ix,nM,nK),pd_uniform(nBits),nM);					// crc
 | |
| 			memcpy(ix+(nK+1)*nM,pIntrinsics+nK*nM,(nN-nK)*nM*sizeof(float));	// parity checks
 | |
| 			break;
 | |
| 		case QRATYPE_CRCPUNCTURED2:
 | |
| 			memcpy(ix,pIntrinsics,nK*nM*sizeof(float));							// information symbols
 | |
| 			pd_init(PD_ROWADDR(ix,nM,nK),pd_uniform(nBits),nM);					// crc
 | |
| 			pd_init(PD_ROWADDR(ix,nM,nK+1),pd_uniform(nBits),nM);				// crc
 | |
| 			memcpy(ix+(nK+2)*nM,pIntrinsics+nK*nM,(nN-nK)*nM*sizeof(float));	// parity checks
 | |
| 			break;
 | |
| 		case QRATYPE_NORMAL:
 | |
| 		case QRATYPE_CRC:
 | |
| 		default:
 | |
| 			// no puncturing
 | |
| 			memcpy(ix,pIntrinsics,nN*nM*sizeof(float));							// as they are
 | |
| 		}
 | |
| 
 | |
| 	// mask the intrinsics with the available a priori knowledge
 | |
| 	if (pAPMask!=NULL)
 | |
| 		_q65_mask(pQraCode,ix,pAPMask,pAPSymbols);
 | |
| 
 | |
| 
 | |
| 	// Compute the extrinsic symbols probabilities with the message-passing algorithm
 | |
| 	// Stop if the extrinsics information does not converges to unity
 | |
| 	// within the given number of iterations
 | |
| 	rc = qra_extrinsic( pQraCode,
 | |
| 						ex,
 | |
| 						ix,
 | |
| 						maxiters,
 | |
| 						pCodec->qra_v2cmsg,
 | |
| 						pCodec->qra_c2vmsg);
 | |
| 
 | |
| 	if (rc<0) 
 | |
| 		// failed to converge to a solution
 | |
| 		return Q65_DECODE_FAILED;
 | |
| 
 | |
| 	// decode the information symbols (punctured information symbols included)
 | |
| 	qra_mapdecode(pQraCode,px,ex,ix);
 | |
| 
 | |
| 	// verify CRC match 
 | |
| 
 | |
| 	switch (pQraCode->type) {
 | |
| 		case QRATYPE_CRC:
 | |
| 		case QRATYPE_CRCPUNCTURED:
 | |
| 			crc6=_q65_crc6(px,nK);			 // compute crc-6
 | |
| 			if (crc6!=px[nK]) 				
 | |
| 				return Q65_DECODE_CRCMISMATCH; // crc doesn't match
 | |
| 			break;
 | |
| 		case QRATYPE_CRCPUNCTURED2:
 | |
| 			_q65_crc12(crc12, px,nK);			 // compute crc-12
 | |
| 			if (crc12[0]!=px[nK] || 
 | |
| 				crc12[1]!=px[nK+1]) 
 | |
| 				return Q65_DECODE_CRCMISMATCH; // crc doesn't match
 | |
| 			break;
 | |
| 		case QRATYPE_NORMAL:
 | |
| 		default:
 | |
| 			// nothing to check
 | |
| 			break;
 | |
| 		}
 | |
| 
 | |
| 	// copy the decoded msg to the user buffer (excluding punctured symbols)
 | |
| 	if (pDecodedMsg)
 | |
| 		memcpy(pDecodedMsg,px,nK*sizeof(int));
 | |
| 
 | |
| #ifndef Q65_CHECKLLH
 | |
| 	if (pDecodedCodeword==NULL)		// user is not interested in the decoded codeword
 | |
| 		return rc;					// return the number of iterations required to decode
 | |
| #else
 | |
| 	if (pDecodedCodeword==NULL)			// we must have a buffer
 | |
| 		return Q65_DECODE_INVPARAMS;	// return error
 | |
| #endif
 | |
| 
 | |
| 	// crc matches therefore we can reconstruct the transmitted codeword
 | |
| 	//  reencoding the information available in px...
 | |
| 
 | |
| 	qra_encode(pQraCode, py, px);
 | |
| 
 | |
| 	// ...and strip the punctured symbols from the codeword
 | |
| 	switch (pQraCode->type) {
 | |
| 		case QRATYPE_CRCPUNCTURED:
 | |
| 				memcpy(pDecodedCodeword,py,nK*sizeof(int));
 | |
| 				memcpy(pDecodedCodeword+nK,py+nK+1,(nN-nK)*sizeof(int));	// puncture crc-6 symbol
 | |
| 			break;
 | |
| 		case QRATYPE_CRCPUNCTURED2:
 | |
| 				memcpy(pDecodedCodeword,py,nK*sizeof(int));
 | |
| 				memcpy(pDecodedCodeword+nK,py+nK+2,(nN-nK)*sizeof(int));	// puncture crc-12 symbols
 | |
| 			break;
 | |
| 		case QRATYPE_CRC:
 | |
| 		case QRATYPE_NORMAL:
 | |
| 		default:
 | |
| 			memcpy(pDecodedCodeword,py,nN*sizeof(int));		// no puncturing
 | |
| 		}
 | |
| 
 | |
| #ifdef Q65_CHECKLLH
 | |
| 	if (q65_check_llh(NULL,pDecodedCodeword, nN, nM, pIntrinsics)==0) // llh less than threshold
 | |
| 		return Q65_DECODE_LLHLOW;	
 | |
| #endif
 | |
| 
 | |
| 	return rc;	// return the number of iterations required to decode
 | |
| 
 | |
| }
 | |
| 
 | |
| 
 | |
| // Compute and verify the loglikelihood of the decoded codeword
 | |
| int q65_check_llh(float *llh, const int* ydec, const int nN, const int nM, const float *pIntrin)
 | |
| {
 | |
| 	int k;
 | |
| 	float t = 0;
 | |
| 
 | |
| 	for (k=0;k<nN;k++) {
 | |
| 	  float x=pIntrin[ydec[k]];
 | |
| 	  if(x < 1.0e-36) x = 1.0e-36; 
 | |
| 	  t+=logf(x);
 | |
| 	  pIntrin+=nM;
 | |
| 	}
 | |
| 
 | |
| 	if (llh!=NULL)
 | |
| 		*llh = t;
 | |
| 
 | |
| 	return (t>=Q65_LLH_THRESHOLD);
 | |
| }
 | |
| 
 | |
| // Full AP decoding from a list of codewords
 | |
| int q65_decode_fullaplist(q65_codec_ds *codec,
 | |
| 						   int *ydec,
 | |
| 						   int *xdec, 
 | |
| 						   const float *pIntrinsics, 
 | |
| 						   const int *pCodewords, 
 | |
| 						   const int nCodewords)
 | |
| {
 | |
| 	int			k;
 | |
| 	int			nK, nN, nM;
 | |
| 
 | |
| 	float llh, maxllh, llh_threshold; 
 | |
| 	int   maxcw = -1;					// index of the most likely codeword
 | |
| 	const int  *pCw;
 | |
| 
 | |
| 	if (nCodewords<1 || nCodewords>Q65_FULLAPLIST_SIZE)
 | |
| 		return Q65_DECODE_INVPARAMS;	// invalid list length
 | |
| 
 | |
| 	nK  = q65_get_message_length(codec);
 | |
| 	nN	= q65_get_codeword_length(codec);
 | |
| 	nM	= q65_get_alphabet_size(codec);
 | |
| 
 | |
| 	// we adjust the llh threshold in order to mantain the
 | |
| 	// same false decode rate independently from the size
 | |
| 	// of the list
 | |
| 	llh_threshold = Q65_LLH_THRESHOLD + logf(1.0f*nCodewords/3);
 | |
| 	maxllh = llh_threshold; // at least one llh should be larger than the threshold
 | |
| 
 | |
| 	// compute codewords log likelihoods and find max
 | |
| 	pCw = pCodewords;	// start from the first codeword
 | |
| 	for (k=0;k<nCodewords;k++) {
 | |
| 		// compute and check this codeword loglikelihood
 | |
| 		if (q65_check_llh(&llh,pCw, nN, nM, pIntrinsics)==1) // larger than threshold
 | |
| 			// select the codeword with max logll
 | |
| 			if (llh>maxllh) {
 | |
| 				maxllh = llh;
 | |
| 				maxcw    = k;
 | |
| 			}
 | |
| 		//		printf("BBB  %d  %f\n",k,llh);
 | |
| 		// point to next codeword
 | |
| 		pCw+=nN;
 | |
| 	}
 | |
| 
 | |
| 	q65_llh=maxllh;		// save for Joe's use
 | |
| 
 | |
| 	if (maxcw<0) // no llh larger than threshold found
 | |
| 		return Q65_DECODE_FAILED;	  
 | |
| 
 | |
| 	pCw = pCodewords+nN*maxcw;
 | |
| 	memcpy(ydec,pCw,nN*sizeof(int));
 | |
| 	memcpy(xdec,pCw,nK*sizeof(int));
 | |
| 
 | |
| 	return maxcw;	// index to the decoded message (>=0)
 | |
| 
 | |
| }
 | |
| 
 | |
| 
 | |
| // helper functions -------------------------------------------------------------
 | |
| 
 | |
| int _q65_get_message_length(const qracode *pCode)
 | |
| {
 | |
| 	// return the actual information message length (in symbols)
 | |
| 	// excluding any punctured symbol
 | |
| 
 | |
| 	int nMsgLength;
 | |
| 
 | |
| 	switch (pCode->type) {
 | |
| 		case QRATYPE_NORMAL:
 | |
| 			nMsgLength = pCode->K;
 | |
| 			break;
 | |
| 		case QRATYPE_CRC:
 | |
| 		case QRATYPE_CRCPUNCTURED:
 | |
| 			// one information symbol of the underlying qra code is reserved for CRC
 | |
| 			nMsgLength = pCode->K-1;
 | |
| 			break;
 | |
| 		case QRATYPE_CRCPUNCTURED2:
 | |
| 			// two code information symbols are reserved for CRC
 | |
| 			nMsgLength = pCode->K-2;
 | |
| 			break;
 | |
| 		default:
 | |
| 			nMsgLength = -1;
 | |
| 	}
 | |
| 
 | |
| 	return nMsgLength;
 | |
| }
 | |
| 
 | |
| int _q65_get_codeword_length(const qracode *pCode)
 | |
| {
 | |
| 	// return the actual codeword length (in symbols)
 | |
| 	// excluding any punctured symbol
 | |
| 	
 | |
| 	int nCwLength;
 | |
| 
 | |
| 	switch (pCode->type) {
 | |
| 		case QRATYPE_NORMAL:
 | |
| 		case QRATYPE_CRC:
 | |
| 			// no puncturing
 | |
| 			nCwLength = pCode->N;
 | |
| 			break;
 | |
| 		case QRATYPE_CRCPUNCTURED:
 | |
| 			// the CRC symbol is punctured
 | |
| 			nCwLength = pCode->N-1;
 | |
| 			break;
 | |
| 		case QRATYPE_CRCPUNCTURED2:
 | |
| 			// the two CRC symbols are punctured
 | |
| 			nCwLength = pCode->N-2;
 | |
| 			break;
 | |
| 		default:
 | |
| 			nCwLength = -1;
 | |
| 	}
 | |
| 
 | |
| 	return nCwLength;
 | |
| }
 | |
| 
 | |
| float _q65_get_code_rate(const qracode *pCode)
 | |
| {
 | |
| 	return 1.0f*_q65_get_message_length(pCode)/_q65_get_codeword_length(pCode);
 | |
| }
 | |
| 
 | |
| int _q65_get_alphabet_size(const qracode *pCode)
 | |
| {
 | |
| 	return pCode->M;
 | |
| }
 | |
| int _q65_get_bits_per_symbol(const qracode *pCode)
 | |
| {
 | |
| 	return pCode->m;
 | |
| }
 | |
| static void _q65_mask(const qracode *pcode, float *ix, const int *mask, const int *x)
 | |
| {
 | |
| 	// mask intrinsic information ix with available a priori knowledge
 | |
| 	
 | |
| 	int k,kk, smask;
 | |
| 	const int nM=pcode->M;	
 | |
| 	const int nm=pcode->m;
 | |
| 	int nK;
 | |
| 
 | |
| 	// Exclude from masking the symbols which have been punctured.
 | |
| 	// nK is the length of the mask and x arrays, which do 
 | |
| 	// not include any punctured symbol 
 | |
| 	nK = _q65_get_message_length(pcode);
 | |
| 
 | |
| 	// for each symbol set to zero the probability
 | |
| 	// of the values which are not allowed by
 | |
| 	// the a priori information
 | |
| 
 | |
| 	for (k=0;k<nK;k++) {
 | |
| 		smask = mask[k];
 | |
| 		if (smask) {
 | |
| 			for (kk=0;kk<nM;kk++) 
 | |
| 				if (((kk^x[k])&smask)!=0)
 | |
| 					// This symbol value is not allowed
 | |
| 					// by the AP information
 | |
| 					// Set its probability to zero
 | |
| 					*(PD_ROWADDR(ix,nM,k)+kk) = 0.f;
 | |
| 
 | |
| 			// normalize to a probability distribution
 | |
| 			pd_norm(PD_ROWADDR(ix,nM,k),nm);
 | |
| 			}
 | |
| 		}
 | |
| }
 | |
| 
 | |
| // CRC generation functions
 | |
| 
 | |
| // crc-6 generator polynomial
 | |
| // g(x) = x^6 + x + 1  
 | |
| #define CRC6_GEN_POL 0x30		// MSB=a0 LSB=a5    
 | |
| 
 | |
| // crc-12 generator polynomial
 | |
| // g(x) = x^12 + x^11 + x^3 + x^2 + x + 1  
 | |
| #define CRC12_GEN_POL 0xF01		// MSB=a0 LSB=a11
 | |
| 
 | |
| // g(x) = x^6 + x^2 + x + 1 (as suggested by Joe. See i.e.:  https://users.ece.cmu.edu/~koopman/crc/)
 | |
| // #define CRC6_GEN_POL 0x38  // MSB=a0 LSB=a5. Simulation results are similar
 | |
| 
 | |
| 
 | |
| static int _q65_crc6(int *x, int sz)
 | |
| {
 | |
| 	int k,j,t,sr = 0;
 | |
| 	for (k=0;k<sz;k++) {
 | |
| 		t = x[k];
 | |
| 		for (j=0;j<6;j++) {
 | |
| 			if ((t^sr)&0x01)
 | |
| 				sr = (sr>>1) ^ CRC6_GEN_POL;
 | |
| 			else
 | |
| 				sr = (sr>>1);
 | |
| 			t>>=1;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 	return sr;
 | |
| }
 | |
| 
 | |
| static void _q65_crc12(int *y, int *x, int sz)
 | |
| {
 | |
| 	int k,j,t,sr = 0;
 | |
| 	for (k=0;k<sz;k++) {
 | |
| 		t = x[k];
 | |
| 		for (j=0;j<6;j++) {
 | |
| 			if ((t^sr)&0x01)
 | |
| 				sr = (sr>>1) ^ CRC12_GEN_POL;
 | |
| 			else
 | |
| 				sr = (sr>>1);
 | |
| 			t>>=1;
 | |
| 			}
 | |
| 		}
 | |
| 
 | |
| 	y[0] = sr&0x3F; 
 | |
| 	y[1] = (sr>>6);
 | |
| }
 |