mirror of
				https://github.com/saitohirga/WSJT-X.git
				synced 2025-11-04 05:50:31 -05:00 
			
		
		
		
	git-svn-id: svn+ssh://svn.code.sf.net/p/wsjt/wsjt/branches/wsjtx@6592 ab8295b8-cf94-4d9e-aec4-7959e3be5d79
		
			
				
	
	
		
			264 lines
		
	
	
		
			6.7 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
			
		
		
	
	
			264 lines
		
	
	
		
			6.7 KiB
		
	
	
	
		
			C
		
	
	
	
	
	
/* Reed-Solomon decoder
 | 
						|
 * Copyright 2002 Phil Karn, KA9Q
 | 
						|
 * May be used under the terms of the GNU General Public License (GPL)
 | 
						|
 */
 | 
						|
 | 
						|
#ifdef DEBUG
 | 
						|
#include <stdio.h>
 | 
						|
#endif
 | 
						|
 | 
						|
#include <stdlib.h>
 | 
						|
#include <string.h>
 | 
						|
 | 
						|
#define	min(a,b)	((a) < (b) ? (a) : (b))
 | 
						|
 | 
						|
#ifdef FIXED
 | 
						|
#include "fixed.h"
 | 
						|
#elif defined(BIGSYM)
 | 
						|
#include "int.h"
 | 
						|
#else
 | 
						|
#include "char.h"
 | 
						|
#endif
 | 
						|
 | 
						|
int DECODE_RS(
 | 
						|
#ifdef FIXED
 | 
						|
DTYPE *data, int *eras_pos, int no_eras,int pad){
 | 
						|
#else
 | 
						|
void *p,DTYPE *data, int *eras_pos, int no_eras){
 | 
						|
  struct rs *rs = (struct rs *)p;
 | 
						|
#endif
 | 
						|
  int deg_lambda, el, deg_omega;
 | 
						|
  int i, j, r,k;
 | 
						|
  DTYPE u,q,tmp,num1,num2,den,discr_r;
 | 
						|
  DTYPE lambda[NROOTS+1], s[NROOTS];	/* Err+Eras Locator poly
 | 
						|
					 * and syndrome poly */
 | 
						|
  DTYPE b[NROOTS+1], t[NROOTS+1], omega[NROOTS+1];
 | 
						|
  DTYPE root[NROOTS], reg[NROOTS+1], loc[NROOTS];
 | 
						|
  int syn_error, count;
 | 
						|
 | 
						|
#ifdef FIXED
 | 
						|
  /* Check pad parameter for validity */
 | 
						|
  if(pad < 0 || pad >= NN)
 | 
						|
    return -1;
 | 
						|
#endif
 | 
						|
 | 
						|
  /* form the syndromes; i.e., evaluate data(x) at roots of g(x) */
 | 
						|
  for(i=0;i<NROOTS;i++)
 | 
						|
    s[i] = data[0];
 | 
						|
 | 
						|
  for(j=1;j<NN-PAD;j++){
 | 
						|
    for(i=0;i<NROOTS;i++){
 | 
						|
      if(s[i] == 0){
 | 
						|
	s[i] = data[j];
 | 
						|
      } else {
 | 
						|
	s[i] = data[j] ^ ALPHA_TO[MODNN(INDEX_OF[s[i]] + (FCR+i)*PRIM)];
 | 
						|
      }
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  /* Convert syndromes to index form, checking for nonzero condition */
 | 
						|
  syn_error = 0;
 | 
						|
  for(i=0;i<NROOTS;i++){
 | 
						|
    syn_error |= s[i];
 | 
						|
    s[i] = INDEX_OF[s[i]];
 | 
						|
  }
 | 
						|
 | 
						|
  if (!syn_error) {
 | 
						|
    /* if syndrome is zero, data[] is a codeword and there are no
 | 
						|
     * errors to correct. So return data[] unmodified
 | 
						|
     */
 | 
						|
    count = 0;
 | 
						|
    goto finish;
 | 
						|
  }
 | 
						|
  memset(&lambda[1],0,NROOTS*sizeof(lambda[0]));
 | 
						|
  lambda[0] = 1;
 | 
						|
 | 
						|
  if (no_eras > 0) {
 | 
						|
    /* Init lambda to be the erasure locator polynomial */
 | 
						|
    lambda[1] = ALPHA_TO[MODNN(PRIM*(NN-1-eras_pos[0]))];
 | 
						|
    for (i = 1; i < no_eras; i++) {
 | 
						|
      u = MODNN(PRIM*(NN-1-eras_pos[i]));
 | 
						|
      for (j = i+1; j > 0; j--) {
 | 
						|
	tmp = INDEX_OF[lambda[j - 1]];
 | 
						|
	if(tmp != A0)
 | 
						|
	  lambda[j] ^= ALPHA_TO[MODNN(u + tmp)];
 | 
						|
      }
 | 
						|
    }
 | 
						|
 | 
						|
#if DEBUG >= 1
 | 
						|
    /* Test code that verifies the erasure locator polynomial just constructed
 | 
						|
       Needed only for decoder debugging. */
 | 
						|
    
 | 
						|
    /* find roots of the erasure location polynomial */
 | 
						|
    for(i=1;i<=no_eras;i++)
 | 
						|
      reg[i] = INDEX_OF[lambda[i]];
 | 
						|
 | 
						|
    count = 0;
 | 
						|
    for (i = 1,k=IPRIM-1; i <= NN; i++,k = MODNN(k+IPRIM)) {
 | 
						|
      q = 1;
 | 
						|
      for (j = 1; j <= no_eras; j++)
 | 
						|
	if (reg[j] != A0) {
 | 
						|
	  reg[j] = MODNN(reg[j] + j);
 | 
						|
	  q ^= ALPHA_TO[reg[j]];
 | 
						|
	}
 | 
						|
      if (q != 0)
 | 
						|
	continue;
 | 
						|
      /* store root and error location number indices */
 | 
						|
      root[count] = i;
 | 
						|
      loc[count] = k;
 | 
						|
      count++;
 | 
						|
    }
 | 
						|
    if (count != no_eras) {
 | 
						|
      printf("count = %d no_eras = %d\n lambda(x) is WRONG\n",count,no_eras);
 | 
						|
      count = -1;
 | 
						|
      goto finish;
 | 
						|
    }
 | 
						|
#if DEBUG >= 2
 | 
						|
    printf("\n Erasure positions as determined by roots of Eras Loc Poly:\n");
 | 
						|
    for (i = 0; i < count; i++)
 | 
						|
      printf("%d ", loc[i]);
 | 
						|
    printf("\n");
 | 
						|
#endif
 | 
						|
#endif
 | 
						|
  }
 | 
						|
  for(i=0;i<NROOTS+1;i++)
 | 
						|
    //    printf("%d  %d  %d\n",i,lambda[i],INDEX_OF[lambda[i]]);
 | 
						|
    b[i] = INDEX_OF[lambda[i]];
 | 
						|
  
 | 
						|
  /*
 | 
						|
   * Begin Berlekamp-Massey algorithm to determine error+erasure
 | 
						|
   * locator polynomial
 | 
						|
   */
 | 
						|
  r = no_eras;
 | 
						|
  el = no_eras;
 | 
						|
  while (++r <= NROOTS) {	/* r is the step number */
 | 
						|
    /* Compute discrepancy at the r-th step in poly-form */
 | 
						|
    discr_r = 0;
 | 
						|
    for (i = 0; i < r; i++){
 | 
						|
      if ((lambda[i] != 0) && (s[r-i-1] != A0)) {
 | 
						|
	discr_r ^= ALPHA_TO[MODNN(INDEX_OF[lambda[i]] + s[r-i-1])];
 | 
						|
      }
 | 
						|
    }
 | 
						|
    discr_r = INDEX_OF[discr_r];	/* Index form */
 | 
						|
    if (discr_r == A0) {
 | 
						|
      /* 2 lines below: B(x) <-- x*B(x) */
 | 
						|
      memmove(&b[1],b,NROOTS*sizeof(b[0]));
 | 
						|
      b[0] = A0;
 | 
						|
    } else {
 | 
						|
      /* 7 lines below: T(x) <-- lambda(x) - discr_r*x*b(x) */
 | 
						|
      t[0] = lambda[0];
 | 
						|
      for (i = 0 ; i < NROOTS; i++) {
 | 
						|
	if(b[i] != A0)
 | 
						|
	  t[i+1] = lambda[i+1] ^ ALPHA_TO[MODNN(discr_r + b[i])];
 | 
						|
	else
 | 
						|
	  t[i+1] = lambda[i+1];
 | 
						|
      }
 | 
						|
      if (2 * el <= r + no_eras - 1) {
 | 
						|
	el = r + no_eras - el;
 | 
						|
	/*
 | 
						|
	 * 2 lines below: B(x) <-- inv(discr_r) *
 | 
						|
	 * lambda(x)
 | 
						|
	 */
 | 
						|
	for (i = 0; i <= NROOTS; i++)
 | 
						|
	  b[i] = (lambda[i] == 0) ? A0 : MODNN(INDEX_OF[lambda[i]] - discr_r + NN);
 | 
						|
      } else {
 | 
						|
	/* 2 lines below: B(x) <-- x*B(x) */
 | 
						|
	memmove(&b[1],b,NROOTS*sizeof(b[0]));
 | 
						|
	b[0] = A0;
 | 
						|
      }
 | 
						|
      memcpy(lambda,t,(NROOTS+1)*sizeof(t[0]));
 | 
						|
    }
 | 
						|
  }
 | 
						|
 | 
						|
  /* Convert lambda to index form and compute deg(lambda(x)) */
 | 
						|
  deg_lambda = 0;
 | 
						|
  for(i=0;i<NROOTS+1;i++){
 | 
						|
    lambda[i] = INDEX_OF[lambda[i]];
 | 
						|
    if(lambda[i] != A0)
 | 
						|
      deg_lambda = i;
 | 
						|
  }
 | 
						|
  /* Find roots of the error+erasure locator polynomial by Chien search */
 | 
						|
  memcpy(®[1],&lambda[1],NROOTS*sizeof(reg[0]));
 | 
						|
  count = 0;		/* Number of roots of lambda(x) */
 | 
						|
  for (i = 1,k=IPRIM-1; i <= NN; i++,k = MODNN(k+IPRIM)) {
 | 
						|
    q = 1; /* lambda[0] is always 0 */
 | 
						|
    for (j = deg_lambda; j > 0; j--){
 | 
						|
      if (reg[j] != A0) {
 | 
						|
	reg[j] = MODNN(reg[j] + j);
 | 
						|
	q ^= ALPHA_TO[reg[j]];
 | 
						|
      }
 | 
						|
    }
 | 
						|
    if (q != 0)
 | 
						|
      continue; /* Not a root */
 | 
						|
    /* store root (index-form) and error location number */
 | 
						|
#if DEBUG>=2
 | 
						|
    printf("count %d root %d loc %d\n",count,i,k);
 | 
						|
#endif
 | 
						|
    root[count] = i;
 | 
						|
    loc[count] = k;
 | 
						|
    /* If we've already found max possible roots,
 | 
						|
     * abort the search to save time
 | 
						|
     */
 | 
						|
    if(++count == deg_lambda)
 | 
						|
      break;
 | 
						|
  }
 | 
						|
  if (deg_lambda != count) {
 | 
						|
    /*
 | 
						|
     * deg(lambda) unequal to number of roots => uncorrectable
 | 
						|
     * error detected
 | 
						|
     */
 | 
						|
    count = -1;
 | 
						|
    goto finish;
 | 
						|
  }
 | 
						|
  /*
 | 
						|
   * Compute err+eras evaluator poly omega(x) = s(x)*lambda(x) (modulo
 | 
						|
   * x**NROOTS). in index form. Also find deg(omega).
 | 
						|
   */
 | 
						|
  deg_omega = deg_lambda-1;
 | 
						|
  for (i = 0; i <= deg_omega;i++){
 | 
						|
    tmp = 0;
 | 
						|
    for(j=i;j >= 0; j--){
 | 
						|
      if ((s[i - j] != A0) && (lambda[j] != A0))
 | 
						|
	tmp ^= ALPHA_TO[MODNN(s[i - j] + lambda[j])];
 | 
						|
    }
 | 
						|
    omega[i] = INDEX_OF[tmp];
 | 
						|
  }
 | 
						|
 | 
						|
  /*
 | 
						|
   * Compute error values in poly-form. num1 = omega(inv(X(l))), num2 =
 | 
						|
   * inv(X(l))**(FCR-1) and den = lambda_pr(inv(X(l))) all in poly-form
 | 
						|
   */
 | 
						|
  for (j = count-1; j >=0; j--) {
 | 
						|
    num1 = 0;
 | 
						|
    for (i = deg_omega; i >= 0; i--) {
 | 
						|
      if (omega[i] != A0)
 | 
						|
	num1  ^= ALPHA_TO[MODNN(omega[i] + i * root[j])];
 | 
						|
    }
 | 
						|
    num2 = ALPHA_TO[MODNN(root[j] * (FCR - 1) + NN)];
 | 
						|
    den = 0;
 | 
						|
    
 | 
						|
    /* lambda[i+1] for i even is the formal derivative lambda_pr of lambda[i] */
 | 
						|
    for (i = min(deg_lambda,NROOTS-1) & ~1; i >= 0; i -=2) {
 | 
						|
      if(lambda[i+1] != A0)
 | 
						|
	den ^= ALPHA_TO[MODNN(lambda[i+1] + i * root[j])];
 | 
						|
    }
 | 
						|
#if DEBUG >= 1
 | 
						|
    if (den == 0) {
 | 
						|
      printf("\n ERROR: denominator = 0\n");
 | 
						|
      count = -1;
 | 
						|
      goto finish;
 | 
						|
    }
 | 
						|
#endif
 | 
						|
    /* Apply error to data */
 | 
						|
    if (num1 != 0 && loc[j] >= PAD) {
 | 
						|
      data[loc[j]-PAD] ^= ALPHA_TO[MODNN(INDEX_OF[num1] + INDEX_OF[num2] + NN - INDEX_OF[den])];
 | 
						|
    }
 | 
						|
  }
 | 
						|
 finish:
 | 
						|
  if(eras_pos != NULL){
 | 
						|
    for(i=0;i<count;i++)
 | 
						|
      eras_pos[i] = loc[i];
 | 
						|
  }
 | 
						|
  return count;
 | 
						|
}
 |