mirror of
				https://github.com/saitohirga/WSJT-X.git
				synced 2025-11-04 05:50:31 -05:00 
			
		
		
		
	
		
			
				
	
	
		
			208 lines
		
	
	
		
			6.1 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			208 lines
		
	
	
		
			6.1 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
//  Copyright Paul A. Bristow 2013.
 | 
						|
//  Copyright Nakhar Agrawal 2013.
 | 
						|
//  Copyright John Maddock 2013.
 | 
						|
//  Copyright Christopher Kormanyos 2013.
 | 
						|
 | 
						|
//  Use, modification and distribution are subject to the
 | 
						|
//  Boost Software License, Version 1.0. (See accompanying file
 | 
						|
//  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
 | 
						|
 | 
						|
#pragma warning (disable : 4100) // unreferenced formal parameter.
 | 
						|
#pragma warning (disable : 4127) // conditional expression is constant.
 | 
						|
 | 
						|
//#define BOOST_MATH_OVERFLOW_ERROR_POLICY ignore_error
 | 
						|
 | 
						|
#include <boost/multiprecision/cpp_dec_float.hpp>
 | 
						|
#include <boost/math/special_functions/bernoulli.hpp>
 | 
						|
 | 
						|
#include <iostream>
 | 
						|
 | 
						|
/* First 50 from 2 to 100 inclusive: */
 | 
						|
/* TABLE[N[BernoulliB[n], 200], {n,2,100,2}] */
 | 
						|
 | 
						|
//SC_(0.1666666666666666666666666666666666666666), 
 | 
						|
//SC_(-0.0333333333333333333333333333333333333333), 
 | 
						|
//SC_(0.0238095238095238095238095238095238095238), 
 | 
						|
//SC_(-0.0333333333333333333333333333333333333333), 
 | 
						|
//SC_(0.0757575757575757575757575757575757575757), 
 | 
						|
//SC_(-0.2531135531135531135531135531135531135531), 
 | 
						|
//SC_(1.1666666666666666666666666666666666666666), 
 | 
						|
//SC_(-7.0921568627450980392156862745098039215686), 
 | 
						|
//SC_(54.9711779448621553884711779448621553884711), 
 | 
						|
 | 
						|
int main()
 | 
						|
{
 | 
						|
  //[bernoulli_example_1
 | 
						|
 | 
						|
/*`A simple example computes the value of B[sub 4] where the return type is `double`,
 | 
						|
note that the argument to bernoulli_b2n is ['2] not ['4] since it computes B[sub 2N].
 | 
						|
 | 
						|
 | 
						|
*/ 
 | 
						|
  try
 | 
						|
  { // It is always wise to use try'n'catch blocks around Boost.Math functions
 | 
						|
    // so that any informative error messages can be displayed in the catch block.
 | 
						|
  std::cout
 | 
						|
    << std::setprecision(std::numeric_limits<double>::digits10)
 | 
						|
    << boost::math::bernoulli_b2n<double>(2) << std::endl;
 | 
						|
 | 
						|
/*`So B[sub 4] == -1/30 == -0.0333333333333333 
 | 
						|
 | 
						|
If we use Boost.Multiprecision and its 50 decimal digit floating-point type `cpp_dec_float_50`,
 | 
						|
we can calculate the value of much larger numbers like B[sub 200]
 | 
						|
and also obtain much higher precision.
 | 
						|
*/
 | 
						|
 | 
						|
  std::cout
 | 
						|
    << std::setprecision(std::numeric_limits<boost::multiprecision::cpp_dec_float_50>::digits10)
 | 
						|
    << boost::math::bernoulli_b2n<boost::multiprecision::cpp_dec_float_50>(100) << std::endl;
 | 
						|
 
 | 
						|
//] //[/bernoulli_example_1]
 | 
						|
 | 
						|
//[bernoulli_example_2
 | 
						|
/*`We can compute and save all the float-precision Bernoulli numbers from one call.
 | 
						|
*/
 | 
						|
  std::vector<float> bn; // Space for 32-bit `float` precision Bernoulli numbers.
 | 
						|
 | 
						|
  // Start with Bernoulli number 0.
 | 
						|
  boost::math::bernoulli_b2n<float>(0, 32, std::back_inserter(bn)); // Fill vector with even Bernoulli numbers.
 | 
						|
 | 
						|
  for(size_t i = 0; i < bn.size(); i++)
 | 
						|
  { // Show vector of even Bernoulli numbers, showing all significant decimal digits.
 | 
						|
      std::cout << std::setprecision(std::numeric_limits<float>::digits10)
 | 
						|
          << i*2 << ' '           
 | 
						|
          << bn[i]
 | 
						|
          << std::endl;
 | 
						|
  }
 | 
						|
//] //[/bernoulli_example_2]
 | 
						|
 | 
						|
  }
 | 
						|
  catch(const std::exception& ex)
 | 
						|
  {
 | 
						|
     std::cout << "Thrown Exception caught: " << ex.what() << std::endl;
 | 
						|
  }
 | 
						|
 | 
						|
 | 
						|
//[bernoulli_example_3    
 | 
						|
/*`Of course, for any floating-point type, there is a maximum Bernoulli number that can be computed
 | 
						|
  before it overflows the exponent.
 | 
						|
  By default policy, if we try to compute too high a Bernoulli number, an exception will be thrown.
 | 
						|
*/
 | 
						|
  try
 | 
						|
  {
 | 
						|
    std::cout
 | 
						|
    << std::setprecision(std::numeric_limits<float>::digits10)
 | 
						|
    << "Bernoulli number " << 33 * 2 <<std::endl;
 | 
						|
 | 
						|
    std::cout << boost::math::bernoulli_b2n<float>(33) << std::endl;
 | 
						|
  }
 | 
						|
  catch (std::exception ex)
 | 
						|
  {
 | 
						|
    std::cout << "Thrown Exception caught: " << ex.what() << std::endl;
 | 
						|
  }
 | 
						|
 | 
						|
/*`
 | 
						|
and we will get a helpful error message (provided try'n'catch blocks are used).
 | 
						|
*/
 | 
						|
 | 
						|
//] //[/bernoulli_example_3]
 | 
						|
 | 
						|
//[bernoulli_example_4
 | 
						|
/*For example:
 | 
						|
*/
 | 
						|
   std::cout << "boost::math::max_bernoulli_b2n<float>::value = "  << boost::math::max_bernoulli_b2n<float>::value << std::endl;
 | 
						|
   std::cout << "Maximum Bernoulli number using float is " << boost::math::bernoulli_b2n<float>( boost::math::max_bernoulli_b2n<float>::value) << std::endl;
 | 
						|
   std::cout << "boost::math::max_bernoulli_b2n<double>::value = "  << boost::math::max_bernoulli_b2n<double>::value << std::endl;
 | 
						|
   std::cout << "Maximum Bernoulli number using double is " << boost::math::bernoulli_b2n<double>( boost::math::max_bernoulli_b2n<double>::value) << std::endl;
 | 
						|
  //] //[/bernoulli_example_4]
 | 
						|
 | 
						|
//[tangent_example_1
 | 
						|
 | 
						|
/*`We can compute and save a few Tangent numbers.
 | 
						|
*/
 | 
						|
  std::vector<float> tn; // Space for some `float` precision Tangent numbers.
 | 
						|
 | 
						|
  // Start with Bernoulli number 0.
 | 
						|
  boost::math::tangent_t2n<float>(1, 6, std::back_inserter(tn)); // Fill vector with even Tangent numbers.
 | 
						|
 | 
						|
  for(size_t i = 0; i < tn.size(); i++)
 | 
						|
  { // Show vector of even Tangent numbers, showing all significant decimal digits.
 | 
						|
      std::cout << std::setprecision(std::numeric_limits<float>::digits10)
 | 
						|
          << " "
 | 
						|
          << tn[i];
 | 
						|
  }
 | 
						|
  std::cout << std::endl;
 | 
						|
 | 
						|
//] [/tangent_example_1]
 | 
						|
 | 
						|
// 1, 2, 16, 272, 7936, 353792, 22368256, 1903757312 
 | 
						|
 | 
						|
 | 
						|
 | 
						|
} // int main()
 | 
						|
 | 
						|
/*
 | 
						|
 | 
						|
//[bernoulli_output_1
 | 
						|
  -3.6470772645191354362138308865549944904868234686191e+215
 | 
						|
//] //[/bernoulli_output_1]
 | 
						|
 | 
						|
//[bernoulli_output_2
 | 
						|
 | 
						|
  0 1
 | 
						|
  2 0.166667
 | 
						|
  4 -0.0333333
 | 
						|
  6 0.0238095
 | 
						|
  8 -0.0333333
 | 
						|
  10 0.0757576
 | 
						|
  12 -0.253114
 | 
						|
  14 1.16667
 | 
						|
  16 -7.09216
 | 
						|
  18 54.9712
 | 
						|
  20 -529.124
 | 
						|
  22 6192.12
 | 
						|
  24 -86580.3
 | 
						|
  26 1.42552e+006
 | 
						|
  28 -2.72982e+007
 | 
						|
  30 6.01581e+008
 | 
						|
  32 -1.51163e+010
 | 
						|
  34 4.29615e+011
 | 
						|
  36 -1.37117e+013
 | 
						|
  38 4.88332e+014
 | 
						|
  40 -1.92966e+016
 | 
						|
  42 8.41693e+017
 | 
						|
  44 -4.03381e+019
 | 
						|
  46 2.11507e+021
 | 
						|
  48 -1.20866e+023
 | 
						|
  50 7.50087e+024
 | 
						|
  52 -5.03878e+026
 | 
						|
  54 3.65288e+028
 | 
						|
  56 -2.84988e+030
 | 
						|
  58 2.38654e+032
 | 
						|
  60 -2.14e+034
 | 
						|
  62 2.0501e+036
 | 
						|
//] //[/bernoulli_output_2]
 | 
						|
 | 
						|
//[bernoulli_output_3
 | 
						|
 Bernoulli number 66
 | 
						|
 Thrown Exception caught: Error in function boost::math::bernoulli_b2n<float>(n):
 | 
						|
 Overflow evaluating function at 33
 | 
						|
//] //[/bernoulli_output_3]
 | 
						|
//[bernoulli_output_4
 | 
						|
  boost::math::max_bernoulli_b2n<float>::value = 32
 | 
						|
  Maximum Bernoulli number using float is -2.0938e+038
 | 
						|
  boost::math::max_bernoulli_b2n<double>::value = 129
 | 
						|
  Maximum Bernoulli number using double is 1.33528e+306
 | 
						|
//] //[/bernoulli_output_4]
 | 
						|
 | 
						|
  
 | 
						|
//[tangent_output_1
 | 
						|
   1 2 16 272 7936 353792
 | 
						|
//] [/tangent_output_1]
 | 
						|
 | 
						|
 | 
						|
 | 
						|
*/
 | 
						|
 | 
						|
 |