mirror of
				https://github.com/saitohirga/WSJT-X.git
				synced 2025-11-04 05:50:31 -05:00 
			
		
		
		
	
		
			
				
	
	
		
			279 lines
		
	
	
		
			9.4 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			279 lines
		
	
	
		
			9.4 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
// distribution_construction.cpp
 | 
						|
 | 
						|
// Copyright Paul A. Bristow 2007, 2010, 2012.
 | 
						|
 | 
						|
// Use, modification and distribution are subject to the
 | 
						|
// Boost Software License, Version 1.0.
 | 
						|
// (See accompanying file LICENSE_1_0.txt
 | 
						|
// or copy at http://www.boost.org/LICENSE_1_0.txt)
 | 
						|
 | 
						|
// Caution: this file contains Quickbook markup as well as code
 | 
						|
// and comments, don't change any of the special comment markups!
 | 
						|
 | 
						|
#ifdef _MSC_VER
 | 
						|
#  pragma warning (disable : 4996) // disable -D_SCL_SECURE_NO_WARNINGS C++ 'Checked Iterators'
 | 
						|
#endif
 | 
						|
 | 
						|
#include <iostream>
 | 
						|
#include <exception>
 | 
						|
 | 
						|
//[distribution_construction_1
 | 
						|
 | 
						|
/*`
 | 
						|
The structure of distributions is rather different from some other statistical libraries,
 | 
						|
for example, those written in less object-oriented language like FORTRAN and C:
 | 
						|
these provide a few arguments to each free function.
 | 
						|
 | 
						|
Boost.Math library provides each distribution as a template C++ class.
 | 
						|
A distribution is constructed with a few arguments, and then
 | 
						|
member and non-member functions are used to find values of the
 | 
						|
distribution, often a function of a random variate.
 | 
						|
 | 
						|
For this demonstration, first we need some includes to access the
 | 
						|
negative binomial distribution (and the binomial, beta and gamma distributions too).
 | 
						|
 | 
						|
To demonstrate the use with a high precision User-defined floating-point type
 | 
						|
`cpp_dec_float` we also need an include from Boost.Multiprecision.
 | 
						|
*/
 | 
						|
 | 
						|
#include <boost/math/distributions/negative_binomial.hpp> // for negative_binomial_distribution
 | 
						|
  using boost::math::negative_binomial_distribution; // default type is double.
 | 
						|
  using boost::math::negative_binomial; // typedef provides default type is double.
 | 
						|
#include <boost/math/distributions/binomial.hpp> // for binomial_distribution.
 | 
						|
#include <boost/math/distributions/beta.hpp> // for beta_distribution.
 | 
						|
#include <boost/math/distributions/gamma.hpp> // for gamma_distribution.
 | 
						|
#include <boost/math/distributions/normal.hpp> // for normal_distribution.
 | 
						|
 | 
						|
#include <boost/multiprecision/cpp_dec_float.hpp> // for cpp_dec_float_100
 | 
						|
/*`
 | 
						|
Several examples of constructing distributions follow:
 | 
						|
*/
 | 
						|
//] [/distribution_construction_1 end of Quickbook in C++ markup]
 | 
						|
 | 
						|
int main()
 | 
						|
{
 | 
						|
  try
 | 
						|
  {
 | 
						|
//[distribution_construction_2
 | 
						|
/*`
 | 
						|
First, a negative binomial distribution with 8 successes
 | 
						|
and a success fraction 0.25, 25% or 1 in 4, is constructed like this:
 | 
						|
*/
 | 
						|
  boost::math::negative_binomial_distribution<double> mydist0(8., 0.25);
 | 
						|
  /*`
 | 
						|
  But this is inconveniently long, so we might be tempted to write
 | 
						|
  */
 | 
						|
  using namespace boost::math;
 | 
						|
  /*`
 | 
						|
  but this might risk ambiguity with names in `std random` so
 | 
						|
  [*much] better is explicit `using boost::math::` statements, for example:
 | 
						|
  */
 | 
						|
  using boost::math::negative_binomial_distribution;
 | 
						|
  /*`
 | 
						|
  and we can still reduce typing.
 | 
						|
 | 
						|
  Since the vast majority of applications use will be using `double` precision,
 | 
						|
  the template argument to the distribution (`RealType`) defaults
 | 
						|
  to type `double`, so we can also write:
 | 
						|
  */
 | 
						|
 | 
						|
  negative_binomial_distribution<> mydist9(8., 0.25); // Uses default `RealType = double`.
 | 
						|
 | 
						|
  /*`
 | 
						|
  But the name `negative_binomial_distribution` is still inconveniently long,
 | 
						|
  so, for most distributions, a convenience `typedef` is provided, for example:
 | 
						|
 | 
						|
     typedef negative_binomial_distribution<double> negative_binomial; // Reserved name of type double.
 | 
						|
 | 
						|
  [caution
 | 
						|
  This convenience typedef is [*not provided] if a clash would occur
 | 
						|
  with the name of a function: currently only `beta` and `gamma`
 | 
						|
  fall into this category.
 | 
						|
  ]
 | 
						|
 | 
						|
  So, after a using statement,
 | 
						|
  */
 | 
						|
 | 
						|
  using boost::math::negative_binomial;
 | 
						|
 | 
						|
  /*`
 | 
						|
  we have a convenient typedef to `negative_binomial_distribution<double>`:
 | 
						|
  */
 | 
						|
  negative_binomial mydist(8., 0.25);
 | 
						|
 | 
						|
  /*`
 | 
						|
  Some more examples using the convenience typedef:
 | 
						|
  */
 | 
						|
  negative_binomial mydist10(5., 0.4); // Both arguments double.
 | 
						|
  /*`
 | 
						|
  And automatic conversion takes place, so you can use integers and floats:
 | 
						|
  */
 | 
						|
  negative_binomial mydist11(5, 0.4); // Using provided typedef double, int and double arguments.
 | 
						|
  /*`
 | 
						|
  This is probably the most common usage.
 | 
						|
  */
 | 
						|
  negative_binomial mydist12(5., 0.4F); // Double and float arguments.
 | 
						|
  negative_binomial mydist13(5, 1); // Both arguments integer.
 | 
						|
 | 
						|
  /*`
 | 
						|
  Similarly for most other distributions like the binomial.
 | 
						|
  */
 | 
						|
  binomial mybinomial(1, 0.5); // is more concise than
 | 
						|
  binomial_distribution<> mybinomd1(1, 0.5);
 | 
						|
 | 
						|
  /*`
 | 
						|
  For cases when the typdef distribution name would clash with a math special function
 | 
						|
  (currently only beta and gamma)
 | 
						|
  the typedef is deliberately not provided, and the longer version of the name
 | 
						|
  must be used.  For example do not use:
 | 
						|
 | 
						|
     using boost::math::beta;
 | 
						|
     beta mybetad0(1, 0.5); // Error beta is a math FUNCTION!
 | 
						|
 | 
						|
  Which produces the error messages:
 | 
						|
 | 
						|
  [pre
 | 
						|
  error C2146: syntax error : missing ';' before identifier 'mybetad0'
 | 
						|
  warning C4551: function call missing argument list
 | 
						|
  error C3861: 'mybetad0': identifier not found
 | 
						|
  ]
 | 
						|
 | 
						|
  Instead you should use:
 | 
						|
  */
 | 
						|
  using boost::math::beta_distribution;
 | 
						|
  beta_distribution<> mybetad1(1, 0.5);
 | 
						|
  /*`
 | 
						|
  or for the gamma distribution:
 | 
						|
  */
 | 
						|
  gamma_distribution<> mygammad1(1, 0.5);
 | 
						|
 | 
						|
  /*`
 | 
						|
  We can, of course, still provide the type explicitly thus:
 | 
						|
  */
 | 
						|
 | 
						|
  // Explicit double precision:  both arguments are double:
 | 
						|
  negative_binomial_distribution<double>        mydist1(8., 0.25);
 | 
						|
 | 
						|
  // Explicit float precision, double arguments are truncated to float:
 | 
						|
  negative_binomial_distribution<float>         mydist2(8., 0.25);
 | 
						|
 | 
						|
  // Explicit float precision, integer & double arguments converted to float:
 | 
						|
  negative_binomial_distribution<float>         mydist3(8, 0.25);
 | 
						|
 | 
						|
  // Explicit float precision, float arguments, so no conversion:
 | 
						|
  negative_binomial_distribution<float>         mydist4(8.F, 0.25F);
 | 
						|
 | 
						|
  // Explicit float precision, integer arguments promoted to float.
 | 
						|
  negative_binomial_distribution<float>         mydist5(8, 1);
 | 
						|
 | 
						|
  // Explicit double precision:
 | 
						|
  negative_binomial_distribution<double>        mydist6(8., 0.25);
 | 
						|
 | 
						|
  // Explicit long double precision:
 | 
						|
  negative_binomial_distribution<long double>   mydist7(8., 0.25);
 | 
						|
 | 
						|
  /*`
 | 
						|
  And you can use your own RealType,
 | 
						|
  for example, `boost::math::cpp_dec_float_50` (an arbitrary 50 decimal digits precision type),
 | 
						|
  then we can write:
 | 
						|
  */
 | 
						|
  using namespace boost::multiprecision;
 | 
						|
 | 
						|
  negative_binomial_distribution<cpp_dec_float_50>  mydist8(8, 0.25);
 | 
						|
  // `integer` arguments are promoted to your RealType exactly, but
 | 
						|
  // `double` argument are converted to RealType,
 | 
						|
  // possibly losing precision, so don't write:
 | 
						|
 | 
						|
  negative_binomial_distribution<cpp_dec_float_50>  mydist20(8, 0.23456789012345678901234567890);
 | 
						|
 // to avoid truncation of second parameter to `0.2345678901234567`.
 | 
						|
 | 
						|
  negative_binomial_distribution<cpp_dec_float_50>  mydist21(8, cpp_dec_float_50("0.23456789012345678901234567890") );
 | 
						|
 | 
						|
  // Ensure that all potentially significant digits are shown.
 | 
						|
  std::cout.precision(std::numeric_limits<cpp_dec_float_50>::digits10);
 | 
						|
  cpp_dec_float_50 x("1.23456789012345678901234567890");
 | 
						|
  std::cout << pdf(mydist8, x) << std::endl;
 | 
						|
/*` showing  0.00012630010495970320103876754721976419438231705359935
 | 
						|
 | 
						|
[warning When using multiprecision, it is all too easy to get accidental truncation!]
 | 
						|
 | 
						|
For example, if you write
 | 
						|
*/
 | 
						|
  std::cout << pdf(mydist8, 1.23456789012345678901234567890) << std::endl;
 | 
						|
/*`
 | 
						|
showing  0.00012630010495970318465064569310967179576805651692929,
 | 
						|
which is wrong at about the 17th decimal digit!
 | 
						|
 | 
						|
This is because the value provided is truncated to a `double`, effectively
 | 
						|
  `double x = 1.23456789012345678901234567890;`
 | 
						|
 | 
						|
Then the now `double x` is passed to function `pdf`,
 | 
						|
and this truncated `double` value is finally promoted to `cpp_dec_float_50`.
 | 
						|
 | 
						|
Another way of quietly getting the wrong answer is to write:
 | 
						|
*/
 | 
						|
  std::cout << pdf(mydist8, cpp_dec_float_50(1.23456789012345678901234567890)) << std::endl;
 | 
						|
/*`
 | 
						|
A correct way from a multi-digit string value is
 | 
						|
*/
 | 
						|
  std::cout << pdf(mydist8, cpp_dec_float_50("1.23456789012345678901234567890")) << std::endl;
 | 
						|
/*`
 | 
						|
 | 
						|
[tip Getting about 17 decimal digits followed by many zeros is often a sign of accidental truncation.]
 | 
						|
*/
 | 
						|
 | 
						|
/*`
 | 
						|
[h4 Default arguments to distribution constructors.]
 | 
						|
 | 
						|
Note that default constructor arguments are only provided for some distributions.
 | 
						|
So if you wrongly assume a default argument, you will get an error message, for example:
 | 
						|
 | 
						|
   negative_binomial_distribution<> mydist8;
 | 
						|
 | 
						|
[pre error C2512 no appropriate default constructor available.]
 | 
						|
 | 
						|
No default constructors are provided for the `negative binomial` distribution,
 | 
						|
because it is difficult to chose any sensible default values for this distribution.
 | 
						|
 | 
						|
For other distributions, like the normal distribution,
 | 
						|
it is obviously very useful to provide 'standard'
 | 
						|
defaults for the mean (zero) and standard deviation (unity) thus:
 | 
						|
 | 
						|
    normal_distribution(RealType mean = 0, RealType sd = 1);
 | 
						|
 | 
						|
So in this case we can write:
 | 
						|
*/
 | 
						|
  using boost::math::normal;
 | 
						|
 | 
						|
  normal norm1;       // Standard normal distribution.
 | 
						|
  normal norm2(2);    // Mean = 2, std deviation = 1.
 | 
						|
  normal norm3(2, 3); // Mean = 2, std deviation = 3.
 | 
						|
 | 
						|
  }
 | 
						|
  catch(std::exception &ex)
 | 
						|
  {
 | 
						|
    std::cout << ex.what() << std::endl;
 | 
						|
  }
 | 
						|
 | 
						|
  return 0;
 | 
						|
}  // int main()
 | 
						|
 | 
						|
/*`There is no useful output from this demonstration program, of course. */
 | 
						|
 | 
						|
//] [/end of distribution_construction_2]
 | 
						|
 | 
						|
/*
 | 
						|
//[distribution_construction_output
 | 
						|
 | 
						|
  0.00012630010495970320103876754721976419438231705359935
 | 
						|
  0.00012630010495970318465064569310967179576805651692929
 | 
						|
  0.00012630010495970318465064569310967179576805651692929
 | 
						|
  0.00012630010495970320103876754721976419438231705359935
 | 
						|
 | 
						|
//] [/distribution_construction_output]
 | 
						|
 | 
						|
*/
 | 
						|
 | 
						|
 | 
						|
 |