mirror of
				https://github.com/saitohirga/WSJT-X.git
				synced 2025-10-31 13:10:19 -04:00 
			
		
		
		
	
		
			
				
	
	
		
			555 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
			
		
		
	
	
			555 lines
		
	
	
		
			15 KiB
		
	
	
	
		
			Plaintext
		
	
	
	
	
	
| [/
 | |
| Copyright (c) 2006 Xiaogang Zhang
 | |
| Copyright (c) 2006 John Maddock
 | |
| Use, modification and distribution are subject to the
 | |
| Boost Software License, Version 1.0. (See accompanying file
 | |
| LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
 | |
| ]
 | |
| 
 | |
| [section:ellint_1 Elliptic Integrals of the First Kind - Legendre Form]
 | |
| 
 | |
| [heading Synopsis]
 | |
| 
 | |
| ``
 | |
|   #include <boost/math/special_functions/ellint_1.hpp>
 | |
| ``
 | |
| 
 | |
|   namespace boost { namespace math {
 | |
| 
 | |
|   template <class T1, class T2>
 | |
|   ``__sf_result`` ellint_1(T1 k, T2 phi);
 | |
| 
 | |
|   template <class T1, class T2, class ``__Policy``>
 | |
|   ``__sf_result`` ellint_1(T1 k, T2 phi, const ``__Policy``&);
 | |
| 
 | |
|   template <class T>
 | |
|   ``__sf_result`` ellint_1(T k);
 | |
| 
 | |
|   template <class T, class ``__Policy``>
 | |
|   ``__sf_result`` ellint_1(T k, const ``__Policy``&);
 | |
| 
 | |
|   }} // namespaces
 | |
|   
 | |
| [heading Description]
 | |
| 
 | |
| These two functions evaluate the incomplete elliptic integral of the first kind
 | |
| ['F([phi], k)] and its complete counterpart ['K(k) = F([pi]/2, k)].
 | |
| 
 | |
| [graph ellint_1]
 | |
| 
 | |
| The return type of these functions is computed using the __arg_promotion_rules
 | |
| when T1 and T2 are different types: when they are the same type then the result
 | |
| is the same type as the arguments.
 | |
| 
 | |
|   template <class T1, class T2>
 | |
|   ``__sf_result`` ellint_1(T1 k, T2 phi);
 | |
|   
 | |
|   template <class T1, class T2, class ``__Policy``>
 | |
|   ``__sf_result`` ellint_1(T1 k, T2 phi, const ``__Policy``&);
 | |
|   
 | |
| Returns the incomplete elliptic integral of the first kind ['F([phi], k)]:
 | |
| 
 | |
| [equation ellint2]
 | |
| 
 | |
| Requires -1 <= k <= 1, otherwise returns the result of __domain_error.
 | |
| 
 | |
| [optional_policy]
 | |
| 
 | |
|   template <class T>
 | |
|   ``__sf_result`` ellint_1(T k);
 | |
|   
 | |
|   template <class T>
 | |
|   ``__sf_result`` ellint_1(T k, const ``__Policy``&);
 | |
|   
 | |
| Returns the complete elliptic integral of the first kind ['K(k)]:
 | |
| 
 | |
| [equation ellint6]
 | |
| 
 | |
| Requires -1 <= k <= 1, otherwise returns the result of __domain_error.
 | |
| 
 | |
| [optional_policy]
 | |
| 
 | |
| [heading Accuracy]
 | |
| 
 | |
| These functions are computed using only basic arithmetic operations, so
 | |
| there isn't much variation in accuracy over differing platforms.
 | |
| Note that only results for the widest floating point type on the 
 | |
| system are given as narrower types have __zero_error.  All values
 | |
| are relative errors in units of epsilon.
 | |
| 
 | |
| [table_ellint_1]
 | |
| 
 | |
| [heading Testing]
 | |
| 
 | |
| The tests use a mixture of spot test values calculated using the online
 | |
| calculator at [@http://functions.wolfram.com/ functions.wolfram.com],
 | |
| and random test data generated using
 | |
| NTL::RR at 1000-bit precision and this implementation.
 | |
| 
 | |
| [heading Implementation]
 | |
| 
 | |
| These functions are implemented in terms of Carlson's integrals
 | |
| using the relations:
 | |
| 
 | |
| [equation ellint19]
 | |
| 
 | |
| and
 | |
| 
 | |
| [equation ellint20]
 | |
| 
 | |
| 
 | |
| [endsect]
 | |
| 
 | |
| [section:ellint_2 Elliptic Integrals of the Second Kind - Legendre Form]
 | |
| 
 | |
| [heading Synopsis]
 | |
| 
 | |
| ``
 | |
|   #include <boost/math/special_functions/ellint_2.hpp>
 | |
| ``
 | |
| 
 | |
|   namespace boost { namespace math {
 | |
| 
 | |
|   template <class T1, class T2>
 | |
|   ``__sf_result`` ellint_2(T1 k, T2 phi);
 | |
| 
 | |
|   template <class T1, class T2, class ``__Policy``>
 | |
|   ``__sf_result`` ellint_2(T1 k, T2 phi, const ``__Policy``&);
 | |
| 
 | |
|   template <class T>
 | |
|   ``__sf_result`` ellint_2(T k);
 | |
| 
 | |
|   template <class T, class ``__Policy``>
 | |
|   ``__sf_result`` ellint_2(T k, const ``__Policy``&);
 | |
| 
 | |
|   }} // namespaces
 | |
|   
 | |
| [heading Description]
 | |
| 
 | |
| These two functions evaluate the incomplete elliptic integral of the second kind
 | |
| ['E([phi], k)] and its complete counterpart ['E(k) = E([pi]/2, k)].
 | |
| 
 | |
| [graph ellint_2]
 | |
| 
 | |
| The return type of these functions is computed using the __arg_promotion_rules
 | |
| when T1 and T2 are different types: when they are the same type then the result
 | |
| is the same type as the arguments.
 | |
| 
 | |
|   template <class T1, class T2>
 | |
|   ``__sf_result`` ellint_2(T1 k, T2 phi);
 | |
|   
 | |
|   template <class T1, class T2, class ``__Policy``>
 | |
|   ``__sf_result`` ellint_2(T1 k, T2 phi, const ``__Policy``&);
 | |
|   
 | |
| Returns the incomplete elliptic integral of the second kind ['E([phi], k)]:
 | |
| 
 | |
| [equation ellint3]
 | |
| 
 | |
| Requires -1 <= k <= 1, otherwise returns the result of __domain_error.
 | |
| 
 | |
| [optional_policy]
 | |
| 
 | |
|   template <class T>
 | |
|   ``__sf_result`` ellint_2(T k);
 | |
|   
 | |
|   template <class T>
 | |
|   ``__sf_result`` ellint_2(T k, const ``__Policy``&);
 | |
|   
 | |
| Returns the complete elliptic integral of the second kind ['E(k)]:
 | |
| 
 | |
| [equation ellint7]
 | |
| 
 | |
| Requires -1 <= k <= 1, otherwise returns the result of __domain_error.
 | |
| 
 | |
| [optional_policy]
 | |
| 
 | |
| [heading Accuracy]
 | |
| 
 | |
| These functions are computed using only basic arithmetic operations, so
 | |
| there isn't much variation in accuracy over differing platforms.
 | |
| Note that only results for the widest floating point type on the 
 | |
| system are given as narrower types have __zero_error.  All values
 | |
| are relative errors in units of epsilon.
 | |
| 
 | |
| [table_ellint_2]
 | |
| 
 | |
| [heading Testing]
 | |
| 
 | |
| The tests use a mixture of spot test values calculated using the online
 | |
| calculator at [@http://functions.wolfram.com
 | |
| functions.wolfram.com], and random test data generated using
 | |
| NTL::RR at 1000-bit precision and this implementation.
 | |
| 
 | |
| [heading Implementation]
 | |
| 
 | |
| These functions are implemented in terms of Carlson's integrals
 | |
| using the relations:
 | |
| 
 | |
| [equation ellint21]
 | |
| 
 | |
| and
 | |
| 
 | |
| [equation ellint22]
 | |
| 
 | |
| 
 | |
| [endsect]
 | |
| 
 | |
| [section:ellint_3 Elliptic Integrals of the Third Kind - Legendre Form]
 | |
| 
 | |
| [heading Synopsis]
 | |
| 
 | |
| ``
 | |
|   #include <boost/math/special_functions/ellint_3.hpp>
 | |
| ``
 | |
| 
 | |
|   namespace boost { namespace math {
 | |
| 
 | |
|   template <class T1, class T2, class T3>
 | |
|   ``__sf_result`` ellint_3(T1 k, T2 n, T3 phi);
 | |
| 
 | |
|   template <class T1, class T2, class T3, class ``__Policy``>
 | |
|   ``__sf_result`` ellint_3(T1 k, T2 n, T3 phi, const ``__Policy``&);
 | |
| 
 | |
|   template <class T1, class T2>
 | |
|   ``__sf_result`` ellint_3(T1 k, T2 n);
 | |
| 
 | |
|   template <class T1, class T2, class ``__Policy``>
 | |
|   ``__sf_result`` ellint_3(T1 k, T2 n, const ``__Policy``&);
 | |
| 
 | |
|   }} // namespaces
 | |
|   
 | |
| [heading Description]
 | |
| 
 | |
| These two functions evaluate the incomplete elliptic integral of the third kind
 | |
| ['[Pi](n, [phi], k)] and its complete counterpart ['[Pi](n, k) = E(n, [pi]/2, k)].
 | |
| 
 | |
| [graph ellint_3]
 | |
| 
 | |
| The return type of these functions is computed using the __arg_promotion_rules
 | |
| when the arguments are of different types: when they are the same type then the result
 | |
| is the same type as the arguments.
 | |
| 
 | |
|   template <class T1, class T2, class T3>
 | |
|   ``__sf_result`` ellint_3(T1 k, T2 n, T3 phi);
 | |
|   
 | |
|   template <class T1, class T2, class T3, class ``__Policy``>
 | |
|   ``__sf_result`` ellint_3(T1 k, T2 n, T3 phi, const ``__Policy``&);
 | |
|   
 | |
| Returns the incomplete elliptic integral of the third kind ['[Pi](n, [phi], k)]:
 | |
| 
 | |
| [equation ellint4]
 | |
| 
 | |
| Requires ['-1 <= k <= 1] and ['n < 1/sin[super 2]([phi])], otherwise 
 | |
| returns the result of __domain_error (outside this range the result 
 | |
| would be complex).
 | |
| 
 | |
| [optional_policy]
 | |
| 
 | |
|   template <class T1, class T2>
 | |
|   ``__sf_result`` ellint_3(T1 k, T2 n);
 | |
|   
 | |
|   template <class T1, class T2, class ``__Policy``>
 | |
|   ``__sf_result`` ellint_3(T1 k, T2 n, const ``__Policy``&);
 | |
|   
 | |
| Returns the complete elliptic integral of the first kind ['[Pi](n, k)]:
 | |
| 
 | |
| [equation ellint8]
 | |
| 
 | |
| Requires ['-1 <= k <= 1] and ['n < 1], otherwise returns the 
 | |
| result of __domain_error (outside this range the result would be complex).
 | |
| 
 | |
| [optional_policy]
 | |
| 
 | |
| [heading Accuracy]
 | |
| 
 | |
| These functions are computed using only basic arithmetic operations, so
 | |
| there isn't much variation in accuracy over differing platforms.
 | |
| Note that only results for the widest floating point type on the 
 | |
| system are given as narrower types have __zero_error.  All values
 | |
| are relative errors in units of epsilon.
 | |
| 
 | |
| [table_ellint_3]
 | |
| 
 | |
| [heading Testing]
 | |
| 
 | |
| The tests use a mixture of spot test values calculated using the online
 | |
| calculator at [@http://functions.wolfram.com
 | |
| functions.wolfram.com], and random test data generated using
 | |
| NTL::RR at 1000-bit precision and this implementation.
 | |
| 
 | |
| [heading Implementation]
 | |
| 
 | |
| The implementation for [Pi](n, [phi], k) first siphons off the special cases:
 | |
| 
 | |
| ['[Pi](0, [phi], k) = F([phi], k)]
 | |
| 
 | |
| ['[Pi](n, [pi]/2, k) = [Pi](n, k)]
 | |
| 
 | |
| and
 | |
| 
 | |
| [equation ellint23]
 | |
| 
 | |
| Then if n < 0 the relations (A&S 17.7.15/16):
 | |
| 
 | |
| [equation ellint24]
 | |
| 
 | |
| are used to shift /n/ to the range \[0, 1\].
 | |
| 
 | |
| Then the relations:
 | |
| 
 | |
| ['[Pi](n, -[phi], k) = -[Pi](n, [phi], k)]
 | |
| 
 | |
| ['[Pi](n, [phi]+m[pi], k) = [Pi](n, [phi], k) + 2m[Pi](n, k) ; n <= 1]
 | |
| 
 | |
| ['[Pi](n, [phi]+m[pi], k) = [Pi](n, [phi], k) ; n > 1] 
 | |
| [footnote I haven't been able to find a literature reference for this
 | |
| relation, but it appears to be the convention used by Mathematica.
 | |
| Intuitively the first ['2 * m * [Pi](n, k)] terms cancel out as the
 | |
| derivative alternates between +[infin] and -[infin].]
 | |
| 
 | |
| are used to move [phi][space] to the range \[0, [pi]\/2\].
 | |
| 
 | |
| The functions are then implemented in terms of Carlson's integrals
 | |
| using the relations:
 | |
| 
 | |
| [equation ellint25]
 | |
| 
 | |
| and
 | |
| 
 | |
| [equation ellint26]
 | |
| 
 | |
| [endsect]
 | |
| 
 | |
| [section:ellint_d Elliptic Integral D - Legendre Form]
 | |
| 
 | |
| [heading Synopsis]
 | |
| 
 | |
| ``
 | |
|   #include <boost/math/special_functions/ellint_d.hpp>
 | |
| ``
 | |
| 
 | |
|   namespace boost { namespace math {
 | |
| 
 | |
|   template <class T1, class T2>
 | |
|   ``__sf_result`` ellint_d(T1 k, T2 phi);
 | |
| 
 | |
|   template <class T1, class T2, class ``__Policy``>
 | |
|   ``__sf_result`` ellint_d(T1 k, T2 phi, const ``__Policy``&);
 | |
| 
 | |
|   template <class T1>
 | |
|   ``__sf_result`` ellint_d(T1 k);
 | |
| 
 | |
|   template <class T1, class ``__Policy``>
 | |
|   ``__sf_result`` ellint_d(T1 k, const ``__Policy``&);
 | |
| 
 | |
|   }} // namespaces
 | |
|   
 | |
| [heading Description]
 | |
| 
 | |
| These two functions evaluate the incomplete elliptic integral 
 | |
| ['D([phi], k)] and its complete counterpart ['D(k) = D([pi]/2, k)].
 | |
| 
 | |
| The return type of these functions is computed using the __arg_pomotion_rules
 | |
| when the arguments are of different types: when they are the same type then the result
 | |
| is the same type as the arguments.
 | |
| 
 | |
|   template <class T1, class T2>
 | |
|   ``__sf_result`` ellint_d(T1 k, T2 phi);
 | |
|   
 | |
|   template <class T1, class T2, class ``__Policy``>
 | |
|   ``__sf_result`` ellint_3(T1 k, T2 phi, const ``__Policy``&);
 | |
|   
 | |
| Returns the incomplete elliptic integral:
 | |
| 
 | |
| [equation ellint_d]
 | |
| 
 | |
| Requires ['-1 <= k <= 1], otherwise 
 | |
| returns the result of __domain_error (outside this range the result 
 | |
| would be complex).
 | |
| 
 | |
| [optional_policy]
 | |
| 
 | |
|   template <class T1>
 | |
|   ``__sf_result`` ellint_d(T1 k);
 | |
|   
 | |
|   template <class T1, class ``__Policy``>
 | |
|   ``__sf_result`` ellint_d(T1 k, const ``__Policy``&);
 | |
|   
 | |
| Returns the complete elliptic integral ['D(k) = D([pi]/2, k)]
 | |
| 
 | |
| Requires ['-1 <= k <= 1] otherwise returns the 
 | |
| result of __domain_error (outside this range the result would be complex).
 | |
| 
 | |
| [optional_policy]
 | |
| 
 | |
| [heading Accuracy]
 | |
| 
 | |
| These functions are trivially computed in terms of other elliptic integrals
 | |
| and generally have very low error rates (a few epsilon) unless parameter [phi]
 | |
| is very large, in which case the usual trigonometric function argument-reduction issues apply.
 | |
| 
 | |
| [table_ellint_d_complete_]
 | |
| 
 | |
| [table_ellint_d]
 | |
| 
 | |
| [heading Testing]
 | |
| 
 | |
| The tests use a mixture of spot test values calculated using 
 | |
| values calculated at wolframalpha.com, and random test data generated using
 | |
| MPFR at 1000-bit precision and a deliberately naive implementation in terms of
 | |
| the Legendre integrals.
 | |
| 
 | |
| [heading Implementation]
 | |
| 
 | |
| The implementation for D([phi], k) first performs argument reduction using the relations:
 | |
| 
 | |
| ['D(-[phi], k) = -D([phi], k)]
 | |
| 
 | |
| and
 | |
| 
 | |
| ['D(n[pi]+[phi], k) = 2nD(k) + D([phi], k)]
 | |
| 
 | |
| to move [phi][space] to the range \[0, [pi]\/2\].
 | |
| 
 | |
| The functions are then implemented in terms of Carlson's integral R[sub D]
 | |
| using the relation:
 | |
| 
 | |
| [equation ellint_d]
 | |
| 
 | |
| [endsect]
 | |
| 
 | |
| [section:jacobi_zeta Jacobi Zeta Function]
 | |
| 
 | |
| [heading Synopsis]
 | |
| 
 | |
| ``
 | |
|   #include <boost/math/special_functions/jacobi_zeta.hpp>
 | |
| ``
 | |
| 
 | |
|   namespace boost { namespace math {
 | |
| 
 | |
|   template <class T1, class T2>
 | |
|   ``__sf_result`` jacobi_zeta(T1 k, T2 phi);
 | |
| 
 | |
|   template <class T1, class T2, class ``__Policy``>
 | |
|   ``__sf_result`` jacobi_zeta(T1 k, T2 phi, const ``__Policy``&);
 | |
| 
 | |
|   }} // namespaces
 | |
|   
 | |
| [heading Description]
 | |
| 
 | |
| This function evaluates the Jacobi Zeta Function ['Z([phi], k)]
 | |
| 
 | |
| [equation jacobi_zeta]
 | |
| 
 | |
| The return type of this function is computed using the __arg_pomotion_rules
 | |
| when the arguments are of different types: when they are the same type then the result
 | |
| is the same type as the arguments.
 | |
| 
 | |
| Requires ['-1 <= k <= 1], otherwise 
 | |
| returns the result of __domain_error (outside this range the result 
 | |
| would be complex).
 | |
| 
 | |
| [optional_policy]
 | |
| 
 | |
| Note that there is no complete analogue of this function (where [phi] = [pi] / 2)
 | |
| as this takes the value 0 for all ['k].
 | |
| 
 | |
| [heading Accuracy]
 | |
| 
 | |
| These functions are trivially computed in terms of other elliptic integrals
 | |
| and generally have very low error rates (a few epsilon) unless parameter [phi]
 | |
| is very large, in which case the usual trigonometric function argument-reduction issues apply.
 | |
| 
 | |
| [table_jacobi_zeta]
 | |
| 
 | |
| [heading Testing]
 | |
| 
 | |
| The tests use a mixture of spot test values calculated using 
 | |
| values calculated at wolframalpha.com, and random test data generated using
 | |
| MPFR at 1000-bit precision and a deliberately naive implementation in terms of
 | |
| the Legendre integrals.
 | |
| 
 | |
| [heading Implementation]
 | |
| 
 | |
| The implementation for Z([phi], k) first makes the argument [phi] positive using:
 | |
| 
 | |
| ['Z(-[phi], k) = -Z([phi], k)]
 | |
| 
 | |
| The function is then implemented in terms of Carlson's integral R[sub J]
 | |
| using the relation:
 | |
| 
 | |
| [equation jacobi_zeta]
 | |
| 
 | |
| There is one special case where the above relation fails: when ['k = 1], in that case
 | |
| the function simplifies to
 | |
| 
 | |
| ['Z([phi], 1) = sign(cos([phi])) sin([phi])]
 | |
| 
 | |
| [endsect]
 | |
| 
 | |
| [section:heuman_lambda Heuman Lambda Function]
 | |
| 
 | |
| [heading Synopsis]
 | |
| 
 | |
| ``
 | |
|   #include <boost/math/special_functions/heuman_lambda.hpp>
 | |
| ``
 | |
| 
 | |
|   namespace boost { namespace math {
 | |
| 
 | |
|   template <class T1, class T2>
 | |
|   ``__sf_result`` heuman_lambda(T1 k, T2 phi);
 | |
| 
 | |
|   template <class T1, class T2, class ``__Policy``>
 | |
|   ``__sf_result`` heuman_lambda(T1 k, T2 phi, const ``__Policy``&);
 | |
| 
 | |
|   }} // namespaces
 | |
|   
 | |
| [heading Description]
 | |
| 
 | |
| This function evaluates the Heuman Lambda Function ['[Lambda][sub 0]([phi], k)]
 | |
| 
 | |
| [equation heuman_lambda]
 | |
| 
 | |
| The return type of this function is computed using the __arg_pomotion_rules
 | |
| when the arguments are of different types: when they are the same type then the result
 | |
| is the same type as the arguments.
 | |
| 
 | |
| Requires ['-1 <= k <= 1], otherwise 
 | |
| returns the result of __domain_error (outside this range the result 
 | |
| would be complex).
 | |
| 
 | |
| [optional_policy]
 | |
| 
 | |
| Note that there is no complete analogue of this function (where [phi] = [pi] / 2)
 | |
| as this takes the value 1 for all ['k].
 | |
| 
 | |
| [heading Accuracy]
 | |
| 
 | |
| These functions are trivially computed in terms of other elliptic integrals
 | |
| and generally have very low error rates (a few epsilon) unless parameter [phi]
 | |
| is very large, in which case the usual trigonometric function argument-reduction issues apply.
 | |
| 
 | |
| [table_heuman_lambda]
 | |
| 
 | |
| [heading Testing]
 | |
| 
 | |
| The tests use a mixture of spot test values calculated using 
 | |
| values calculated at wolframalpha.com, and random test data generated using
 | |
| MPFR at 1000-bit precision and a deliberately naive implementation in terms of
 | |
| the Legendre integrals.
 | |
| 
 | |
| [heading Implementation]
 | |
| 
 | |
| The function is then implemented in terms of Carlson's integrals R[sub J] and R[sub F]
 | |
| using the relation:
 | |
| 
 | |
| [equation heuman_lambda]
 | |
| 
 | |
| This relation fails for ['|[phi]| >= [pi]/2] in which case the definition in terms of the
 | |
| Jacobi Zeta is used.
 | |
| 
 | |
| [endsect]
 | |
| 
 |