mirror of
				https://github.com/saitohirga/WSJT-X.git
				synced 2025-10-31 13:10:19 -04:00 
			
		
		
		
	
		
			
				
	
	
		
			89 lines
		
	
	
		
			2.3 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			89 lines
		
	
	
		
			2.3 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| // Copyright Christopher Kormanyos 2013.
 | |
| // Copyright Paul A. Bristow 2013.
 | |
| // Copyright John Maddock 2013.
 | |
| 
 | |
| // Distributed under the Boost Software License, Version 1.0.
 | |
| // (See accompanying file LICENSE_1_0.txt or
 | |
| // copy at http://www.boost.org/LICENSE_1_0.txt).
 | |
| 
 | |
| #ifdef _MSC_VER
 | |
| #  pragma warning (disable : 4512) // assignment operator could not be generated.
 | |
| #  pragma warning (disable : 4996) // assignment operator could not be generated.
 | |
| #endif
 | |
| 
 | |
| #include <iostream>
 | |
| #include <limits>
 | |
| #include <vector>
 | |
| #include <algorithm>
 | |
| #include <iomanip>
 | |
| #include <iterator>
 | |
| 
 | |
| //[bessel_zeros_iterator_example_1
 | |
| 
 | |
| /*`[h5 Using Output Iterator to sum zeros of Bessel Functions]
 | |
| 
 | |
| This example demonstrates summing zeros of the Bessel functions.
 | |
| To use the functions for finding zeros of the functions we need
 | |
|  */
 | |
| 
 | |
| #include <boost/math/special_functions/bessel.hpp>
 | |
| 
 | |
| /*`We use the `cyl_bessel_j_zero` output iterator parameter `out_it`
 | |
| to create a sum of ['1/zeros[super 2]] by defining a custom output iterator:
 | |
| */
 | |
| 
 | |
| template <class T>
 | |
| struct output_summation_iterator
 | |
| {
 | |
|    output_summation_iterator(T* p) : p_sum(p)
 | |
|    {}
 | |
|    output_summation_iterator& operator*()
 | |
|    { return *this; }
 | |
|     output_summation_iterator& operator++()
 | |
|    { return *this; }
 | |
|    output_summation_iterator& operator++(int)
 | |
|    { return *this; }
 | |
|    output_summation_iterator& operator = (T const& val)
 | |
|    {
 | |
|      *p_sum += 1./ (val * val); // Summing 1/zero^2.
 | |
|      return *this;
 | |
|    }
 | |
| private:
 | |
|    T* p_sum;
 | |
| };
 | |
| 
 | |
| //] [/bessel_zeros_iterator_example_1]
 | |
| 
 | |
| int main()
 | |
| {
 | |
|   try
 | |
|   {
 | |
| //[bessel_zeros_iterator_example_2
 | |
| 
 | |
| /*`The sum is calculated for many values, converging on the analytical exact value of `1/8`.
 | |
| */
 | |
|     using boost::math::cyl_bessel_j_zero;
 | |
|     double nu = 1.;
 | |
|     double sum = 0;
 | |
|     output_summation_iterator<double> it(&sum);  // sum of 1/zeros^2
 | |
|     cyl_bessel_j_zero(nu, 1, 10000, it);
 | |
| 
 | |
|     double s = 1/(4 * (nu + 1)); // 0.125 = 1/8 is exact analytical solution.
 | |
|     std::cout << std::setprecision(6) << "nu = " << nu << ", sum = " << sum
 | |
|       << ", exact = " << s << std::endl;
 | |
|     // nu = 1.00000, sum = 0.124990, exact = 0.125000
 | |
| //] [/bessel_zeros_iterator_example_2]
 | |
|    }
 | |
|   catch (std::exception ex)
 | |
|   {
 | |
|     std::cout << "Thrown exception " << ex.what() << std::endl;
 | |
|   }
 | |
|   return 0;
 | |
|   } // int_main()
 | |
| 
 | |
| /*
 | |
|  Output:
 | |
| 
 | |
|  nu = 1, sum = 0.12499, exact = 0.125
 | |
| */
 |