mirror of
				https://github.com/saitohirga/WSJT-X.git
				synced 2025-10-31 04:50:34 -04:00 
			
		
		
		
	
		
			
				
	
	
		
			567 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			567 lines
		
	
	
		
			18 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| 
 | |
| // normal_misc_examples.cpp
 | |
| 
 | |
| // Copyright Paul A. Bristow 2007, 2010, 2014, 2016.
 | |
| 
 | |
| // Use, modification and distribution are subject to the
 | |
| // Boost Software License, Version 1.0.
 | |
| // (See accompanying file LICENSE_1_0.txt
 | |
| // or copy at http://www.boost.org/LICENSE_1_0.txt)
 | |
| 
 | |
| // Example of using normal distribution.
 | |
| 
 | |
| // Note that this file contains Quickbook mark-up as well as code
 | |
| // and comments, don't change any of the special comment mark-ups!
 | |
| 
 | |
| /*`
 | |
| First we need some includes to access the normal distribution
 | |
| (and some std output of course).
 | |
| */
 | |
| 
 | |
| #include <boost/cstdfloat.hpp> // MUST be first include!!!
 | |
| // See Implementation of Float128 type, Overloading template functions with float128_t.
 | |
| 
 | |
| #include <boost/math/distributions/normal.hpp> // for normal_distribution.
 | |
|   using boost::math::normal; // typedef provides default type of double.
 | |
| 
 | |
| #include <iostream>
 | |
|   //using std::cout; using std::endl;
 | |
|   //using std::left; using std::showpoint; using std::noshowpoint;
 | |
| #include <iomanip>
 | |
|   //using std::setw; using std::setprecision;
 | |
| #include <limits>
 | |
|   //using std::numeric_limits;
 | |
| 
 | |
|   /*!
 | |
| Function max_digits10
 | |
| Returns maximum number of possibly significant decimal digits for a floating-point type FPT,
 | |
| even for older compilers/standard libraries that
 | |
| lack support for std::std::numeric_limits<FPT>::max_digits10,
 | |
| when the Kahan formula 2 + binary_digits * 0.3010 is used instead.
 | |
| Also provides the correct result for Visual Studio 2010 where the max_digits10 provided for float is wrong.
 | |
| */
 | |
| namespace boost
 | |
| {
 | |
| namespace math
 | |
| {
 | |
| template <typename FPT>
 | |
| int max_digits10()
 | |
| {
 | |
| // Since max_digits10 is not defined (or wrong) on older systems, define a local max_digits10.
 | |
| 
 | |
|   // Usage:   int m = max_digits10<boost::float64_t>();
 | |
|   const int m =
 | |
| #if (defined BOOST_NO_CXX11_NUMERIC_LIMITS) || (_MSC_VER == 1600) // is wrongly 8 not 9 for VS2010.
 | |
|   2 + std::numeric_limits<FPT>::digits * 3010/10000;
 | |
| #else
 | |
|   std::numeric_limits<FPT>::max_digits10;
 | |
| #endif
 | |
|   return m;
 | |
| }
 | |
| } // namespace math
 | |
| } // namespace boost
 | |
| 
 | |
| template <typename FPT>
 | |
| void normal_table()
 | |
| {
 | |
|   using namespace boost::math;
 | |
| 
 | |
|   FPT step = static_cast<FPT>(1.); // step in z.
 | |
|   FPT range = static_cast<FPT>(10.); // min and max z = -range to +range.
 | |
| 
 | |
|   // Traditional tables are only computed to much lower precision.
 | |
|   // but @c std::std::numeric_limits<double>::max_digits10;
 | |
|   // on new Standard Libraries gives 17,
 | |
|   // the maximum number of digits from 64-bit double that can possibly be significant.
 | |
|   // @c std::std::numeric_limits<double>::digits10; == 15
 | |
|   // is number of @b guaranteed digits, the other two digits being 'noisy'.
 | |
|   // Here we use a custom version of max_digits10 which deals with those platforms
 | |
|   // where @c std::numeric_limits is not specialized,
 | |
|   // or @c std::numeric_limits<>::max_digits10 not implemented, or wrong.
 | |
|   int precision = boost::math::max_digits10<FPT>();
 | |
| 
 | |
| // std::cout << typeid(FPT).name() << std::endl;
 | |
| // demo_normal.cpp:85: undefined reference to `typeinfo for __float128'
 | |
| // [@http://gcc.gnu.org/bugzilla/show_bug.cgi?id=43622   GCC 43622]
 | |
| //  typeinfo for __float128 was missing GCC 4.9 Mar 2014, but OK for GCC 6.1.1.
 | |
| 
 | |
|    // Construct a standard normal distribution s, with
 | |
|    // (default mean = zero, and standard deviation = unity)
 | |
|    normal s;
 | |
|    std::cout << "\nStandard normal distribution, mean = "<< s.mean()
 | |
|       << ", standard deviation = " << s.standard_deviation() << std::endl;
 | |
| 
 | |
|   std::cout << "maxdigits_10 is " << precision
 | |
|     << ", digits10 is " << std::numeric_limits<FPT>::digits10 << std::endl;
 | |
| 
 | |
|   std::cout << "Probability distribution function values" << std::endl;
 | |
| 
 | |
|   std::cout << "  z " "   PDF " << std::endl;
 | |
|   for (FPT z = -range; z < range + step; z += step)
 | |
|   {
 | |
|     std::cout << std::left << std::setprecision(3) << std::setw(6) << z << " "
 | |
|       << std::setprecision(precision) << std::setw(12) << pdf(s, z) << std::endl;
 | |
|   }
 | |
|   std::cout.precision(6); // Restore to default precision.
 | |
| 
 | |
| /*`And the area under the normal curve from -[infin] up to z,
 | |
|   the cumulative distribution function (CDF).
 | |
| */
 | |
|   // For a standard normal distribution:
 | |
|   std::cout << "Standard normal mean = "<< s.mean()
 | |
|     << ", standard deviation = " << s.standard_deviation() << std::endl;
 | |
|   std::cout << "Integral (area under the curve) from - infinity up to z." << std::endl;
 | |
|   std::cout << "  z " "   CDF " << std::endl;
 | |
|   for (FPT z = -range; z < range + step; z += step)
 | |
|   {
 | |
|     std::cout << std::left << std::setprecision(3) << std::setw(6) << z << " "
 | |
|       << std::setprecision(precision) << std::setw(12) << cdf(s, z) << std::endl;
 | |
|   }
 | |
|   std::cout.precision(6); // Reset to default precision.
 | |
| } // template <typename FPT> void normal_table()
 | |
| 
 | |
| int main()
 | |
| {
 | |
|   std::cout << "\nExample: Normal distribution tables." << std::endl;
 | |
| 
 | |
|   using namespace boost::math;
 | |
| 
 | |
|   try
 | |
|   {// Tip - always use try'n'catch blocks to ensure that messages from thrown exceptions are shown.
 | |
| 
 | |
| //[normal_table_1
 | |
| #ifdef BOOST_FLOAT32_C
 | |
|     normal_table<boost::float32_t>(); // Usually type float
 | |
| #endif
 | |
|     normal_table<boost::float64_t>(); // Uusually type double. Assume that float64_t is always available.
 | |
| #ifdef BOOST_FLOAT80_C
 | |
|     normal_table<boost::float80_t>(); // Type long double on some X86 platforms.
 | |
| #endif
 | |
| #ifdef BOOST_FLOAT128_C
 | |
|     normal_table<boost::float128_t>(); // Type _Quad on some Intel and __float128 on some GCC platforms.
 | |
| #endif
 | |
|     normal_table<boost::floatmax_t>();
 | |
| //] [/normal_table_1 ]
 | |
|   }
 | |
|   catch(std::exception ex)
 | |
|   {
 | |
|     std::cout << "exception thrown " << ex.what() << std::endl;
 | |
|   }
 | |
| 
 | |
|   return 0;
 | |
| }  // int main()
 | |
| 
 | |
| 
 | |
| /*
 | |
| 
 | |
| GCC 4.8.1 with quadmath
 | |
| 
 | |
| Example: Normal distribution tables.
 | |
| 
 | |
| Standard normal distribution, mean = 0, standard deviation = 1
 | |
| maxdigits_10 is 9, digits10 is 6
 | |
| Probability distribution function values
 | |
|   z    PDF
 | |
| -10    7.69459863e-023
 | |
| -9     1.02797736e-018
 | |
| -8     5.05227108e-015
 | |
| -7     9.13472041e-012
 | |
| -6     6.07588285e-009
 | |
| -5     1.48671951e-006
 | |
| -4     0.000133830226
 | |
| -3     0.00443184841
 | |
| -2     0.0539909665
 | |
| -1     0.241970725
 | |
| 0      0.39894228
 | |
| 1      0.241970725
 | |
| 2      0.0539909665
 | |
| 3      0.00443184841
 | |
| 4      0.000133830226
 | |
| 5      1.48671951e-006
 | |
| 6      6.07588285e-009
 | |
| 7      9.13472041e-012
 | |
| 8      5.05227108e-015
 | |
| 9      1.02797736e-018
 | |
| 10     7.69459863e-023
 | |
| Standard normal mean = 0, standard deviation = 1
 | |
| Integral (area under the curve) from - infinity up to z.
 | |
|   z    CDF
 | |
| -10    7.61985302e-024
 | |
| -9     1.12858841e-019
 | |
| -8     6.22096057e-016
 | |
| -7     1.27981254e-012
 | |
| -6     9.86587645e-010
 | |
| -5     2.86651572e-007
 | |
| -4     3.16712418e-005
 | |
| -3     0.00134989803
 | |
| -2     0.0227501319
 | |
| -1     0.158655254
 | |
| 0      0.5
 | |
| 1      0.841344746
 | |
| 2      0.977249868
 | |
| 3      0.998650102
 | |
| 4      0.999968329
 | |
| 5      0.999999713
 | |
| 6      0.999999999
 | |
| 7      1
 | |
| 8      1
 | |
| 9      1
 | |
| 10     1
 | |
| 
 | |
| Standard normal distribution, mean = 0, standard deviation = 1
 | |
| maxdigits_10 is 17, digits10 is 15
 | |
| Probability distribution function values
 | |
|   z    PDF
 | |
| -10    7.6945986267064199e-023
 | |
| -9     1.0279773571668917e-018
 | |
| -8     5.0522710835368927e-015
 | |
| -7     9.1347204083645953e-012
 | |
| -6     6.0758828498232861e-009
 | |
| -5     1.4867195147342979e-006
 | |
| -4     0.00013383022576488537
 | |
| -3     0.0044318484119380075
 | |
| -2     0.053990966513188063
 | |
| -1     0.24197072451914337
 | |
| 0      0.3989422804014327
 | |
| 1      0.24197072451914337
 | |
| 2      0.053990966513188063
 | |
| 3      0.0044318484119380075
 | |
| 4      0.00013383022576488537
 | |
| 5      1.4867195147342979e-006
 | |
| 6      6.0758828498232861e-009
 | |
| 7      9.1347204083645953e-012
 | |
| 8      5.0522710835368927e-015
 | |
| 9      1.0279773571668917e-018
 | |
| 10     7.6945986267064199e-023
 | |
| Standard normal mean = 0, standard deviation = 1
 | |
| Integral (area under the curve) from - infinity up to z.
 | |
|   z    CDF
 | |
| -10    7.6198530241605945e-024
 | |
| -9     1.1285884059538422e-019
 | |
| -8     6.2209605742718204e-016
 | |
| -7     1.279812543885835e-012
 | |
| -6     9.865876450377014e-010
 | |
| -5     2.8665157187919455e-007
 | |
| -4     3.1671241833119972e-005
 | |
| -3     0.0013498980316300957
 | |
| -2     0.022750131948179216
 | |
| -1     0.15865525393145705
 | |
| 0      0.5
 | |
| 1      0.84134474606854293
 | |
| 2      0.97724986805182079
 | |
| 3      0.9986501019683699
 | |
| 4      0.99996832875816688
 | |
| 5      0.99999971334842808
 | |
| 6      0.9999999990134123
 | |
| 7      0.99999999999872013
 | |
| 8      0.99999999999999933
 | |
| 9      1
 | |
| 10     1
 | |
| 
 | |
| Standard normal distribution, mean = 0, standard deviation = 1
 | |
| maxdigits_10 is 21, digits10 is 18
 | |
| Probability distribution function values
 | |
|   z    PDF
 | |
| -10    7.69459862670641993759e-023
 | |
| -9     1.0279773571668916523e-018
 | |
| -8     5.05227108353689273243e-015
 | |
| -7     9.13472040836459525705e-012
 | |
| -6     6.07588284982328608733e-009
 | |
| -5     1.48671951473429788965e-006
 | |
| -4     0.00013383022576488536764
 | |
| -3     0.00443184841193800752729
 | |
| -2     0.0539909665131880628364
 | |
| -1     0.241970724519143365328
 | |
| 0      0.398942280401432702863
 | |
| 1      0.241970724519143365328
 | |
| 2      0.0539909665131880628364
 | |
| 3      0.00443184841193800752729
 | |
| 4      0.00013383022576488536764
 | |
| 5      1.48671951473429788965e-006
 | |
| 6      6.07588284982328608733e-009
 | |
| 7      9.13472040836459525705e-012
 | |
| 8      5.05227108353689273243e-015
 | |
| 9      1.0279773571668916523e-018
 | |
| 10     7.69459862670641993759e-023
 | |
| Standard normal mean = 0, standard deviation = 1
 | |
| Integral (area under the curve) from - infinity up to z.
 | |
|   z    CDF
 | |
| -10    7.61985302416059451083e-024
 | |
| -9     1.12858840595384222719e-019
 | |
| -8     6.22096057427182035917e-016
 | |
| -7     1.279812543885834962e-012
 | |
| -6     9.86587645037701399241e-010
 | |
| -5     2.86651571879194547129e-007
 | |
| -4     3.16712418331199717608e-005
 | |
| -3     0.00134989803163009566139
 | |
| -2     0.0227501319481792155242
 | |
| -1     0.158655253931457046468
 | |
| 0      0.5
 | |
| 1      0.841344746068542925777
 | |
| 2      0.977249868051820791415
 | |
| 3      0.998650101968369896532
 | |
| 4      0.999968328758166880021
 | |
| 5      0.999999713348428076465
 | |
| 6      0.999999999013412299576
 | |
| 7      0.999999999998720134897
 | |
| 8      0.999999999999999333866
 | |
| 9      1
 | |
| 10     1
 | |
| 
 | |
| Standard normal distribution, mean = 0, standard deviation = 1
 | |
| maxdigits_10 is 36, digits10 is 34
 | |
| Probability distribution function values
 | |
|   z    PDF
 | |
| -10    7.69459862670641993759264402330435296e-023
 | |
| -9     1.02797735716689165230378750485667109e-018
 | |
| -8     5.0522710835368927324337437844893081e-015
 | |
| -7     9.13472040836459525705208369548147081e-012
 | |
| -6     6.07588284982328608733411870229841611e-009
 | |
| -5     1.48671951473429788965346931561839483e-006
 | |
| -4     0.00013383022576488536764006964663309418
 | |
| -3     0.00443184841193800752728870762098267733
 | |
| -2     0.0539909665131880628363703067407186609
 | |
| -1     0.241970724519143365327522587904240936
 | |
| 0      0.398942280401432702863218082711682655
 | |
| 1      0.241970724519143365327522587904240936
 | |
| 2      0.0539909665131880628363703067407186609
 | |
| 3      0.00443184841193800752728870762098267733
 | |
| 4      0.00013383022576488536764006964663309418
 | |
| 5      1.48671951473429788965346931561839483e-006
 | |
| 6      6.07588284982328608733411870229841611e-009
 | |
| 7      9.13472040836459525705208369548147081e-012
 | |
| 8      5.0522710835368927324337437844893081e-015
 | |
| 9      1.02797735716689165230378750485667109e-018
 | |
| 10     7.69459862670641993759264402330435296e-023
 | |
| Standard normal mean = 0, standard deviation = 1
 | |
| Integral (area under the curve) from - infinity up to z.
 | |
|   z    CDF
 | |
| -10    7.61985302416059451083278826816793623e-024
 | |
| -9     1.1285884059538422271881384555435713e-019
 | |
| -8     6.22096057427182035917417257601387863e-016
 | |
| -7     1.27981254388583496200054074948511201e-012
 | |
| -6     9.86587645037701399241244820583623953e-010
 | |
| -5     2.86651571879194547128505464808623238e-007
 | |
| -4     3.16712418331199717608064048146587766e-005
 | |
| -3     0.001349898031630095661392854111682027
 | |
| -2     0.0227501319481792155241528519127314212
 | |
| -1     0.158655253931457046467912164189328905
 | |
| 0      0.5
 | |
| 1      0.841344746068542925776512220181757584
 | |
| 2      0.977249868051820791414741051994496956
 | |
| 3      0.998650101968369896532351503992686048
 | |
| 4      0.999968328758166880021462930017150939
 | |
| 5      0.999999713348428076464813329948810861
 | |
| 6      0.999999999013412299575520592043176293
 | |
| 7      0.999999999998720134897212119540199637
 | |
| 8      0.999999999999999333866185224906075746
 | |
| 9      1
 | |
| 10     1
 | |
| 
 | |
| Standard normal distribution, mean = 0, standard deviation = 1
 | |
| maxdigits_10 is 36, digits10 is 34
 | |
| Probability distribution function values
 | |
|   z    PDF
 | |
| -10    7.69459862670641993759264402330435296e-023
 | |
| -9     1.02797735716689165230378750485667109e-018
 | |
| -8     5.0522710835368927324337437844893081e-015
 | |
| -7     9.13472040836459525705208369548147081e-012
 | |
| -6     6.07588284982328608733411870229841611e-009
 | |
| -5     1.48671951473429788965346931561839483e-006
 | |
| -4     0.00013383022576488536764006964663309418
 | |
| -3     0.00443184841193800752728870762098267733
 | |
| -2     0.0539909665131880628363703067407186609
 | |
| -1     0.241970724519143365327522587904240936
 | |
| 0      0.398942280401432702863218082711682655
 | |
| 1      0.241970724519143365327522587904240936
 | |
| 2      0.0539909665131880628363703067407186609
 | |
| 3      0.00443184841193800752728870762098267733
 | |
| 4      0.00013383022576488536764006964663309418
 | |
| 5      1.48671951473429788965346931561839483e-006
 | |
| 6      6.07588284982328608733411870229841611e-009
 | |
| 7      9.13472040836459525705208369548147081e-012
 | |
| 8      5.0522710835368927324337437844893081e-015
 | |
| 9      1.02797735716689165230378750485667109e-018
 | |
| 10     7.69459862670641993759264402330435296e-023
 | |
| Standard normal mean = 0, standard deviation = 1
 | |
| Integral (area under the curve) from - infinity up to z.
 | |
|   z    CDF
 | |
| -10    7.61985302416059451083278826816793623e-024
 | |
| -9     1.1285884059538422271881384555435713e-019
 | |
| -8     6.22096057427182035917417257601387863e-016
 | |
| -7     1.27981254388583496200054074948511201e-012
 | |
| -6     9.86587645037701399241244820583623953e-010
 | |
| -5     2.86651571879194547128505464808623238e-007
 | |
| -4     3.16712418331199717608064048146587766e-005
 | |
| -3     0.001349898031630095661392854111682027
 | |
| -2     0.0227501319481792155241528519127314212
 | |
| -1     0.158655253931457046467912164189328905
 | |
| 0      0.5
 | |
| 1      0.841344746068542925776512220181757584
 | |
| 2      0.977249868051820791414741051994496956
 | |
| 3      0.998650101968369896532351503992686048
 | |
| 4      0.999968328758166880021462930017150939
 | |
| 5      0.999999713348428076464813329948810861
 | |
| 6      0.999999999013412299575520592043176293
 | |
| 7      0.999999999998720134897212119540199637
 | |
| 8      0.999999999999999333866185224906075746
 | |
| 9      1
 | |
| 10     1
 | |
| 
 | |
| MSVC 2013 64-bit
 | |
| 1>
 | |
| 1>  Example: Normal distribution tables.
 | |
| 1>
 | |
| 1>  Standard normal distribution, mean = 0, standard deviation = 1
 | |
| 1>  maxdigits_10 is 9, digits10 is 6
 | |
| 1>  Probability distribution function values
 | |
| 1>    z    PDF
 | |
| 1>  -10    7.69459863e-023
 | |
| 1>  -9     1.02797736e-018
 | |
| 1>  -8     5.05227108e-015
 | |
| 1>  -7     9.13472041e-012
 | |
| 1>  -6     6.07588285e-009
 | |
| 1>  -5     1.48671951e-006
 | |
| 1>  -4     0.000133830226
 | |
| 1>  -3     0.00443184841
 | |
| 1>  -2     0.0539909665
 | |
| 1>  -1     0.241970725
 | |
| 1>  0      0.39894228
 | |
| 1>  1      0.241970725
 | |
| 1>  2      0.0539909665
 | |
| 1>  3      0.00443184841
 | |
| 1>  4      0.000133830226
 | |
| 1>  5      1.48671951e-006
 | |
| 1>  6      6.07588285e-009
 | |
| 1>  7      9.13472041e-012
 | |
| 1>  8      5.05227108e-015
 | |
| 1>  9      1.02797736e-018
 | |
| 1>  10     7.69459863e-023
 | |
| 1>  Standard normal mean = 0, standard deviation = 1
 | |
| 1>  Integral (area under the curve) from - infinity up to z.
 | |
| 1>    z    CDF
 | |
| 1>  -10    7.61985302e-024
 | |
| 1>  -9     1.12858841e-019
 | |
| 1>  -8     6.22096057e-016
 | |
| 1>  -7     1.27981254e-012
 | |
| 1>  -6     9.86587645e-010
 | |
| 1>  -5     2.86651572e-007
 | |
| 1>  -4     3.16712418e-005
 | |
| 1>  -3     0.00134989803
 | |
| 1>  -2     0.0227501319
 | |
| 1>  -1     0.158655254
 | |
| 1>  0      0.5
 | |
| 1>  1      0.841344746
 | |
| 1>  2      0.977249868
 | |
| 1>  3      0.998650102
 | |
| 1>  4      0.999968329
 | |
| 1>  5      0.999999713
 | |
| 1>  6      0.999999999
 | |
| 1>  7      1
 | |
| 1>  8      1
 | |
| 1>  9      1
 | |
| 1>  10     1
 | |
| 1>
 | |
| 1>  Standard normal distribution, mean = 0, standard deviation = 1
 | |
| 1>  maxdigits_10 is 17, digits10 is 15
 | |
| 1>  Probability distribution function values
 | |
| 1>    z    PDF
 | |
| 1>  -10    7.6945986267064199e-023
 | |
| 1>  -9     1.0279773571668917e-018
 | |
| 1>  -8     5.0522710835368927e-015
 | |
| 1>  -7     9.1347204083645953e-012
 | |
| 1>  -6     6.0758828498232861e-009
 | |
| 1>  -5     1.4867195147342979e-006
 | |
| 1>  -4     0.00013383022576488537
 | |
| 1>  -3     0.0044318484119380075
 | |
| 1>  -2     0.053990966513188063
 | |
| 1>  -1     0.24197072451914337
 | |
| 1>  0      0.3989422804014327
 | |
| 1>  1      0.24197072451914337
 | |
| 1>  2      0.053990966513188063
 | |
| 1>  3      0.0044318484119380075
 | |
| 1>  4      0.00013383022576488537
 | |
| 1>  5      1.4867195147342979e-006
 | |
| 1>  6      6.0758828498232861e-009
 | |
| 1>  7      9.1347204083645953e-012
 | |
| 1>  8      5.0522710835368927e-015
 | |
| 1>  9      1.0279773571668917e-018
 | |
| 1>  10     7.6945986267064199e-023
 | |
| 1>  Standard normal mean = 0, standard deviation = 1
 | |
| 1>  Integral (area under the curve) from - infinity up to z.
 | |
| 1>    z    CDF
 | |
| 1>  -10    7.6198530241605813e-024
 | |
| 1>  -9     1.1285884059538408e-019
 | |
| 1>  -8     6.2209605742718292e-016
 | |
| 1>  -7     1.2798125438858352e-012
 | |
| 1>  -6     9.8658764503770161e-010
 | |
| 1>  -5     2.8665157187919439e-007
 | |
| 1>  -4     3.1671241833119979e-005
 | |
| 1>  -3     0.0013498980316300957
 | |
| 1>  -2     0.022750131948179219
 | |
| 1>  -1     0.15865525393145707
 | |
| 1>  0      0.5
 | |
| 1>  1      0.84134474606854293
 | |
| 1>  2      0.97724986805182079
 | |
| 1>  3      0.9986501019683699
 | |
| 1>  4      0.99996832875816688
 | |
| 1>  5      0.99999971334842808
 | |
| 1>  6      0.9999999990134123
 | |
| 1>  7      0.99999999999872013
 | |
| 1>  8      0.99999999999999933
 | |
| 1>  9      1
 | |
| 1>  10     1
 | |
| 1>
 | |
| 1>  Standard normal distribution, mean = 0, standard deviation = 1
 | |
| 1>  maxdigits_10 is 17, digits10 is 15
 | |
| 1>  Probability distribution function values
 | |
| 1>    z    PDF
 | |
| 1>  -10    7.6945986267064199e-023
 | |
| 1>  -9     1.0279773571668917e-018
 | |
| 1>  -8     5.0522710835368927e-015
 | |
| 1>  -7     9.1347204083645953e-012
 | |
| 1>  -6     6.0758828498232861e-009
 | |
| 1>  -5     1.4867195147342979e-006
 | |
| 1>  -4     0.00013383022576488537
 | |
| 1>  -3     0.0044318484119380075
 | |
| 1>  -2     0.053990966513188063
 | |
| 1>  -1     0.24197072451914337
 | |
| 1>  0      0.3989422804014327
 | |
| 1>  1      0.24197072451914337
 | |
| 1>  2      0.053990966513188063
 | |
| 1>  3      0.0044318484119380075
 | |
| 1>  4      0.00013383022576488537
 | |
| 1>  5      1.4867195147342979e-006
 | |
| 1>  6      6.0758828498232861e-009
 | |
| 1>  7      9.1347204083645953e-012
 | |
| 1>  8      5.0522710835368927e-015
 | |
| 1>  9      1.0279773571668917e-018
 | |
| 1>  10     7.6945986267064199e-023
 | |
| 1>  Standard normal mean = 0, standard deviation = 1
 | |
| 1>  Integral (area under the curve) from - infinity up to z.
 | |
| 1>    z    CDF
 | |
| 1>  -10    7.6198530241605813e-024
 | |
| 1>  -9     1.1285884059538408e-019
 | |
| 1>  -8     6.2209605742718292e-016
 | |
| 1>  -7     1.2798125438858352e-012
 | |
| 1>  -6     9.8658764503770161e-010
 | |
| 1>  -5     2.8665157187919439e-007
 | |
| 1>  -4     3.1671241833119979e-005
 | |
| 1>  -3     0.0013498980316300957
 | |
| 1>  -2     0.022750131948179219
 | |
| 1>  -1     0.15865525393145707
 | |
| 1>  0      0.5
 | |
| 1>  1      0.84134474606854293
 | |
| 1>  2      0.97724986805182079
 | |
| 1>  3      0.9986501019683699
 | |
| 1>  4      0.99996832875816688
 | |
| 1>  5      0.99999971334842808
 | |
| 1>  6      0.9999999990134123
 | |
| 1>  7      0.99999999999872013
 | |
| 1>  8      0.99999999999999933
 | |
| 1>  9      1
 | |
| 1>  10     1
 | |
| 
 | |
| 
 | |
| */
 |