mirror of
				https://github.com/saitohirga/WSJT-X.git
				synced 2025-10-31 13:10:19 -04:00 
			
		
		
		
	
		
			
				
	
	
		
			651 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			651 lines
		
	
	
		
			21 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //  (C) Copyright John Maddock 2006.
 | |
| //  Use, modification and distribution are subject to the
 | |
| //  Boost Software License, Version 1.0. (See accompanying file
 | |
| //  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
 | |
| 
 | |
| #define BOOST_TEST_MODULE foobar
 | |
| #define BOOST_UBLAS_TYPE_CHECK_EPSILON (type_traits<real_type>::type_sqrt (boost::math::tools::epsilon <real_type>()))
 | |
| #define BOOST_UBLAS_TYPE_CHECK_MIN (type_traits<real_type>::type_sqrt ( boost::math::tools::min_value<real_type>()))
 | |
| #define BOOST_UBLAS_NDEBUG
 | |
| 
 | |
| #include "multiprecision.hpp"
 | |
| 
 | |
| #include <boost/math/tools/remez.hpp>
 | |
| #include <boost/math/tools/test.hpp>
 | |
| #include <boost/math/special_functions/binomial.hpp>
 | |
| #include <boost/spirit/include/classic_core.hpp>
 | |
| #include <boost/spirit/include/classic_actor.hpp>
 | |
| #include <boost/lexical_cast.hpp>
 | |
| #include <iostream>
 | |
| #include <iomanip>
 | |
| #include <string>
 | |
| #include <boost/test/included/unit_test.hpp> // for test_main
 | |
| #include <boost/multiprecision/cpp_bin_float.hpp>
 | |
| 
 | |
| 
 | |
| extern mp_type f(const mp_type& x, int variant);
 | |
| extern void show_extra(
 | |
|    const boost::math::tools::polynomial<mp_type>& n, 
 | |
|    const boost::math::tools::polynomial<mp_type>& d, 
 | |
|    const mp_type& x_offset, 
 | |
|    const mp_type& y_offset, 
 | |
|    int variant);
 | |
| 
 | |
| using namespace boost::spirit::classic;
 | |
| 
 | |
| mp_type a(0), b(1);   // range to optimise over
 | |
| bool rel_error(true);
 | |
| bool pin(false);
 | |
| int orderN(3);
 | |
| int orderD(1);
 | |
| int target_precision = boost::math::tools::digits<long double>();
 | |
| int working_precision = target_precision * 2;
 | |
| bool started(false);
 | |
| int variant(0);
 | |
| int skew(0);
 | |
| int brake(50);
 | |
| mp_type x_offset(0), y_offset(0), x_scale(1);
 | |
| bool auto_offset_y;
 | |
| 
 | |
| boost::shared_ptr<boost::math::tools::remez_minimax<mp_type> > p_remez;
 | |
| 
 | |
| mp_type the_function(const mp_type& val)
 | |
| {
 | |
|    return f(x_scale * (val + x_offset), variant) + y_offset;
 | |
| }
 | |
| 
 | |
| void step_some(unsigned count)
 | |
| {
 | |
|    try{
 | |
|       set_working_precision(working_precision);
 | |
|       if(!started)
 | |
|       {
 | |
|          //
 | |
|          // If we have an automatic y-offset calculate it now:
 | |
|          //
 | |
|          if(auto_offset_y)
 | |
|          {
 | |
|             mp_type fa, fb, fm;
 | |
|             fa = f(x_scale * (a + x_offset), variant);
 | |
|             fb = f(x_scale * (b + x_offset), variant);
 | |
|             fm = f(x_scale * ((a+b)/2 + x_offset), variant);
 | |
|             y_offset = -(fa + fb + fm) / 3;
 | |
|             set_output_precision(5);
 | |
|             std::cout << "Setting auto-y-offset to " << y_offset << std::endl;
 | |
|          }
 | |
|          //
 | |
|          // Truncate offsets to float precision:
 | |
|          //
 | |
|          x_offset = round_to_precision(x_offset, 20);
 | |
|          y_offset = round_to_precision(y_offset, 20);
 | |
|          //
 | |
|          // Construct new Remez state machine:
 | |
|          //
 | |
|          p_remez.reset(new boost::math::tools::remez_minimax<mp_type>(
 | |
|             &the_function, 
 | |
|             orderN, orderD, 
 | |
|             a, b, 
 | |
|             pin, 
 | |
|             rel_error, 
 | |
|             skew, 
 | |
|             working_precision));
 | |
|          std::cout << "Max error in interpolated form: " << std::setprecision(3) << std::scientific << boost::math::tools::real_cast<double>(p_remez->max_error()) << std::endl;
 | |
|          //
 | |
|          // Signal that we've started:
 | |
|          //
 | |
|          started = true;
 | |
|       }
 | |
|       unsigned i;
 | |
|       for(i = 0; i < count; ++i)
 | |
|       {
 | |
|          std::cout << "Stepping..." << std::endl;
 | |
|          p_remez->set_brake(brake);
 | |
|          mp_type r = p_remez->iterate();
 | |
|          set_output_precision(3);
 | |
|          std::cout 
 | |
|             << "Maximum Deviation Found:                     " << std::setprecision(3) << std::scientific << boost::math::tools::real_cast<double>(p_remez->max_error()) << std::endl
 | |
|             << "Expected Error Term:                         " << std::setprecision(3) << std::scientific << boost::math::tools::real_cast<double>(p_remez->error_term()) << std::endl
 | |
|             << "Maximum Relative Change in Control Points:   " << std::setprecision(3) << std::scientific << boost::math::tools::real_cast<double>(r) << std::endl;
 | |
|       }
 | |
|    }
 | |
|    catch(const std::exception& e)
 | |
|    {
 | |
|       std::cout << "Step failed with exception: " << e.what() << std::endl;
 | |
|    }
 | |
| }
 | |
| 
 | |
| void step(const char*, const char*)
 | |
| {
 | |
|    step_some(1);
 | |
| }
 | |
| 
 | |
| void show(const char*, const char*)
 | |
| {
 | |
|    set_working_precision(working_precision);
 | |
|    if(started)
 | |
|    {
 | |
|       boost::math::tools::polynomial<mp_type> n = p_remez->numerator();
 | |
|       boost::math::tools::polynomial<mp_type> d = p_remez->denominator();
 | |
|       std::vector<mp_type> cn = n.chebyshev();
 | |
|       std::vector<mp_type> cd = d.chebyshev();
 | |
|       int prec = 2 + (target_precision * 3010LL)/10000;
 | |
|       std::cout << std::scientific << std::setprecision(prec);
 | |
|       set_output_precision(prec);
 | |
|       boost::numeric::ublas::vector<mp_type> v = p_remez->zero_points();
 | |
|       
 | |
|       std::cout << "  Zeros = {\n";
 | |
|       unsigned i;
 | |
|       for(i = 0; i < v.size(); ++i)
 | |
|       {
 | |
|          std::cout << "    " << v[i] << std::endl;
 | |
|       }
 | |
|       std::cout << "  }\n";
 | |
| 
 | |
|       v = p_remez->chebyshev_points();
 | |
|       std::cout << "  Chebeshev Control Points = {\n";
 | |
|       for(i = 0; i < v.size(); ++i)
 | |
|       {
 | |
|          std::cout << "    " << v[i] << std::endl;
 | |
|       }
 | |
|       std::cout << "  }\n";
 | |
| 
 | |
|       std::cout << "X offset: " << x_offset << std::endl;
 | |
|       std::cout << "X scale:  " << x_scale << std::endl;
 | |
|       std::cout << "Y offset: " << y_offset << std::endl;
 | |
| 
 | |
|       std::cout << "P = {";
 | |
|       for(i = 0; i < n.size(); ++i)
 | |
|       {
 | |
|          std::cout << "    " << n[i] << "L," << std::endl;
 | |
|       }
 | |
|       std::cout << "  }\n";
 | |
| 
 | |
|       std::cout << "Q = {";
 | |
|       for(i = 0; i < d.size(); ++i)
 | |
|       {
 | |
|          std::cout << "    " << d[i] << "L," << std::endl;
 | |
|       }
 | |
|       std::cout << "  }\n";
 | |
| 
 | |
|       std::cout << "CP = {";
 | |
|       for(i = 0; i < cn.size(); ++i)
 | |
|       {
 | |
|          std::cout << "    " << cn[i] << "L," << std::endl;
 | |
|       }
 | |
|       std::cout << "  }\n";
 | |
| 
 | |
|       std::cout << "CQ = {";
 | |
|       for(i = 0; i < cd.size(); ++i)
 | |
|       {
 | |
|          std::cout << "    " << cd[i] << "L," << std::endl;
 | |
|       }
 | |
|       std::cout << "  }\n";
 | |
| 
 | |
|       show_extra(n, d, x_offset, y_offset, variant);
 | |
|    }
 | |
|    else
 | |
|    {
 | |
|       std::cerr << "Nothing to display" << std::endl;
 | |
|    }
 | |
| }
 | |
| 
 | |
| void do_graph(unsigned points)
 | |
| {
 | |
|    set_working_precision(working_precision);
 | |
|    mp_type step = (b - a) / (points - 1);
 | |
|    mp_type x = a;
 | |
|    while(points > 1)
 | |
|    {
 | |
|       set_output_precision(10);
 | |
|       std::cout << std::setprecision(10) << std::setw(30) << std::left 
 | |
|          << boost::lexical_cast<std::string>(x) << the_function(x) << std::endl;
 | |
|       --points;
 | |
|       x += step;
 | |
|    }
 | |
|    std::cout << std::setprecision(10) << std::setw(30) << std::left 
 | |
|       << boost::lexical_cast<std::string>(b) << the_function(b) << std::endl;
 | |
| }
 | |
| 
 | |
| void graph(const char*, const char*)
 | |
| {
 | |
|    do_graph(3);
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| mp_type convert_to_rr(const T& val)
 | |
| {
 | |
|    return val;
 | |
| }
 | |
| template <class Backend, boost::multiprecision::expression_template_option ET>
 | |
| mp_type convert_to_rr(const boost::multiprecision::number<Backend, ET>& val)
 | |
| {
 | |
|    return boost::lexical_cast<mp_type>(val.str());
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| void do_test(T, const char* name)
 | |
| {
 | |
|    set_working_precision(working_precision);
 | |
|    if(started)
 | |
|    {
 | |
|       //
 | |
|       // We want to test the approximation at fixed precision:
 | |
|       // either float, double or long double.  Begin by getting the
 | |
|       // polynomials:
 | |
|       //
 | |
|       boost::math::tools::polynomial<T> n, d;
 | |
|       boost::math::tools::polynomial<mp_type> nr, dr;
 | |
|       nr = p_remez->numerator();
 | |
|       dr = p_remez->denominator();
 | |
|       n = nr;
 | |
|       d = dr;
 | |
| 
 | |
|       std::vector<mp_type> cn1, cd1;
 | |
|       cn1 = nr.chebyshev();
 | |
|       cd1 = dr.chebyshev();
 | |
|       std::vector<T> cn, cd;
 | |
|       for(unsigned i = 0; i < cn1.size(); ++i)
 | |
|       {
 | |
|          cn.push_back(boost::math::tools::real_cast<T>(cn1[i]));
 | |
|       }
 | |
|       for(unsigned i = 0; i < cd1.size(); ++i)
 | |
|       {
 | |
|          cd.push_back(boost::math::tools::real_cast<T>(cd1[i]));
 | |
|       }
 | |
|       //
 | |
|       // We'll test at the Chebeshev control points which is where
 | |
|       // (in theory) the largest deviation should occur.  For good
 | |
|       // measure we'll test at the zeros as well:
 | |
|       //
 | |
|       boost::numeric::ublas::vector<mp_type> 
 | |
|          zeros(p_remez->zero_points()),
 | |
|          cheb(p_remez->chebyshev_points());
 | |
| 
 | |
|       mp_type max_error(0), cheb_max_error(0);
 | |
| 
 | |
|       //
 | |
|       // Do the tests at the zeros:
 | |
|       //
 | |
|       std::cout << "Starting tests at " << name << " precision...\n";
 | |
|       std::cout << "Absissa        Error (Poly)   Error (Cheb)\n";
 | |
|       for(unsigned i = 0; i < zeros.size(); ++i)
 | |
|       {
 | |
|          mp_type true_result = the_function(zeros[i]);
 | |
|          T absissa = boost::math::tools::real_cast<T>(zeros[i]);
 | |
|          mp_type test_result = convert_to_rr(n.evaluate(absissa) / d.evaluate(absissa));
 | |
|          mp_type cheb_result = convert_to_rr(boost::math::tools::evaluate_chebyshev(cn, absissa) / boost::math::tools::evaluate_chebyshev(cd, absissa));
 | |
|          mp_type err, cheb_err;
 | |
|          if(rel_error)
 | |
|          {
 | |
|             err = boost::math::tools::relative_error(test_result, true_result);
 | |
|             cheb_err = boost::math::tools::relative_error(cheb_result, true_result);
 | |
|          }
 | |
|          else
 | |
|          {
 | |
|             err = fabs(test_result - true_result);
 | |
|             cheb_err = fabs(cheb_result - true_result);
 | |
|          }
 | |
|          if(err > max_error)
 | |
|             max_error = err;
 | |
|          if(cheb_err > cheb_max_error)
 | |
|             cheb_max_error = cheb_err;
 | |
|          std::cout << std::setprecision(6) << std::setw(15) << std::left << absissa
 | |
|             << std::setw(15) << std::left << boost::math::tools::real_cast<T>(err) << boost::math::tools::real_cast<T>(cheb_err) << std::endl;
 | |
|       }
 | |
|       //
 | |
|       // Do the tests at the Chebeshev control points:
 | |
|       //
 | |
|       for(unsigned i = 0; i < cheb.size(); ++i)
 | |
|       {
 | |
|          mp_type true_result = the_function(cheb[i]);
 | |
|          T absissa = boost::math::tools::real_cast<T>(cheb[i]);
 | |
|          mp_type test_result = convert_to_rr(n.evaluate(absissa) / d.evaluate(absissa));
 | |
|          mp_type cheb_result = convert_to_rr(boost::math::tools::evaluate_chebyshev(cn, absissa) / boost::math::tools::evaluate_chebyshev(cd, absissa));
 | |
|          mp_type err, cheb_err;
 | |
|          if(rel_error)
 | |
|          {
 | |
|             err = boost::math::tools::relative_error(test_result, true_result);
 | |
|             cheb_err = boost::math::tools::relative_error(cheb_result, true_result);
 | |
|          }
 | |
|          else
 | |
|          {
 | |
|             err = fabs(test_result - true_result);
 | |
|             cheb_err = fabs(cheb_result - true_result);
 | |
|          }
 | |
|          if(err > max_error)
 | |
|             max_error = err;
 | |
|          std::cout << std::setprecision(6) << std::setw(15) << std::left << absissa
 | |
|             << std::setw(15) << std::left << boost::math::tools::real_cast<T>(err) << 
 | |
|             boost::math::tools::real_cast<T>(cheb_err) << std::endl;
 | |
|       }
 | |
|       std::string msg = "Max Error found at ";
 | |
|       msg += name;
 | |
|       msg += " precision = ";
 | |
|       msg.append(62 - 17 - msg.size(), ' ');
 | |
|       std::cout << msg << std::setprecision(6) << "Poly: " << std::setw(20) << std::left
 | |
|          << boost::math::tools::real_cast<T>(max_error) << "Cheb: " << boost::math::tools::real_cast<T>(cheb_max_error) << std::endl;
 | |
|    }
 | |
|    else
 | |
|    {
 | |
|       std::cout << "Nothing to test: try converging an approximation first!!!" << std::endl;
 | |
|    }
 | |
| }
 | |
| 
 | |
| void test_float(const char*, const char*)
 | |
| {
 | |
|    do_test(float(0), "float");
 | |
| }
 | |
| 
 | |
| void test_double(const char*, const char*)
 | |
| {
 | |
|    do_test(double(0), "double");
 | |
| }
 | |
| 
 | |
| void test_long(const char*, const char*)
 | |
| {
 | |
|    do_test((long double)(0), "long double");
 | |
| }
 | |
| 
 | |
| void test_float80(const char*, const char*)
 | |
| {
 | |
|    do_test((boost::multiprecision::cpp_bin_float_double_extended)(0), "float80");
 | |
| }
 | |
| 
 | |
| void test_float128(const char*, const char*)
 | |
| {
 | |
|    do_test((boost::multiprecision::cpp_bin_float_quad)(0), "float128");
 | |
| }
 | |
| 
 | |
| void test_all(const char*, const char*)
 | |
| {
 | |
|    do_test(float(0), "float");
 | |
|    do_test(double(0), "double");
 | |
|    do_test((long double)(0), "long double");
 | |
| }
 | |
| 
 | |
| template <class T>
 | |
| void do_test_n(T, const char* name, unsigned count)
 | |
| {
 | |
|    set_working_precision(working_precision);
 | |
|    if(started)
 | |
|    {
 | |
|       //
 | |
|       // We want to test the approximation at fixed precision:
 | |
|       // either float, double or long double.  Begin by getting the
 | |
|       // polynomials:
 | |
|       //
 | |
|       boost::math::tools::polynomial<T> n, d;
 | |
|       boost::math::tools::polynomial<mp_type> nr, dr;
 | |
|       nr = p_remez->numerator();
 | |
|       dr = p_remez->denominator();
 | |
|       n = nr;
 | |
|       d = dr;
 | |
| 
 | |
|       std::vector<mp_type> cn1, cd1;
 | |
|       cn1 = nr.chebyshev();
 | |
|       cd1 = dr.chebyshev();
 | |
|       std::vector<T> cn, cd;
 | |
|       for(unsigned i = 0; i < cn1.size(); ++i)
 | |
|       {
 | |
|          cn.push_back(boost::math::tools::real_cast<T>(cn1[i]));
 | |
|       }
 | |
|       for(unsigned i = 0; i < cd1.size(); ++i)
 | |
|       {
 | |
|          cd.push_back(boost::math::tools::real_cast<T>(cd1[i]));
 | |
|       }
 | |
| 
 | |
|       mp_type max_error(0), max_cheb_error(0);
 | |
|       mp_type step = (b - a) / count;
 | |
| 
 | |
|       //
 | |
|       // Do the tests at the zeros:
 | |
|       //
 | |
|       std::cout << "Starting tests at " << name << " precision...\n";
 | |
|       std::cout << "Absissa        Error (poly)   Error (Cheb)\n";
 | |
|       for(mp_type x = a; x <= b; x += step)
 | |
|       {
 | |
|          mp_type true_result = the_function(x);
 | |
|          //std::cout << true_result << std::endl;
 | |
|          T absissa = boost::math::tools::real_cast<T>(x);
 | |
|          mp_type test_result = convert_to_rr(n.evaluate(absissa) / d.evaluate(absissa));
 | |
|          //std::cout << test_result << std::endl;
 | |
|          mp_type cheb_result = convert_to_rr(boost::math::tools::evaluate_chebyshev(cn, absissa) / boost::math::tools::evaluate_chebyshev(cd, absissa));
 | |
|          //std::cout << cheb_result << std::endl;
 | |
|          mp_type err, cheb_err;
 | |
|          if(rel_error)
 | |
|          {
 | |
|             err = boost::math::tools::relative_error(test_result, true_result);
 | |
|             cheb_err = boost::math::tools::relative_error(cheb_result, true_result);
 | |
|          }
 | |
|          else
 | |
|          {
 | |
|             err = fabs(test_result - true_result);
 | |
|             cheb_err = fabs(cheb_result - true_result);
 | |
|          }
 | |
|          if(err > max_error)
 | |
|             max_error = err;
 | |
|          if(cheb_err > max_cheb_error)
 | |
|             max_cheb_error = cheb_err;
 | |
|          std::cout << std::setprecision(6) << std::setw(15) << std::left << boost::math::tools::real_cast<double>(absissa)
 | |
|             << (test_result < true_result ? "-" : "") << std::setw(20) << std::left 
 | |
|             << boost::math::tools::real_cast<double>(err) 
 | |
|             << boost::math::tools::real_cast<double>(cheb_err) << std::endl;
 | |
|       }
 | |
|       std::string msg = "Max Error found at ";
 | |
|       msg += name;
 | |
|       msg += " precision = ";
 | |
|       //msg.append(62 - 17 - msg.size(), ' ');
 | |
|       std::cout << msg << "Poly: " << std::setprecision(6) 
 | |
|          //<< std::setw(15) << std::left 
 | |
|          << boost::math::tools::real_cast<T>(max_error) 
 | |
|          << " Cheb: " << boost::math::tools::real_cast<T>(max_cheb_error) << std::endl;
 | |
|    }
 | |
|    else
 | |
|    {
 | |
|       std::cout << "Nothing to test: try converging an approximation first!!!" << std::endl;
 | |
|    }
 | |
| }
 | |
| 
 | |
| void test_n(unsigned n)
 | |
| {
 | |
|    do_test_n(mp_type(), "mp_type", n);
 | |
| }
 | |
| 
 | |
| void test_float_n(unsigned n)
 | |
| {
 | |
|    do_test_n(float(0), "float", n);
 | |
| }
 | |
| 
 | |
| void test_double_n(unsigned n)
 | |
| {
 | |
|    do_test_n(double(0), "double", n);
 | |
| }
 | |
| 
 | |
| void test_long_n(unsigned n)
 | |
| {
 | |
|    do_test_n((long double)(0), "long double", n);
 | |
| }
 | |
| 
 | |
| void test_float80_n(unsigned n)
 | |
| {
 | |
|    do_test_n((boost::multiprecision::cpp_bin_float_double_extended)(0), "float80", n);
 | |
| }
 | |
| 
 | |
| void test_float128_n(unsigned n)
 | |
| {
 | |
|    do_test_n((boost::multiprecision::cpp_bin_float_quad)(0), "float128", n);
 | |
| }
 | |
| 
 | |
| void rotate(const char*, const char*)
 | |
| {
 | |
|    if(p_remez)
 | |
|    {
 | |
|       p_remez->rotate();
 | |
|    }
 | |
|    else
 | |
|    {
 | |
|       std::cerr << "Nothing to rotate" << std::endl;
 | |
|    }
 | |
| }
 | |
| 
 | |
| void rescale(const char*, const char*)
 | |
| {
 | |
|    if(p_remez)
 | |
|    {
 | |
|       p_remez->rescale(a, b);
 | |
|    }
 | |
|    else
 | |
|    {
 | |
|       std::cerr << "Nothing to rescale" << std::endl;
 | |
|    }
 | |
| }
 | |
| 
 | |
| void graph_poly(const char*, const char*)
 | |
| {
 | |
|    int i = 50;
 | |
|    set_working_precision(working_precision);
 | |
|    if(started)
 | |
|    {
 | |
|       //
 | |
|       // We want to test the approximation at fixed precision:
 | |
|       // either float, double or long double.  Begin by getting the
 | |
|       // polynomials:
 | |
|       //
 | |
|       boost::math::tools::polynomial<mp_type> n, d;
 | |
|       n = p_remez->numerator();
 | |
|       d = p_remez->denominator();
 | |
| 
 | |
|       mp_type max_error(0);
 | |
|       mp_type step = (b - a) / i;
 | |
| 
 | |
|       std::cout << "Evaluating Numerator...\n";
 | |
|       mp_type val;
 | |
|       for(val = a; val <= b; val += step)
 | |
|          std::cout << n.evaluate(val) << std::endl;
 | |
|       std::cout << "Evaluating Denominator...\n";
 | |
|       for(val = a; val <= b; val += step)
 | |
|          std::cout << d.evaluate(val) << std::endl;
 | |
|    }
 | |
|    else
 | |
|    {
 | |
|       std::cout << "Nothing to test: try converging an approximation first!!!" << std::endl;
 | |
|    }
 | |
| }
 | |
| 
 | |
| BOOST_AUTO_TEST_CASE( test_main )
 | |
| {
 | |
|    std::string line;
 | |
|    real_parser<long double/*mp_type*/ > const rr_p;
 | |
|    while(std::getline(std::cin, line))
 | |
|    {
 | |
|       if(parse(line.c_str(), str_p("quit"), space_p).full)
 | |
|          return;
 | |
|       if(false == parse(line.c_str(), 
 | |
|          (
 | |
| 
 | |
|             str_p("range")[assign_a(started, false)] && real_p[assign_a(a)] && real_p[assign_a(b)]
 | |
|       ||
 | |
|             str_p("relative")[assign_a(started, false)][assign_a(rel_error, true)]
 | |
|       ||
 | |
|             str_p("absolute")[assign_a(started, false)][assign_a(rel_error, false)]
 | |
|       ||
 | |
|             str_p("pin")[assign_a(started, false)] && str_p("true")[assign_a(pin, true)]
 | |
|       ||
 | |
|             str_p("pin")[assign_a(started, false)] && str_p("false")[assign_a(pin, false)]
 | |
|       ||
 | |
|             str_p("pin")[assign_a(started, false)] && str_p("1")[assign_a(pin, true)]
 | |
|       ||
 | |
|             str_p("pin")[assign_a(started, false)] && str_p("0")[assign_a(pin, false)]
 | |
|       ||
 | |
|             str_p("pin")[assign_a(started, false)][assign_a(pin, true)]
 | |
|       ||
 | |
|             str_p("order")[assign_a(started, false)] && uint_p[assign_a(orderN)] && uint_p[assign_a(orderD)]
 | |
|       ||
 | |
|             str_p("order")[assign_a(started, false)] && uint_p[assign_a(orderN)]
 | |
|       ||
 | |
|             str_p("target-precision") && uint_p[assign_a(target_precision)]
 | |
|       ||
 | |
|             str_p("working-precision")[assign_a(started, false)] && uint_p[assign_a(working_precision)]
 | |
|       ||
 | |
|             str_p("variant")[assign_a(started, false)] && int_p[assign_a(variant)]
 | |
|       ||
 | |
|             str_p("skew")[assign_a(started, false)] && int_p[assign_a(skew)]
 | |
|       ||
 | |
|             str_p("brake") && int_p[assign_a(brake)]
 | |
|       ||
 | |
|             str_p("step") && int_p[&step_some]
 | |
|       ||
 | |
|             str_p("step")[&step]
 | |
|       ||
 | |
|             str_p("poly")[&graph_poly]
 | |
|       ||
 | |
|             str_p("info")[&show]
 | |
|       ||
 | |
|             str_p("graph") && uint_p[&do_graph]
 | |
|       ||
 | |
|             str_p("graph")[&graph]
 | |
|       ||
 | |
|             str_p("x-offset") && real_p[assign_a(x_offset)]
 | |
|       ||
 | |
|             str_p("x-scale") && real_p[assign_a(x_scale)]
 | |
|       ||
 | |
|             str_p("y-offset") && str_p("auto")[assign_a(auto_offset_y, true)]
 | |
|       ||
 | |
|             str_p("y-offset") && real_p[assign_a(y_offset)][assign_a(auto_offset_y, false)]
 | |
|       ||
 | |
|             str_p("test") && str_p("float") && uint_p[&test_float_n]
 | |
|       ||
 | |
|             str_p("test") && str_p("float")[&test_float]
 | |
|       ||
 | |
|             str_p("test") && str_p("double") && uint_p[&test_double_n]
 | |
|       ||
 | |
|             str_p("test") && str_p("double")[&test_double]
 | |
|       ||
 | |
|             str_p("test") && str_p("long") && uint_p[&test_long_n]
 | |
|       ||
 | |
|             str_p("test") && str_p("long")[&test_long]
 | |
|       ||
 | |
|             str_p("test") && str_p("float80") && uint_p[&test_float80_n]
 | |
|       ||
 | |
|             str_p("test") && str_p("float80")[&test_float80]
 | |
|       ||
 | |
|             str_p("test") && str_p("float128") && uint_p[&test_float128_n]
 | |
|       ||
 | |
|             str_p("test") && str_p("float128")[&test_float128]
 | |
|       ||
 | |
|             str_p("test") && str_p("all")[&test_all]
 | |
|       ||
 | |
|             str_p("test") && uint_p[&test_n]
 | |
|       ||
 | |
|             str_p("rotate")[&rotate]
 | |
|       ||
 | |
|             str_p("rescale") && real_p[assign_a(a)] && real_p[assign_a(b)] && epsilon_p[&rescale]
 | |
| 
 | |
|          ), space_p).full)
 | |
|       {
 | |
|          std::cout << "Unable to parse directive: \"" << line << "\"" << std::endl;
 | |
|       }
 | |
|       else
 | |
|       {
 | |
|          std::cout << "Variant              = " << variant << std::endl;
 | |
|          std::cout << "range                = [" << a << "," << b << "]" << std::endl;
 | |
|          std::cout << "Relative Error       = " << rel_error << std::endl;
 | |
|          std::cout << "Pin to Origin        = " << pin << std::endl;
 | |
|          std::cout << "Order (Num/Denom)    = " << orderN << "/" << orderD << std::endl;
 | |
|          std::cout << "Target Precision     = " << target_precision << std::endl;
 | |
|          std::cout << "Working Precision    = " << working_precision << std::endl;
 | |
|          std::cout << "Skew                 = " << skew << std::endl;
 | |
|          std::cout << "Brake                = " << brake << std::endl;
 | |
|          std::cout << "X Offset             = " << x_offset << std::endl;
 | |
|          std::cout << "X scale              = " << x_scale << std::endl;
 | |
|          std::cout << "Y Offset             = ";
 | |
|          if(auto_offset_y)
 | |
|             std::cout << "Auto (";
 | |
|          std::cout << y_offset;
 | |
|          if(auto_offset_y)
 | |
|             std::cout << ")";
 | |
|          std::cout << std::endl;
 | |
|      }
 | |
|    }
 | |
| }
 |