mirror of
				https://github.com/saitohirga/WSJT-X.git
				synced 2025-10-31 13:10:19 -04:00 
			
		
		
		
	
		
			
				
	
	
		
			181 lines
		
	
	
		
			8.0 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
			
		
		
	
	
			181 lines
		
	
	
		
			8.0 KiB
		
	
	
	
		
			C++
		
	
	
	
	
	
| //  (C) Copyright John Maddock 2015.
 | |
| //  Use, modification and distribution are subject to the
 | |
| //  Boost Software License, Version 1.0. (See accompanying file
 | |
| //  LICENSE_1_0.txt or copy at http://www.boost.org/LICENSE_1_0.txt)
 | |
| 
 | |
| #include <pch.hpp>
 | |
| 
 | |
| #ifndef BOOST_NO_CXX11_HDR_TUPLE
 | |
| 
 | |
| #define BOOST_TEST_MAIN
 | |
| #include <boost/test/unit_test.hpp>
 | |
| #include <boost/test/floating_point_comparison.hpp>
 | |
| #include <boost/math/tools/roots.hpp>
 | |
| #include <boost/test/results_collector.hpp>
 | |
| #include <boost/test/unit_test.hpp>
 | |
| #include <boost/math/special_functions/cbrt.hpp>
 | |
| #include <iostream>
 | |
| #include <iomanip>
 | |
| #include <tuple>
 | |
| 
 | |
| // No derivatives - using TOMS748 internally.
 | |
| struct cbrt_functor_noderiv
 | |
| { //  cube root of x using only function - no derivatives.
 | |
|    cbrt_functor_noderiv(double to_find_root_of) : a(to_find_root_of)
 | |
|    { // Constructor just stores value a to find root of.
 | |
|    }
 | |
|    double operator()(double x)
 | |
|    {
 | |
|       double fx = x*x*x - a; // Difference (estimate x^3 - a).
 | |
|       return fx;
 | |
|    }
 | |
| private:
 | |
|    double a; // to be 'cube_rooted'.
 | |
| }; // template <class T> struct cbrt_functor_noderiv
 | |
| 
 | |
| // Using 1st derivative only Newton-Raphson
 | |
| struct cbrt_functor_deriv
 | |
| { // Functor also returning 1st derviative.
 | |
|    cbrt_functor_deriv(double const& to_find_root_of) : a(to_find_root_of)
 | |
|    { // Constructor stores value a to find root of,
 | |
|       // for example: calling cbrt_functor_deriv<double>(x) to use to get cube root of x.
 | |
|    }
 | |
|    std::pair<double, double> operator()(double const& x)
 | |
|    { // Return both f(x) and f'(x).
 | |
|       double fx = x*x*x - a; // Difference (estimate x^3 - value).
 | |
|       double dx = 3 * x*x; // 1st derivative = 3x^2.
 | |
|       return std::make_pair(fx, dx); // 'return' both fx and dx.
 | |
|    }
 | |
| private:
 | |
|    double a; // to be 'cube_rooted'.
 | |
| };
 | |
| // Using 1st and 2nd derivatives with Halley algorithm.
 | |
| struct cbrt_functor_2deriv
 | |
| { // Functor returning both 1st and 2nd derivatives.
 | |
|    cbrt_functor_2deriv(double const& to_find_root_of) : a(to_find_root_of)
 | |
|    { // Constructor stores value a to find root of, for example:
 | |
|       // calling cbrt_functor_2deriv<double>(x) to get cube root of x,
 | |
|    }
 | |
|    std::tuple<double, double, double> operator()(double const& x)
 | |
|    { // Return both f(x) and f'(x) and f''(x).
 | |
|       double fx = x*x*x - a; // Difference (estimate x^3 - value).
 | |
|       double dx = 3 * x*x; // 1st derivative = 3x^2.
 | |
|       double d2x = 6 * x; // 2nd derivative = 6x.
 | |
|       return std::make_tuple(fx, dx, d2x); // 'return' fx, dx and d2x.
 | |
|    }
 | |
| private:
 | |
|    double a; // to be 'cube_rooted'.
 | |
| };
 | |
| 
 | |
| BOOST_AUTO_TEST_CASE( test_main )
 | |
| {
 | |
|    int newton_limits = static_cast<int>(std::numeric_limits<double>::digits * 0.6);
 | |
|    int halley_limits = static_cast<int>(std::numeric_limits<double>::digits * 0.4);
 | |
|    double arg = 1e-50;
 | |
|    while(arg < 1e50)
 | |
|    {
 | |
|       double result = boost::math::cbrt(arg);
 | |
|       //
 | |
|       // Start with a really bad guess 5 times below the result:
 | |
|       //
 | |
|       double guess = result / 5;
 | |
|       boost::uintmax_t iters = 1000;
 | |
|       // TOMS algo first:
 | |
|       std::pair<double, double> r = boost::math::tools::bracket_and_solve_root(cbrt_functor_noderiv(arg), guess, 2.0, true, boost::math::tools::eps_tolerance<double>(), iters);
 | |
|       BOOST_CHECK_CLOSE_FRACTION((r.first + r.second) / 2, result, std::numeric_limits<double>::epsilon() * 4);
 | |
|       BOOST_CHECK_LE(iters, 14);
 | |
|       // Newton next:
 | |
|       iters = 1000;
 | |
|       double dr = boost::math::tools::newton_raphson_iterate(cbrt_functor_deriv(arg), guess, guess / 2, result * 10, newton_limits, iters);
 | |
|       BOOST_CHECK_CLOSE_FRACTION(dr, result, std::numeric_limits<double>::epsilon() * 2);
 | |
|       BOOST_CHECK_LE(iters, 12);
 | |
|       // Halley next:
 | |
|       iters = 1000;
 | |
|       dr = boost::math::tools::halley_iterate(cbrt_functor_2deriv(arg), guess, result / 10, result * 10, newton_limits, iters);
 | |
|       BOOST_CHECK_CLOSE_FRACTION(dr, result, std::numeric_limits<double>::epsilon() * 2);
 | |
|       BOOST_CHECK_LE(iters, 7);
 | |
|       // Schroder next:
 | |
|       iters = 1000;
 | |
|       dr = boost::math::tools::schroder_iterate(cbrt_functor_2deriv(arg), guess, result / 10, result * 10, newton_limits, iters);
 | |
|       BOOST_CHECK_CLOSE_FRACTION(dr, result, std::numeric_limits<double>::epsilon() * 2);
 | |
|       BOOST_CHECK_LE(iters, 11);
 | |
|       //
 | |
|       // Over again with a bad guess 5 times larger than the result:
 | |
|       //
 | |
|       iters = 1000;
 | |
|       guess = result * 5;
 | |
|       r = boost::math::tools::bracket_and_solve_root(cbrt_functor_noderiv(arg), guess, 2.0, true, boost::math::tools::eps_tolerance<double>(), iters);
 | |
|       BOOST_CHECK_CLOSE_FRACTION((r.first + r.second) / 2, result, std::numeric_limits<double>::epsilon() * 4);
 | |
|       BOOST_CHECK_LE(iters, 14);
 | |
|       // Newton next:
 | |
|       iters = 1000;
 | |
|       dr = boost::math::tools::newton_raphson_iterate(cbrt_functor_deriv(arg), guess, result / 10, result * 10, newton_limits, iters);
 | |
|       BOOST_CHECK_CLOSE_FRACTION(dr, result, std::numeric_limits<double>::epsilon() * 2);
 | |
|       BOOST_CHECK_LE(iters, 12);
 | |
|       // Halley next:
 | |
|       iters = 1000;
 | |
|       dr = boost::math::tools::halley_iterate(cbrt_functor_2deriv(arg), guess, result / 10, result * 10, newton_limits, iters);
 | |
|       BOOST_CHECK_CLOSE_FRACTION(dr, result, std::numeric_limits<double>::epsilon() * 2);
 | |
|       BOOST_CHECK_LE(iters, 7);
 | |
|       // Schroder next:
 | |
|       iters = 1000;
 | |
|       dr = boost::math::tools::schroder_iterate(cbrt_functor_2deriv(arg), guess, result / 10, result * 10, newton_limits, iters);
 | |
|       BOOST_CHECK_CLOSE_FRACTION(dr, result, std::numeric_limits<double>::epsilon() * 2);
 | |
|       BOOST_CHECK_LE(iters, 11);
 | |
|       //
 | |
|       // A much better guess, 1% below result:
 | |
|       //
 | |
|       iters = 1000;
 | |
|       guess = result * 0.9;
 | |
|       r = boost::math::tools::bracket_and_solve_root(cbrt_functor_noderiv(arg), guess, 2.0, true, boost::math::tools::eps_tolerance<double>(), iters);
 | |
|       BOOST_CHECK_CLOSE_FRACTION((r.first + r.second) / 2, result, std::numeric_limits<double>::epsilon() * 4);
 | |
|       BOOST_CHECK_LE(iters, 12);
 | |
|       // Newton next:
 | |
|       iters = 1000;
 | |
|       dr = boost::math::tools::newton_raphson_iterate(cbrt_functor_deriv(arg), guess, result / 10, result * 10, newton_limits, iters);
 | |
|       BOOST_CHECK_CLOSE_FRACTION(dr, result, std::numeric_limits<double>::epsilon() * 2);
 | |
|       BOOST_CHECK_LE(iters, 5);
 | |
|       // Halley next:
 | |
|       iters = 1000;
 | |
|       dr = boost::math::tools::halley_iterate(cbrt_functor_2deriv(arg), guess, result / 10, result * 10, newton_limits, iters);
 | |
|       BOOST_CHECK_CLOSE_FRACTION(dr, result, std::numeric_limits<double>::epsilon() * 2);
 | |
|       BOOST_CHECK_LE(iters, 3);
 | |
|       // Schroder next:
 | |
|       iters = 1000;
 | |
|       dr = boost::math::tools::schroder_iterate(cbrt_functor_2deriv(arg), guess, result / 10, result * 10, newton_limits, iters);
 | |
|       BOOST_CHECK_CLOSE_FRACTION(dr, result, std::numeric_limits<double>::epsilon() * 2);
 | |
|       BOOST_CHECK_LE(iters, 4);
 | |
|       //
 | |
|       // A much better guess, 1% above result:
 | |
|       //
 | |
|       iters = 1000;
 | |
|       guess = result * 1.1;
 | |
|       r = boost::math::tools::bracket_and_solve_root(cbrt_functor_noderiv(arg), guess, 2.0, true, boost::math::tools::eps_tolerance<double>(), iters);
 | |
|       BOOST_CHECK_CLOSE_FRACTION((r.first + r.second) / 2, result, std::numeric_limits<double>::epsilon() * 4);
 | |
|       BOOST_CHECK_LE(iters, 12);
 | |
|       // Newton next:
 | |
|       iters = 1000;
 | |
|       dr = boost::math::tools::newton_raphson_iterate(cbrt_functor_deriv(arg), guess, result / 10, result * 10, newton_limits, iters);
 | |
|       BOOST_CHECK_CLOSE_FRACTION(dr, result, std::numeric_limits<double>::epsilon() * 2);
 | |
|       BOOST_CHECK_LE(iters, 5);
 | |
|       // Halley next:
 | |
|       iters = 1000;
 | |
|       dr = boost::math::tools::halley_iterate(cbrt_functor_2deriv(arg), guess, result / 10, result * 10, newton_limits, iters);
 | |
|       BOOST_CHECK_CLOSE_FRACTION(dr, result, std::numeric_limits<double>::epsilon() * 2);
 | |
|       BOOST_CHECK_LE(iters, 3);
 | |
|       // Schroder next:
 | |
|       iters = 1000;
 | |
|       dr = boost::math::tools::schroder_iterate(cbrt_functor_2deriv(arg), guess, result / 10, result * 10, newton_limits, iters);
 | |
|       BOOST_CHECK_CLOSE_FRACTION(dr, result, std::numeric_limits<double>::epsilon() * 2);
 | |
|       BOOST_CHECK_LE(iters, 4);
 | |
| 
 | |
|       arg *= 3.5;
 | |
|    }
 | |
| }
 | |
| 
 | |
| #else
 | |
| 
 | |
| int main() { return 0; }
 | |
| 
 | |
| #endif
 |